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Point defect absorption by grain boundaries in α-iron by atomic density function modeling
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Using the atomic density function theory (ADFT), we examine the point defect absorption at [110] symmetrical
tilt grain boundaries in body-centered cubic iron. It is found that the sink strength strongly depends on
misorientation angle. We also show that the ADFT is able to reproduce reasonably well the elastic properties and
the point defect formation volume in α-iron.

DOI: 10.1103/PhysRevB.92.224106 PACS number(s): 61.50.Ah, 61.72.−y, 61.82.Bg, 62.20.D−

I. INTRODUCTION

Point defect sinks, such as individual dislocations or grain
boundaries, play a crucial role in embrittlement, swelling,
or nonequilibrium solute segregation driven by the point
defect fluxes [1]. These phenomena are especially important
in irradiated materials. Fine grain polycrystalline materials
can exhibit enhanced resistance to irradiation as they possess
high concentration of point defect sinks in the form of grain
interfaces [2]. A few experimental studies have been reported
about irradiation effects on nanocrystalline materials, which
confirm good resistance against irradiation [3–7].

Usually, theoretical determination of GB sink strength is
based on the dislocation representation of grain boundaries
and, consequently, on the consideration of elastic interaction
between the latter and point self defects [8,9]. This approach
is hardly applicable to an arbitrary GB geometry that can
be found in real materials. Molecular statics results for the
vacancy and self-interstitial atom formation energies at GBs
have appeared in literature recently [10]. Atomistic dynamics
simulations remain numerically too costly, and thus limited
to individual nanograins [11], since one is dealing with a
diffusional phenomena. The atomic density function theory
(ADFT), which is not atomistic in the strict meaning of the
term, but keeps track of the atomic microstructure, seems to
be a good candidate for this task as it operates on diffusional
time scale. It was shown in Ref. [12] that the atomic density
function theory gives correct atomic configurations for various
GB geometries. Basic features of grain boundaries as well as
dislocation emission from grain boundaries have also been
examined in literature using the phase-field-crystal model,
which is very close in spirit to the ADFT. There is, however,
a question how to incorporate self point defects in this type of
model.

In this paper, a way of describing self point defects in
the earlier introduced atomic density function model [12] is
proposed. Using this new development of the ADFT, both
vacancy and self-interstitial absorption by grain boundaries is
modeled. It is shown that simulation results give access to the
sink strengths of GBs of different misorientations. Thus, the
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approach proposed in the present paper opens a possibility of
a unified modeling of polycrystalline materials sink strength.

II. EQUILIBRIUM STATE AND ELASTIC PROPERTIES

To model the point defect absorption at grain boundaries the
ADFT has been used. A theoretical foundation of the ADFT
is based on the nonequilibrium Helmholtz free energy of a
system that is a functional F [ρ] of an atomic density function,
ρ(r). This function is an occupation probability to find an atom
at the site r of the underlying Ising lattice. Following Refs. [12]
and [13], the free energy functional can be written as

F [ρ] = 1

2

∫
d3r

V

∫
d3r ′

V
W (|r − r′|)ρ(r)ρ(r′)

+ kBT

∫
d3r

V
{ρ(r) ln ρ(r)+ [1 − ρ(r)] ln[1 − ρ(r)]},

(1)

where W (|r − r′|) is the atomic interaction potential and V

the system volume. The form of the Fourier transform V (k)
of W (|r − r′|) was chosen to reproduce the form of the first
peak of the structural factor of iron, calculated by molecular
dynamics at the melting point [14]:

V (k) = V0
{
1 − k4/

[(
k2 − k1

2
)2 + k2

4
]}

, (2)

with k1 � 0.435k0 and k2 � 0.626k0, where k0 is the minimum
position of the potential V (k), and V0 defines the energy scale.

To model the evolution of the atomic density function
ρ(r), the kinetic microscopic diffusion equation proposed in
Ref. [13] has been used. The general form of such equation,
assuming that the relaxation rate is linearly proportional to the
transformation driving force, is

∂ρ(r)/∂t = −L∇2δF/δρ, (3)

where L is a constant. Equation (3) is conservative with respect
to the mean atomic density ρ0 = ∫

d3rρ(r)/V . Nonconserva-
tive kinetics is obtained if the Laplace operator is dropped in
Eq. (3).

To model the kinetics of defect absorption at grain bound-
aries, Eq. (3) in a reduced form was numerically solved using
the semi-implicit Fourier scheme [15]. In our simulations the
next set of reduced variables was used: reduced distance x∗ =
x/a (a is the second-nearest-neighbor distance in a bcc lattice),
reduced time t∗ = tLV0/a

2, reduced energy F ∗ = F/V0, and
temperature T ∗ = kBT /V0.

1098-0121/2015/92(22)/224106(6) 224106-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.224106


O. KAPIKRANIAN et al. PHYSICAL REVIEW B 92, 224106 (2015)

4

6

8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0.014  0.016  0.018  0.02  0.022  0.024  0.026

 40

 60

 80

 100

 120

 140

 160

 200  400  600  800  1000  1200  1400  1600  1800

V
0 

un
its

G
P

a

reduced temperature T*

Kelvin

Bulk mod. (exp.)
C44 (exp.)

C’ (exp.)
Bulk mod.

C44
C’

FIG. 1. (Color online) Bcc iron elastic constants in the ADFT
as functions of reduced temperature (points). For comparison, the
Varshni fits of experimental data from Ref. [16] are plotted with lines
with respect to the upper and right axes.

To validate our potential, the elastic constants of the bcc
iron have been evaluated. For this purpose, the three char-
acteristic deformations were used: (a) uniform compression/
expansion, x,y,z → (1 − ξ )x,(1 − ξ )y,(1 − ξ )z, (b) equal
contraction/expansion along two cube edges, x,y,z → (1 +
ξ )x,(1 − ξ )y,z, and (c) pure shear, x,y,z → x + ξy,y,z.
The elastic constants C44, C ′ = (C11 − C12)/2, and the bulk
modulus B = (C11 + 2C12)/3 have been obtained numerically
from the second derivative of the free energy, Eq. (1), with
respect to ξ .

The temperature dependence of the experimental elastic
constants of iron is sometimes fitted using the semi-empirical
Varshni expression [16]. The evolution of the elastic constants
of our model with the reduced temperature T ∗ is presented
in Fig. 1 along with the Varshni fit from Ref. [16]. The
comparison between the experimental and the ADFT data
(presented in reduced units) in Fig. 1 is done by matching two
different temperature points in each scale. First, the reduced
temperature of solid phase instability in ADFT model is
associated with the iron-melting temperature (right side of
the abscissa axes). Second, we matched the lowest reduced
temperature explored in the present study (0.015) and the
ambient temperature (300 K). This choice, together with the
ordinate scaling, has been done to have the best simultaneous
fit of the bulk modulus, C44 and Zener anisotropy parameter.

Our results follow the general trend of the experimental
data, but since our model does not take into account the mag-
netic ordering, the Zener anisotropy parameter A = C44/C ′
remains nearly constant through the entire temperature range,
contrary to the experiment [16]. It is argued, for example in
Ref. [17], based on DFT calculations, that the temperature
dependence of the elastic anisotropy parameter of iron is
of magnetic origin. The observed nonlinearity of our results
(which leaves the anisotropy parameter A unchanged, though)
is due to the vicinity of the stability limit of the solid phase
and not due to the magnetic effects.

The Zener anisotropy parameter that we have obtained
in our simulations is A � 2.34, which is very close to

the experimental value of 2.406 for the bcc iron at room
temperature [16]. It is important to mention that while an
arbitrary GPa scale of the elastic constants can be chosen by
assigning a physical value to V0 in the potential Eq. (2), their
ratios, and notably, the anisotropy parameter A are independent
from V0 and uniquely determined by the form of the potential
derived from the structure factor.

III. POINT DEFECTS IN THE ADFT

To understand how point defects can be introduced in the
ADFT, first, the influence of the mean atomic density ρ0 on
the form of atomic peaks should be considered. Due to the
form of the local free energy in Eq. (1) the atomic density
function is strictly confined in the interval [0,1]. In fact, the
local free energy term impedes the growth of inhomogeneities
more and more as one approaches 0 or 1, so those values
are never actually reached. During a BCC crystal growth the
amplitudes of the peaks related to the atomic positions reach
their equilibrium value (close to 1), whereas in between the
peaks, the atomic density is approaching zero. This is the
reason why with varying the temperature or the density, only
the width of the atomic density peaks varies significantly,
which is different from the regular phase field crystal (PFC)
model. In the PFC description the local term of the free energy
is approximated by a Landau polynomial. In this case the
amplitude of the atomic peaks is not confined between 0 and
1 but grows with the varying parameters and reaches negative
values at its minimum. This difference, as we will show below,
is crucial for the elastic properties of the model and vacancy
diffusion.

Let us choose as an approximation a Gaussian form of
atomic peaks of a fixed height:

ρ(r) =
∑

i

e−(r−ri )2/σ 2
, (4)

with the parameter σ controlling the “width” of the atom;
the summation in Eq. (4) is carried out on the sites of a
bcc lattice of spacing a. It should be noted that the integral
of a single Gaussian peak in its Wigner-Seitz primitive cell,
normalized to the volume of the cell, gives the mean density
ρ0. If the atomic density profile vanishes at the borders of the
Wigner-Seitz cell, the integration interval can be extended to
infinity and Gaussian integration can be applied, leading to
σ = a[ρ0/(2π3/2)]

1/3
.

The Fourier transform of Eq. (4) is

ρk = ρ0δk,0 +
∑

q

δk,qe
−σ 2k2/4, (5)

where the sum is over the first Brillouin zone of the reciprocal
face-centered cubic lattice. Rewriting Eq. (1) in the Fourier
variables and using Eq. (5), the nonlocal part, which represents
the internal energy Fint, can be written as

Fint = V0

2
ρ0

2 +
∑

q

V (q)e−σ 2q2/2. (6)

We will call the n mode the contribution of all the terms
in Eq. (6) with |q| = qn, and q1 < q2 < q3 < . . . . The first
three modes correspond to q1 = 2

√
2π/a, q2 = 4π/a, and
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FIG. 2. (Color online) (a) The Fourier transform V (k) of the
interatomic interaction energy as a function of the distance.
(b) Illustration to the equilibrium lattice parameter a following
from Eq. (6) for ρ0 � 0.0837. The first three modes positions
corresponding to a bcc structure are highlighted with arrows in (a).

q3 = 4
√

2π/a. When the density ρ0 � 1, which is the case
in our simulation, the exponential prefactor in Eq. (6) is
nonvanishing for q-s corresponding to higher modes. So far,
we have made no assumption about the lattice parameter a, let
us choose a0 = 23/2π/k0 [where k0 is the minimum position
of the potential V (k)] as the reference. The function V (k)
is presented in Fig. 2(a) where the wave vectors of the first
three modes are indicated with arrows (dashed for a = a0 and
solid for a = 1.05a0). Note that, since σ ∼ a and q ∼ a−1,
the exponential prefactor in Eq. (6) does not depend on a.
The aforementioned figure gives an idea about the energy gain
associated with the first mode and its loss associated with
higher modes.

The energy given by Eq. (6) was calculated in one-, two-,
and three-mode approximations and is plotted in Fig. 2(b) as
a function of the ratio a/a0. It can be seen that the minimum
of the free energy for two and three modes approximation
corresponds to amin > a0. Since σ ∼ ρ1/3, the exponential
prefactor decreases more slowly with the mode number for
lower ρ0, and, consequently, amin increases with decreasing ρ0.
Then the equilibrium lattice parameter in the ADFT depends
on the mean value of the atomic density ρ0 and, consequently,
is not uniquely determined by the position k0 of the minimum
of the interaction potential V (k). From now on, we will be
referring to amin as just a.

The higher modes contribution is determinant for the elastic
properties of the ADFT. If the atomic density profile were not
confined between 0 and 1, the first mode would prevail over the
following ones and the one mode approximation could have
been used. This is equivalent to considering only the lowest
wave vectors in Eq. (6) and putting σ = 0 (the first mode
amplitude being normalized to 1). This would lead to C11 =
16α, C12 = C44 = 8α, with α = V0[(k1/k2)4 + (k1/k2)8], and
anisotropy parameter A = 2, which differ significantly from
the iron elastic constants relations [16]. The fact that the ADFT
reproduces significantly better the elastic constants of bcc iron
is due to the particular form of the local free energy term in
Eq. (1) that makes the higher modes contribution important.

In Fig. 3, the free energy as a function of ρ0 is presented for
two different temperatures. The free energy of the liquid state
is given by Fliq. = V0ρ0

2/2 + kBT [ρ0 ln ρ0 + (1 − ρ0) ln(1 −
ρ0)], whereas that of the solid phase is computed numerically.
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FIG. 3. (Color online) The solid and liquid state free energies for
reduced temperatures T ∗ = 0.025 (a) and 0.02 (b).

The fit of the structure factor used in this paper corresponds
to the temperature T ∗ � 0.025 [Fig. 3(a)]. The equilibrium
values of the atomic density in solid and liquid phases were
found using a common tangent construction. Assuming that
at this temperature the atomic volume of liquid at coexistence
with solid is the same as the atomic volume of the metastable
solid at the same ρ0, one can estimate the melting volume
change.

Thus, instead of the lattice expansion 	a/a = [a(ρ0) −
a(ρmin

0 )]/a(ρmin
0 ), we will rather speak of the relative volume

change 	V/V = 3	a/a. As one would expect, due to thermal
expansion, a(ρ0

min) increases when going from T ∗ = 0.02
to 0.025. At the same time, ρmin

0 slightly decreases (see the
legend of Fig. 4). Unfortunately, this trend does not persist
for the whole temperature range, so we cannot make a real
comparison to the experimental data on thermal expansion of
iron (for example, see Ref. [18]). We have found numerically
the dependence of 	V/V on ρ0, by relaxing the lattice
constant a for each value of the average atomic density (see
Fig. 4). From the data corresponding to T ∗ = 0.025 in Fig. 4,
and the extreme points of the liquid-solid coexistence region
ρ0

L and ρ0
S in Fig. 3(a), one gets a relative volume change

on melting, (	V/V )melt. = 3[a(ρ0
L) − a(ρ0

S)]/a(ρ0
S) [where

a(ρ0
L) corresponds to a metastable solid at ρ0

L] of around 6%.
It is consistent with the general result from Ref. [19] for bcc
lattices, following from random packings and the Goldschmidt
premise.
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Using these results at lower temperatures, when the solid
state becomes absolutely stable, the case when ρ0 < ρ0

min

can be considered as a crystal with some (nonequilibrium)
concentration of vacancies. In the case when ρ0 > ρ0

min

the crystal will be said to contain some (nonequilibrium)
concentration of self-interstitial atoms (SIA). For example, if
one atomic peak removal is associated with a single vacancy,
|ρ0 − ρ0

min|/ρ0
min gives the vacancy concentration cv. The

relative volume change due to the vacancies is given by
the formula 	V/V = cvV

F/
, where V F is the vacancy
formation volume and 
 the atomic volume. The linear fit
for small |ρ0 − ρ0

min|/ρ0
min (approaching 0 from below) in

Fig. 4, which corresponds to small cv , leads to V F � 0.22


at T ∗ = 0.02. The latter corresponds to a relaxation volume
V rel = V F − 
 � −0.78
. The data available for comparison
are all low- or zero-temperature results. The most reliable, to
our knowledge, experimental relaxation volume for vacancies
in iron is of −0.05 at 6 K [20]. First-principle calculations
at 0 K gave a value of −0.45 in Ref. [21] that the authors
themselves assumed being overestimated due to the absence
of local relaxation in their calculations. However, there exist
experimental data suggesting a thermal expansion of point
defects that is up to 15 times that of the matrix [22,23].
Applying a factor of 15 would put the experimental 6K data
in good agreement with our estimation. Our result can thus
be considered as physically reasonable, but in any case the
point defect formation volume will be rather considered as a
phenomenological parameter in our model.

IV. POINT DEFECT ABSORPTION BY
GRAIN BOUNDARIES

According to the previous considerations the introduction
of point defects in a perfect crystal with a fixed size of
the simulation box will simply increase the energy of the
system. However, when point defect sinks are present, such
as dislocations or grain boundaries, the system will tend to
decrease its energy by pushing the point defects to the sinks.

To model this phenomena, we have performed simulations
with [110] low- and high-angle symmetric tilt grain boundaries
by decreasing or increasing the initial equilibrium average
density profile value ρ0. The crystal with grain boundaries
was constructed using the procedure described in Ref. [12].
The point defect absorption, manifest in atoms disappearing
or appearing at the GB, can be seen directly from Fig. 5, where
darker colors correspond to higher values of the atomic density
function. The relative volume changes used were of ∼ −5%
for vacancies and of ∼7% for SIA. These values correspond
to unrealistically high concentrations of point defects, and
compensate for the fact that the grain size is rather small in our
simulations (∼10–15 nm between neighboring GBs). Indeed,
in our simulations both the point defect and the GB are by far
more numerous than in real materials. This can be alternatively
interpreted as artificially increasing the strength of the point
defect displacement field. As this increase is the same for
all GBs considered, nothing prevents us from determining the
relative point defect absorption rates for different types of GBs.

To characterize the volume of an atom, the integration of
the ADF in the Voronoi cell associated with this atom has
been done. The Voronoi cell is defined as the part of the space

FIG. 5. (Color online) Point defect absorption kinetics at a [110]
edge dislocation (indicated with white dashed lines) in a system with
(a) vacancy and (b) self-interstitial supersaturation. The dislocation
is part of a GB, which plane is highlighted with green color. The
[110] cross-sections of the atomic density function profile are given
in logarithmic gray scale in order to make visible the variations of
the ADF in between the atomic peaks. The time axis is pointing
downwards.

situated closer to a given atom than to any other one. This
quantity will be referred to as the local atomic density. Then,
the relative deviation of the local atomic density from its bulk
value will reflect the local strain (compression-expansion)
field. The latter is represented in Fig. 6 for a low-angle GB
fragment from Fig. 5. For better perception of the local atomic
density variation, in Fig. 6, colors on equal-sized spheres are
used to visualize the deviation of the local atomic density from
its bulk value (red color associated to this value is used as
the upper rendering threshold for compression and the lower
rendering threshold for expansion). The total relative decrease
(per unit interface) of the local atomic density in time is plotted
in Fig. 7(a) for different tilt angle GBs. The curves are linear,
so their slope, plotted in Fig. 7(b) versus the relative volume

FIG. 6. (Color online) The intrinsic strain [dilatation (a) and
compression (b)] due to the edge dislocation at the 4.24◦ [110] GB,
as given by the local atomic density normalized to its bulk value.
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volume change.

change, can be taken as the measure of the vacancy absorption
rate ∂cv/∂t . The volume change is itself proportional to the
vacancy concentration cv: 	V/V = cvV

F /
. The fact that
the dependence in Fig. 7(b) is nearly linear is consistent with
the linear rate equations commonly used to describe point
defect absorption by extended defects [24].

There is no vacancy production during our simulation, so
the rate equation for the vacancy absorption reads as ∂cv/∂t =
−k2

vDvcv. Since the bulk vacancy diffusion coefficient Dv does
not depend on the GB geometry, the vacancy absorption rates
of different [110] symmetric tilt grain boundaries plotted in
Fig. 8 reveal their relative sink strengths k2

v. The sink strength
of the low-angle GBs increases with the tilt angle due to the
increasing of the dislocation density like it was found in Ref.
[8]. In Ref. [9], however, it was obtained that the sink strength
remains almost constant above 3◦ tilt, due to the mutually
annihilating elastic fields of neighboring dislocations. It was
assumed therein that the long-range diffusion of point defects
toward the GB is the rate-limiting step for the sink strength
determination. This assumption does not hold in our model
and it is rather the interaction of point defects with the
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FIG. 8. (Color online) The modulus of the vacancy absorption
rate per unit grain interface (a2) as a function of the GB tilt angle.

dislocation cores and not with the far-reaching elastic field
that is determinant for the absorption rates in our simulations.

It is notable that a low sink strength is obtained for the
�9 and �3 grain boundaries. This result is in agreement with
the experimental study presented in Ref. [25]. The molecular
statics modeling done in Ref. [10] is also in favor of our results
as it shows a general trend of a mean vacancy formation energy
decreasing with � (that is, the low-� GBs being the less
energetically favorable for absorbing vacancies). Finally, it is
coherent with the other properties of special GBs approaching
those of the bulk material (energy, excess volume) due to their
bulk-like atomic arrangements.

V. CONCLUSIONS

It has been previously shown that the atomic density
function model reproduces well the atomic structures of [100]
and [110] symmetric tilt GBs [12].

In the present paper, we have demonstrated that point
defects can be also adequately described by this model as
well as the point defect absorption by GBs. It comes possible
from the adequate description of the elastic properties of given
materials. We show that the form of the local term of the
free-energy functional plays a crucial role in the description
of these properties.

This new development of the ADFT gives a new insight into
the GB sink strength for vacancy annihilation. Accurate fit of
the interaction potential to a structural factor allows us to give
a quantitative description of vacancy migration to GBs. This
gives access to sink strengths of GBs of complex geometries
or of polycrystalline materials.

As a perspective, first, Frenkel pairs annihilation in irra-
diated materials can be modeled with two coupled atomic
density functions, one for the vacancies and another one for the
self-interstitials. Second, introducing another atomic species,
with elastic properties different from the α-iron matrix, will
allow us to describe nonequilibrium solute segregation at the
GBs driven by the fluxes of points defects. This work is in
progress.
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