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Using magnetic stripes to stabilize superfluidity in electron-hole double monolayer graphene
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Experiments have confirmed that double monolayer graphene does not generate finite-temperature electron-
hole superfluidity, because of very strong screening of the pairing attraction. The linear dispersing energy bands

in monolayer graphene block any attempt to reduce the strength of the screening. We propose a hybrid device
with two sheets of monolayer graphene in a modulated periodic perpendicular magnetic field. The field preserves
the isotropic Dirac cones of the original monolayers but reduces the slope of the cones, making the monolayer
Fermi velocity vy smaller. We demonstrate that with current experimental techniques, the reduction in vy can
weaken the screening sufficiently to allow electron-hole superfluidity at measurable temperatures.
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I. INTRODUCTION

The transition temperatures for electron-hole superfluidity
in thin parallel conducting sheets of electrons and holes
are expected to be high because the electron-hole pairing
is Coulombic and is strong compared with conventional
superconductors. This has led to suggestions of superfluidity
at room temperatures in double electron-hole monolayers
of graphene [1], but Ref. [2] showed that strong screening
of the pairing attraction in this system tends to suppress
finite-temperature superfluidity. Here, we propose a hybrid
double monolayer graphene device designed to boost the
pairing attraction by reducing the effects of the screening,
and we demonstrate that this can lead to magnetically induced
superfluidity. We use electronic band structure engineering,
coupling periodic real or pseudomagnetic fields to double
electron-hole monolayers of graphene separated by a thin
insulating barrier. The resulting quantum properties of the
device stabilize macroscopic quantum coherence and allow, in
a solid state electronic device, the tuning of the strength of the
many-body correlations and the related superfluid properties.
Previously, such tuning has only been possible in ultracold
fermionic atoms [3].

Both theory [2,4,5] and experiment [6] have established that
conventional electron-hole double monolayer graphene does
not generate finite-temperature electron-hole superfluidity
because of strong screening of the electron-hole pairing. This
originates from the linear Dirac cones of the monolayer
graphene band structure, €4(k) = +hvp|k|, with constant
Fermi velocity vr, that makes the Fermi energy Er dominate
the average Coulomb interaction (Vcoy ). The resulting small
interaction strength parameter, vy = (Veou)/Er = e? /(hvgk),
that is fixed independent of density, leads to strong screening
that makes pairing too weak for finite-temperature super-
fluidity to occur [2]. Only when ry > r2™ = 2.3 does the
pairing become sufficiently strong for a large superfluid gap
A to open discontinuously and suppress the screening. With
graphene on a hexagonal boron-nitride (h-BN) substrate of
dielectric constant x >~ 3 — 4, r; < 1. Theoretically, weak-
coupled superfluidity could still occur, but at impractically
low temperatures. Since it would be destroyed by residual
disorder [7], we do not consider it further. Other systems
have been proposed for observing the superfluidity with an
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rs parameter that can be varied with the density. These include
two sheets of multilayer graphene which have nonlinear
dispersing energy bands [4,8,9], double quantum wells in
GaAs [10,11], and hybrid GaAs-graphene structures [12].

In this Rapid Communication we propose use of a periodic
magnetic field applied perpendicular to double electron-hole
monolayer graphene in order to reduce the slope of the
monolayer Dirac cones while preserving their isotropy
[13-16]. This reduces vy and increases the value of r,. If
ry can be increased to ry > ro™, then finite-temperature
superfluidity can occur [2]. The Fermi velocity in monolayer
graphene can also be renormalized, but nonisotropically,
by applying a one-dimensional potential superlattice in the
layer [17].

II. METHODS

A. Reducing the Fermi velocity

Consider a magnetic field in the z direction, perpendicular
to the monolayers, as a periodic array in the x direction of
rectangular magnetic barriers and wells of height B, = +B
and width dp. The field could be generated with a periodic
array of ferromagnetic stripes placed on top of the graphene
monolayers (Fig. 1).

Since the average of the magnetic flux is zero across the
unit cell of the periodic field, the main effect of the field
is to modify the monolayer band structure. With zero flux,
the results are insensitive to fine details of the magnetic
profile [15]. At low energies the de Broglie wavelengths of
the quasiparticles are much longer than the length scale of
the magnetic field variation, so the magnetic profile can be
approximated by a periodic square wave magnetic field [18].
We assume smearing of the magnetic barriers is much greater
than the lattice spacing. The smoothness of the vector potential
on a microscopic scale means we can neglect intervalley
scattering and use single-valley continuum Dirac-Weyl theory.
The Zeeman effect is very small in graphene, and electron-hole
pairing is insensitive to relative spin orientation, so we can
neglect spin effects induced by the magnetic field.

With this magnetic profile, the vector potential in the
Dirac Hamiltonian can be fixed by the Landau gauge and
chosen periodic in the x direction. The spectrum can then be
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FIG. 1. (Color online) Possible realization of the device. An
array of ferromagnetic stripes with periodicity 2dg, placed on top
of two monolayer sheets of graphene, produces a periodic magnetic
field B, >~ +B.

obtained by a standard transfer matrix approach [19]: Define
7 (depending on B, momentum k,, and energy level €) as the
transfer matrix that relates the two-component wave function
on x to its value on x + 2dp. Showing that det7 = 1 and
introducing a new momentum k, due to the periodicity of the
superlattice, the eigenvalues of 7 can be written as e*%*«s,
so the condition determining the band structure is

Tr[7 (ky,€)] = 2 cos(2k.dp). (D

Expanding Tr[7 (ky,€)] on ky and €, noting that Tr[7 (k,,0)] =
2 cosh(2k,dp), and expanding cos(2k.dp) on k,, we then solve
Eq. (1) for €. We find that the energy dispersion remains linear
and isotropic for small momentum, but with a reduced velocity
aqvr < vr [13-16],

ex(k) = £h(aqvp)K[[1 + (K)]. (@)

In Eq. (2), a4 is a function of d = dp/lp, the dimensionless
stripe width, where the magnetic length €z = \/hc/eB >~
26/+/B(T) nm. An expansion of Eq. (1) limits the correction
term in Eq. (2), |8(k)| < d%k2/6. The decrease in Fermi
velocity in the small and large d limits is [13,16]

g ~1—d*/60, d<«1, 3)

2d
oy —eﬁlz/4
T

, d> 1. “)

At large densities, Ey eventually passes out of the first
energy band of the periodic magnetic field into the band gap
where the linear spectrum approximation is no longer valid.
The energy width E  of the band can be numerically calculated
by solving Eq. (1) at the boundaries of the Brillouin zone,
k, = in/2d3,i.e.,Tr[’T(0,EB)] = —2,with £y = hUF/ZB ~
22/B (T) meV. We find Eyay/d < Ep < Egmag/2d. The
lower limit is valid for large d. It corresponds to the spec-
trum along &, as e(k,) = A(agvr)+/[1 — cosRk,dp)]/2/dp =~
R(agvr)k, (1 — d2k?/6), the largest deviation from linearity.
The upper limit is valid for small d. It corresponds to a
completely linear spectrum, €(k,) = hoyvpk,. Remarkably,
along the k, direction, the spectrum is found to be almost
linear for all € < Ep and for all parameters we use. Within
linear approximation, we must restrict our results to values
of Er < Ep. Even in the least favorable case, when the
extreme value Er = Ep isreached at k, = 1/dp (in the linear
approximation), the true spectrum remains close to the linear
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spectrum, e(dl) = /(1 —cos2)/2Er >~ 0.84EF. This gives
an estimate of the maximum error along k.. In the superfluid
state, §(k) must also be small compared with the energy gap
Amax since the gap excludes single-particle states lying less
than A« above Ef, or equivalently, using the limiting value
at the Brillouin zone edge, |8(k)| < 72/24,

7[30‘d/48d <K Amax/ Ep. (5)
For d > 1, Eq. (5) is always satisfied since ag~de /4.

B. Enhancement of superfluidity by magnetic field

The effective Hamiltonian for the two monolayer sheets
of graphene in the presence of the periodic perpendicular
magnetic field is

H=> gl +> V,ffk,cﬁ%cﬁw%cl{/%cik,%. (6)
ky qky
Ky’
The single-particle energy bands for the modified Dirac cones
of the conduction band (electrons) and valence band (holes),
Elf = yagvr|k| — u, are measured from their respective
chemical potentials =, where y = 1(—1) labels the electron
(hole) sheet. The ¢/ and ¢ are creation and destruction
operators for electrons and holes. Spin indices are implicit.
V(fh is the screened electron-hole interaction.
The mean-field equations at zero temperature for the
momentum-dependent superfluid gap functions A, and for
equal electron and hole densities n, = n_ = n are

1 o AL
AL =—-=> F/ v X ()
v 2E]
88 x| 34
=N (1 - 2K ). 8
T g Xk: 2( EJ ®

El =,/ kVZ + A} % g.(gy) =2 are the spin (pseudospin)

factors, and €2 is the sheet area. We retain only the s-wave
harmonic in the graphene form factor Fk};c,y, = 1/2, which
comes from the overlap of the single-particle wave functions
in the strong-coupled regime [2].

We self-consistently calculate the screened electron-hole
interaction qu” within the random phase approximation
(RPA) in the zero temperature superfluid state [2,4,20]. The
most favorable conditions for pairing are at small interlayer
separations D on the scales of both the effective Bohr radius
and the inverse Fermi momentum k;l in each layer. In this
case, ¢ D < 1 and the interaction reduces to

veh — ﬂ 9)
a .
1 4+ 2v,11(q)
vy = —2me?/(kq) is the unscreened Coulomb interaction.

M(g) = N®(g) + e 7PTIW(q) ~ I®(q) + T¥(q) is the
sum of the normal (intralayer) and anomalous (interlayer) po-
larizabilities for the superfluid state calculated with the linear
energy spectrum. The gap equation [Eq. (7)] is independent
of density when expressed in units of Er and kp, with the
exception of the e =42 factor in Eq. (9) for V(fh. With increasing

density, this factor weakens Vq”h.
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Rescaling § = ayq gives I(g,oqvp) = a;zl'[(cj,vp), and,
for gD < 1, quh(O(dUF,IC) = oeﬁVth(vp,adlc). Equations (7)
and (8) thus remain the same, but with (e« ) replacing «. The
interaction parameter r; = [1 /(xd][e2 /(hkvp)] increases by a

factor a;l .

III. RESULTS

Figure 2 shows that by tuning «; with d using a periodic
magnetic field, r; can be increased above the value ro™
needed for superfluidity. k = 3 corresponds to monolayers
embedded in a h-BN substrate. k = 2 corresponds to a free-
standing system with the two monolayers separated by h-BN.
Ford < dpmin = 2/Togk + 1,1y < O™, and the superfluidity
is killed by strong screening. For « = 3(2), dimin =~ 3.1(2.7).

The renormalization of the band structure is the main effect
that drives the superfluidity in the double monolayer system.
We find whenever superfluidity occurs, the electron-hole pairs
of the superfluid ground state are compact compared with their
spacing, making them approximately neutral, and the electrons
and holes have opposite wave vectors. Thus screening effects
and effects of the magnetic field on the orbital degrees of
freedom should be small compared with the primary effect,
the renormalization of the Fermi velocity.

Figure 3 shows the maximum superfluid energy gap A.x at
zero temperature for different values of the magnetic field B, as
a function of sheet density n, for two monolayers separated by
D = 2 nm and embedded in a h-BN substrate. The gaps Anax
are of the order of several hundred Kelvin. A, decreases
with increasing 7, due to the e~7? factor in quh [Eq. (9)]. This
eventually results in no solution to the gap equation. However,
we terminate the curves in Fig. 3 when Ef reaches Ep, and
this occurs before such a density is reached. Er = Ejp thus
gives a lower limit on the maximum density for the superfluid
phase, n ~ 5 x 10'9B(T)/d? cm™2.

For all the gaps shown in Fig. 3, Apax > Er, leading to a
strong suppression of the screening. At higher densities, the
very strong screening would kill the superfluidity before the
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FIG. 2. (Color online) Interaction parameter r, for a magnetic
field of periodicity 2d for dielectric constants k = 3 (monolayers
embedded in a h-BN substrate) and ¥ = 2 (free-standing monolayers,
separated by h-BN). Superfluidity occurs for r, > r?™ = 2.35 [2].
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FIG. 3. (Color online) Maximum superfluid gap A, for differ-
ent values of the magnetic field B, as a function of sheet densities 7.
Sheet separation is D = 2 nm. At arrow points: A, in Kelvin.

system can enter the BCS regime [4]. However, with increasing
density, and well before A, can drop to E g, the Fermi energy
reaches the band edge Ez, where the curve must be truncated.

To maximize the density range for superfluidity, the
magnetic field B should be made large. In the ferromagnetic
stripes shown in Fig. 1, the maximum magnetic field is
B ~ 1.2 T, with magnetic length £5~24 nm. For x = 3, this
corresponds to a minimum stripe width dp = dpinlp = 74 nm,
readily attainable experimentally. However, for B < 1.2 T, the
magnetic bandwidth is narrow so that Er reaches Ep at low
densities (see Fig. 3).

To obtain superfluidity at higher densities, a deformation
of the graphene layer can be used to produce much larger
pseudomagnetic fields. Periodic deformations of the graphene
layers generate a fictitious vector potential which can produce
a periodic pseudomagnetic field in the layers [21-24].

The pseudomagnetic field induced by the strain changes
sign for the two valleys. The Dirac cones at the Brillouin zone
points K and K’ will experience an alternating magnetic field
in both cases, but with a 7 shift in phase. However, in the
absence of intervalley scattering, as considered in this work,
a global 7 shift in the zero-flux magnetic field does not affect
the renormalization of the Fermi velocity of the two Dirac
cones. Therefore, the evaluation procedure for determining
the RPA screening and the density of carriers, using two
equivalent renormalized Dirac cones, is the same as for the
ferromagnetic stripes.

Let us consider a periodic modulation of the graphene layer
with height profile [Fig. 4(a)] along the zigzag direction of the
lattice, h(x,y) = ho cos (2w x/A). ho and A are the modulation
amplitude and wavelength. The pseudopotential A = (A,,A,)
at lattice point « is defined as

1
AL +iAY = —
evf

D tap(Rap)e ™ EF0) - (10)
Benn(a)

The K point of the Brillouin zone is at K, Ry is the distance
between atoms « and B, and the hopping amplitude 7,4 couples
the p, orbitals on nelghborlng atoms. The corresponding
pseudomagnetic field is B=VxA.
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FIG. 4. (Color online) (a) Periodic deformation profile & of a
graphene sheet. (b) Induced strain in the sheet. (c) Induced pseu-
domagnetic field in the sheet.

Figure 4(a) shows the profile of the periodic deformation
along the zigzag direction for A = 80 nm and amplitudes h,.
Figure 4(b) shows the induced strain, and Fig. 4(c) the induced
periodic pseudomagnetic field. The periodicity of the strain
profile and the pseudomagnetic fields is one-half of A, so A =
80 nm corresponds to a stripe width dg = 20 nm.

To explore the modification of the electronic properties
induced by an out-of-plane deformation, we have calculated
the local density of states (LDOS) using the tight-binding
Hamiltonian with a spatially varying hopping amplitude
induced by a spatially varying intercarbon distance. The LDOS
is calculated through a Chebyshev expansion of the single-
particle Green’s function [25,26]. For A = 80 nm, we find
that for deformation amplitudes up to #y < 4 nm, we recover
the same phenomenon in the energy dispersion as that
for the real magnetic field, an isotropic linear dispersion with
the slower Fermi velocity a,vp. Figure 4(c) shows that an
amplitude Ay >~ 2.6 nm generates the large pseudomagnetic
field B >~ 20 T. This leads to a much wider magnetic bandwidth
Ep than is possible for ferromagnetic stripes, and Er does
not reach Ep until densities n > 10'! cm~2. An experimental
realization would be to deposit graphene on a substrate that
can be strained through surface acoustic waves (SAWs) [27],
using two interdigital transducers and a piezoelectric substrate.
For wavelengths . ~ 80 nm and typical piezoelectric materials
used in SAW devices, the frequency ~50 GHz.

The Fourier transform of the interaction in Eq. (9) in the
presence of graphene corrugations should be evaluated in the
periodic curved geometry. However, in the strong-coupling
regime, the electron-hole pairs have dimensions along the
layers comparable to the deformation wavelengths, so the
curved geometry corrections to the interaction will be small.

Transition temperature

Over the range of parameters we are considering, we find
that the electron-hole superfluidity is always in the strong-
coupling regime, well inside the crossover regime of the BCS-
BEC crossover. The transition temperature calculated within
the mean field approach, T, will be much larger than the
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FIG. 5. (Color online) (a) Ty™ as a function of B. Array spacings
d = 3.1 and 2.7 give maximum transition temperatures for embedded
and free-standing systems, respectively. (b) Tg¢* as a function of d.

actual transition temperature for the onset of phase coherence.
A lower bound on the transition temperature in two dimensions
is given by the Kosterlitz-Thouless (KT) temperature,

Txr = (7/2)ps(Tkr), Y

where p,(T) is the superfluid stiffness. py(T = 0) = Ef /47
and, when kgD is small, py(T) falls off slowly with T for
T < Anmax. Hence, taking p,(T) >~ ps(0), we obtain Txr =
EF/S for EF/8 < Amax-

Since in general Tkt < T, the mean field superfluid gap
will be insensitive to T for T < Tkr. By a similar argument, the
RPA screening polarization bubbles are only weakly affected
by finite T < Txr. Thus, in the superfluid calculations, we can
take T = 0.

For superfluidity to occur, we recall that the array spacing
d 2 3 (Fig. 2). For these values of d, the linearized Eq. (2)
is valid whenever Er < Ep is satisfied. This inequality
establishes an upper bound on the maximum transition temper-
ature, Tyt < T ~ 35/B(T) exp (—d?*/4) K, the equality
occurring for Ep = Ep. Figure 5 shows this maximum 7g¢*
as a function of both B and d.

IV. CONCLUSIONS

We have proposed an electron-hole double monolayer
graphene system, in which a quantum phase transition to a
superfluid is induced by a periodic magnetic field. Electron-
hole pairing in conventional double monolayers is known to
be severely weakened by screening within the layers which
kills the superfluidity. If the pairing can be made strong, then
a large superfluid gap is known to open up, destroying the
low-energy single-particle excitations that cause the screening.
We show how a periodic magnetic field applied perpendicular
to the monolayers could be used for this purpose: The field
preserves the isotropic Dirac cones of the original monolayers
but reduces the Fermi velocity in a tunable way, shifting
the system parameters into the strongly coupled pairing
regime where screening is sufficiently weakened for finite-
temperature electron-hole superfluidity to occur.
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