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Frustration and correlations in stacked triangular-lattice Ising antiferromagnets
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We study multilayer triangular-lattice Ising antiferromagnets with interlayer interactions that are weak and
frustrated in an abc stacking. By analyzing a coupled height model description of these systems, we show that
they exhibit a classical spin liquid regime at low temperature, in which both intralayer and interlayer correlations
are strong but there is no long-range order. Diffuse scattering in this regime is concentrated on a helix in reciprocal
space, as observed for charge ordering in the materials LuFe2O4 and YbFe2O4.
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Some simple models of highly frustrated magnets de-
velop strong correlations at low temperature without long-
range order. In this regime, they are known as cooperative
paramagnets or classical spin liquids [1]. The Ising model
with nearest-neighbor antiferromagnetic interactions on the
triangular lattice was one of the earliest examples to be
studied in detail [2], while the Ising antiferromagnet on
the pyrochlore lattice is an example of high current interest
as a model for spin-ice materials [3]. The description of
the cooperative paramagnetic state presents a theoretical
challenge, and may involve emergent degrees of freedom and
fractionalized excitations: a height [4] or gauge field [5] in
these cases, with vortex or monopole excitations.

In both these models, the cooperative paramagnetic regimes
are continuously connected to disordered ground states with
macroscopic entropy. By contrast, systems that have ordered
ground states typically do not display strong correlations
without long-range order, except near a critical point. Here,
we study a remarkable exception: the three-dimensional Ising
antiferromagnet built from abc-stacked triangular lattices,
with interlayer coupling J⊥ much weaker than the in-plane
coupling J . For J⊥ = J , this is the face-centered cubic lattice
model, which orders discontinuously [6] at a temperature
Tc � 1.74J , while for J⊥ = 0, it reduces to uncoupled layers,
which remain disordered to T = 0. For J⊥ � J , we show
that there is a temperature window in which the model has
strong correlations, both between and within layers, and a
large but finite correlation length. We formulate a theory for
this regime in terms of coupled height fields. It is striking for its
correlations (helical in reciprocal space), fluctuations (quartic
in wave vector) and mechanism for suppression of long-range
order (bound vortex-antivortex pairs). It also has interesting
parallels with theories for smectic liquid crystals [7] and for
frustrated quantum magnets [8].

To put this layered antiferromagnet in context, note that
the ordering pattern in magnets is determined at mean-field
level by the location of minima in the eigenvalues of the
exchange interaction matrix J(q) as a function of wave vector
q. The suppression of ordering in many frustrated models
is a consequence highly degenerate minima. As examples,
nearest-neigbor (nn) interactions on the pyrochlore lattice
lead to a degenerate minimum band spanning the full, three-
dimensional Brillouin zone [5], while competing first- and
second-neighbor interactions on the diamond lattice give rise
to minima on surfaces [9]. On the abc-stacked triangular

lattice, nn interactions have long been noted for generating
minima on helical lines in reciprocal space [10]. For the Ising
model on this lattice, we show in the following that reciprocal
space correlations are concentrated close to such a helix over
an extended temperature range.

We start from the model illustrated in Fig. 1(a), with the
Hamiltonian

H = J
∑
〈ij〉,z

σi,zσj,z + J⊥
∑
{ij},z

σi,zσj,z+1 . (1)

Here σi,z = ±1, the integer z labels planes, nn pairs of sites in
the same plane are denoted by 〈ij 〉, and those from different
planes by {ij}. Of the possible further-neighbor interactions
that we have omitted, the most important is the unfrustrated
coupling

H3 = J3

∑
i,z

σi,zσi,z+3 (2)

between a spin in layer z and the spin directly above it in layer
z + 3, which lifts the degeneracy of the helical minima in J(q).

To discuss the low-temperature behavior of this model, we
exploit the fact that ground states of a single triangular layer
can be described by a height model [4,11]. Excitations out
of the ground state are represented by screw dislocations or
“vortices” in the height field. Vortex-antivortex pairs, present
at any finite T , are unbound in an isolated layer and the vortex
separation ξ sets the correlation length, which is large at low
T because they are dilute.

Interlayer coupling greatly reduces the degeneracy. Ground
states [12] for J⊥ �= 0 are described by a height field with
a gradient of maximum magnitude but arbitrary direction.
Of these, thermal fluctuations favor six states [13] in which
each triangular layer contains alternating stripes of up and
down spins. For low T , the system adopts one of the three-
dimensionally (3D) ordered, symmetry-breaking phases of this
type.

At intermediate temperatures, thermal fluctuations compete
with the interlayer coupling. For the regime of most interest,
J⊥ � T � J , it is necessary to take two aspects of the physics
into account. First, perturbing around a system of uncoupled
layers, we use a renormalization-group (RG) calculation [14]
to treat the couplings K⊥ ≡ J⊥/T and K3 ≡ J3/T , which
are RG-relevant. Second, we make a detailed analysis of
the influence of defects that appear in the coupled height
model at finite temperature. The outcome depends on three
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FIG. 1. (Color online) (a) The multilayer triangular lattice with
abc stacking. (b) The mapping (modulo 6) from ground-state spin
configurations on sublattices A, B, and C to integer-valued height
variables h (adapted from Ref. [11]).

quantities: the vortex separation ξ ; the scale �⊥ at which
the renormalized coupling K⊥ ∼ O(1) in the vortex-free
system; and the strength of the renormalised K3. Interlayer
coupling without vortices leads to 3D order at the scale �⊥. In
addition, it generates a potential that confines vortex-antivortex
pairs. In many settings, unbound vortices destroy long-range
order but bound vortex-antivortex pairs do not. Remarkably,
we find in this model that 3D order is disrupted even by
bound pairs if K3 is smaller than a critical value K∗

3 . Hence
three distinct regimes of behavior emerge from this analysis,
with: (a) weakly-coupled paramagnetic layers, when ξ � �⊥;
(b) 3D order, when �⊥ � ξ and K3 > K∗

3 ; and (c) strong
interlayer correlations but no long-range order, when �⊥ � ξ

and K3 < K∗
3 .

We now set out these calculations in more detail. For a
single triangular layer, the mapping [4,11] between ground-
state spin configurations and single-valued height variables,
defined at the centres of triangles, is illustrated in Fig. 1(b).
The inverse mapping has the form σα = f (h + sα), where
f (h + 6) = f (h) with f (h) = +1 for h = −1,0,1 and f (h) =
−1 for h = 2,3,4. Here the sublattice label α = A,B, or C and
sA = 0, sB = 2, sC = −2. The dominant contribution to long-
distance correlations involves the lowest Fourier component
of f (h), so that

σα ∼ cos
π

3
(h + sα). (3)

Excitations out of the ground state consist of triangles in which
all three spins have the same orientation, and the height field
changes by ±6 around a closed path surrounding one such
excitation.

The probability of a coarse-grained height configuration
h(r) for an isolated layer is proportional to e−H2D with an
effective Hamiltonian [4,11]

H2D =
∫

d2r
[
K

2
|∇h(r)|2 − g cos 2πh(r)

]
. (4)

The first term in Eq. (4) describes the entropic cost of height
gradients; the second term encodes the fact that microscop-
ically the height field is integer-valued. The value of the
stiffness K is fixed by comparison with the known asymptotic
behavior 〈σα(r)σβ(0)〉 ∼ r−1/2 cos π

3 (sα − sβ) of ground-state

correlations in the Ising model [15]: for K = π
9 , this form is

recovered and g is RG-irrelevant. Note that, because of the
sublattice-dependent phase sα in Eq. (3), small wave-vector
fluctuations of h(r) represent Ising spin fluctuations with wave
vectors near the corners of the triangular-lattice Brillouin zone.

To describe a multilayer system, we introduce a height field
hz(r) in each layer, with r ≡ (x,y). Using (3), the interlayer
coupling written in terms of heights is [16]∑

{ij},z
σi,zσj,z+1

= −
∑

z

∫
d2r
�

[
∂xhz(r) cos

π

3
(hz+1(r) − hz(r))

− ∂yhz(r) sin
π

3
(hz+1(r) − hz(r)) + · · ·

]
, (5)

where � is the short-distance cutoff and the ellipsis indicates
omitted terms that are RG-irrelevant at weak interlayer cou-
pling. We introduce the notation δ

(p)
z (r) = π

3 (hz+p(r) − hz(r))
and define a reduced interlayer coupling κ⊥ = K⊥/�K . The
leading contributions to the multilayer height Hamiltonian can
then be combined as

H3D = K

2

∑
z

∫
d2r

[(
∂xhz(r) − κ⊥ cos δ(1)

z (r)
)2

+ (
∂yhz(r) + κ⊥ sin δ(1)

z (r)
)2 − κ2

⊥
]
. (6)

This model has a striking continuous symmetry under
a joint real-space and height-space transformation. Let Rθ

denote rotation in the xy plane by the angle θ . Then the
transformation r′ = Rθ (r) and

hz(r) → h′
z(r) = hz(r′) + 3θz/π (7)

leaves H3D invariant for any θ . Ground states of H3D are
parameterized by constants θ and α, having a form

h(θ)
z (r) = κ⊥(x cos θ − y sin θ ) + 3θz/π + α (8)

that balances interlayer coupling energy against intralayer
entropy.

Additional interactions are expected to restrict the con-
tinuous symmetry to the discrete one (θ = 2πn/3 with
integer n) of the microscopic model. Of these locking
terms, the most important are the RG-relevant ones that
link nearby layers, and the dominant one, K3 cos δ(3)

z (r), acts
between layers with separation three. All locking terms that
act between nearest-neighbor layers are RG-irrelevant; the
leading example is K1[(∂xhz(r))2 − (∂yhz(r))2] cos δ(1)

z (r) +
2(∂xhz(r))(∂yhz(r)) sin δ(1)

z (r).
We compute the RG flow [14] of the interlayer couplings

K⊥ and K3 and the vortex fugacity y as a function of � near
the Gaussian fixed point of the uncoupled multilayer system.
To leading order in the couplings,

∂ ln K⊥
∂ ln �

=
(

1 − π

18K

)
,

∂K3

∂ ln �
= K3

(
2 − π

18K

)
,

and
∂y

∂ ln �
= y

(
2 − 9K

π

)
. (9)
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Higher-order contributions generate K3 (initially zero in a
model with only nn interactions) from K⊥ and K1, and
also renormalize K , but are otherwise unimportant at small
coupling.

This description of the RG flow breaks down at the scale
where the largest of K⊥ and K3 and y is O(1). If y ∼ 1
with K⊥,K3 � 1, the RG treatment of weakly coupled layers
can be applied at all scales: for y � 1, K flows to zero, and
hence so do K⊥ and K3, yielding a conventional paramagnet.
Alternatively, when K⊥ ∼ 1 with y � 1, layers are strongly
coupled at large scales and the state of the system depends on
a competition between vortex and locking effects, which we
now examine.

To discuss the system of strongly coupled layers, we
consider the energy cost of small amplitude fluctuations about
a ground state of H3D. Let

hz(r) = h(θ)
z (r) + ϕz(r) (10)

and write (with q⊥ = (qx,qy))

ϕz(r) = 1

(2π )3

∫
d3q ϕ(q)ei(q⊥r+qzz) . (11)

Then at quadratic order

H3D = K

2(2π )3

∫
d3q E(q)|ϕ(q)|2 (12)

with (taking θ = 0)

E(q) = q2
x + (qy + κ⊥ sin qz)

2 + κ2
⊥(1 − cos qz)

2 . (13)

This dispersion relation is unusually soft (∝q4
z ) in the in-

terlayer direction. (The fluctuation energy for smectic liquid
crystals [7] has a similar form, but with two quartic directions
and a single quadratic one). Because 〈ϕ2

z (r)〉 computed Eq. (13)
is finite, the scaling flow of Eq. (9) stops at K⊥ ∼ 1. Without
vortices, the system has long-range order and any nonzero
locking interaction pins θ .

To understand the influence of vortices on the system
at K⊥ � 1, we should examine ground states of H3D in
height-field sectors with fixed vortex locations. The outcomes
are, first, confinement of vortex-antivortex pairs, and second,
destruction of long-range order by bound pairs if K3 is small.

Consider introducing a single vortex-antivortex pair in layer
z = 0. Then, using the notation of Eq. (10), ϕ0(r) is multiple-
valued, winding by 6 (−6) along any closed path encircling
the vortex (antivortex). At large vortex separation, ϕ0(r) has
a step of height 6 and width w on the line joining the vortex
centers. The energy cost per unit length of this step is

ε ∼ Kw(w−2 + κ2
⊥) ∝ Kκ⊥ , (14)

where the last expression follows from minimising over w and
the optimal width is w ∼ κ−1

⊥ . Hence vortices at separations
large compared to κ−1

⊥ are subject to a linear confining
potential, and pairs are tightly bound.

Tightly-bound pairs generate distortions in hz(r) that fall off
only slowly with distance from the pair center. The appropriate
far field can be induced without considering a multiply-valued
ϕ0(r), by instead adding a coupling −K

∫
d2r v(r)ϕ0(r) to

H3D. We find [16] that the Fourier transform of the required

potential v(r) has the form

v(q) = 6i ẑ · (q × b) (15)

in the limit q � κ⊥, for a pair that has separation vector
b and its center at the origin. In the minimum-energy state
containing this pair, the single-valued far field at r,z is (with
q⊥ = (qx,qy))

ϕz(r) = 1

(2π )3

∫
d3q

v(q)

E(q)
ei(q⊥r+qzz) . (16)

Extending this calculation to randomly located pairs at density
ρ, we find that they generate fluctuations in ϕz(r) with mean
square amplitude

〈[ϕz(r)]2〉 = ρ

(2π )3

∫
d3q

|v(q)|2
E2(q)

. (17)

The integral on the right of Eq. (17) is divergent at small
q, indicating that any nonzero density of bound vortex
pairs destroys long-range order in the absence of locking
interactions. The in-plane and interlayer correlation lengths
ξ⊥ and ξz can be estimated by using a finite system size as a
cut-off. Taking 〈|b|2〉 ∼ �2, we obtain the highly anisotropic
results ξz ∼ (ρ�2)−1 and ξ⊥ ∼ κ−1

⊥ (ρ�2)−2.
Spin correlations at wave vectors that have in-plane

components close to one of the corners K of the triangular
lattice Brillouin zone can be expressed in terms of small-q⊥
components of hz(r). From Eq. (3), we find [16]

S(q) ≡
∑
jz

ei(K+q)rjz〈σ00σjz〉

∼
∑

z

∫
d2r ei(q⊥r+[qz+ 2πp

3 ]z)
〈
e±i π

3 [hz(r)−h0(0)]
〉
, (18)

where on the right-hand side, the choice of ± sign and the
value of the integer p depend on the zone corner.

Correlations on scales shorter than ξz, ξ⊥ resemble those in
ground states and can be calculated from h(θ)

z (r) [Eq. (8)] by
averaging over θ . The result of this approximation is a sharply
defined helix

S(q) ∝ δ
(
qx − κ⊥

π

3
cos qz

)
δ

(
qy + 2πp

3
± κ⊥

π

3
sin qz

)
,

(19)

which is broadened when finite ξz and ξ⊥ are taken into
account.

Locking interactions suppress fluctuations in ϕz(r) and
stabilize long-range order if their effect integrated over the
correlation volume is large at the RG scale on which K⊥ ∼
1. The condition K3(ξ⊥/�)2ξz ∼ 1 implies a critical value
of K∗

3 ∼ (ρ�2)5. Varying temperature in the spin system,
a regime with strong interlayer correlations separates the
high-temperature paramagnet from the 3D ordered phase if
the renormalized K3 � K∗

3 at the scale for which K⊥ ∼ 1.
Since, from Eq. (9), K3 grows faster under RG than K⊥, the

existence of an intermediate regime requires both a sufficiently
small microscopic value of J3 and sufficiently slow generation
of K3 from K⊥ and the RG-irrelevant coupling K1. Because
K3 couples sites three layers apart, its value after an O(1)
RG rescaling in a system that, at the microscopic level,
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has only nearest-neighbor interactions cannot be larger than
O(J⊥/T )n with n = 3. We find, however, (as noted in Ref. [8]
for a similarly frustrated 2D problem) that this leading-order
contribution is absent and the lowest nonvanishing contribution
has n = 7.

To obtain a phase diagram for the system, we integrate
the RG flow equations (9) from a microscopic scale �0 to
the scale �⊥ at which K⊥(�⊥) = 1, with initial values K⊥ =
J⊥/T , K3 ∼ (J⊥/T )7, and y(�0) = e−4J/T . The crossover
between the conventional, high-temperature paramagnet and
the cooperative paramagnet is at y(�⊥) ∼ 1, implying J⊥ ∼
T [y(�0)]1/2. The ordering transition is at K3(�⊥) = K∗

3 ;
setting ρ�2 = [y(�)]2 in the expression derived above for K∗

3 ,
this implies J⊥ ∼ T [y(�0)]5/12. The cooperative paramagnet
therefore occupies the range of interlayer couplings

T [y(�0)]1/2 � J⊥ � T [y(�0)]5/12 . (20)

In the small J⊥/J limit of interest, this simplifies: the onset of
strong interlayer correlations is at J⊥ ≈ Je−2J/T , while the or-
dering transition is at the much smaller value J⊥ ≈ Je−5J/3T .
Correlation lengths in the cooperative paramagnet are given
by ξz ≈ e8J/T (J⊥/J )4 and ξ⊥ ≈ �0(J/J⊥)2ξ 2

z . Hence the
interlayer correlation length increases from ξz ≈ 1 at onset to
ξz ≈ (J/J⊥)4/5 near the ordering transition, and the in-layer
correlation length from ξ⊥ ≈ �0(J/J⊥)2 to ξ⊥ ≈ �0(J/J⊥)18/5.
The parametrically large values reached by the correlation
lengths are confirmation that the system indeed behaves as a
cooperative paramagnet.

In summary, we have discussed the nearest-neighbor Ising
antiferromagnet on a lattice of weakly-coupled triangular

layers with a frustrated abc stacking, showing that it has a
low-temperature regime in which there are strong interlayer
correlations without long-range order. This cooperative para-
magnet is striking both for its correlations, which generate
maxima in S(q) on helices in reciprocal space, and for the
mechanism of order suppression via vortex-antivortex bound
pairs, which is unlike that in any other system we are aware
of. We expect that weakly coupled triangular layers in an
hcp lattice (the abab stacking) [17,18] will exhibit a similar
cooperative paramagnetic regime. This system, together with
a numerical study of the model with abc stacking, will be
discussed in detail in forthcoming work [19].

An Ising model similar to Eq. (1) has been proposed [20,21]
as a description of charge ordering in the materials LuFe2O4

and YbFe2O4: Ising pseudospins represent the charge states
Fe2+ and Fe3+, and antiferromagnetic coupling arises from
Coulomb repulsion. Experimental studies [20,22,23], in par-
ticular of YbFe2O4 [22], find helices of scattering intensity
in a temperature range above a three-dimensional charge-
ordering transition. While an accurate description of these
materials would require treating both a more complicated
(bilayer) structure and additional (spin) degrees of free-
dom, the results we present in this paper elucidate how
strong interlayer correlations can arise without long-range
order.
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