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Spin waves in full-polarized state of Dzyaloshinskii-Moriya helimagnets:
Small-angle neutron scattering study
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We develop the technique to study the spin-wave dynamics of the full-polarized state of the Dzyaloshinskii-
Moriya helimagnets by polarized small-angle neutron scattering. We have experimentally proven that the spin-
waves dispersion in this state has the anisotropic form. We show that the neutron scattering image displays a
circle with a certain radius which is centered at the momentum transfer corresponding to the helix wave vector in
helimagnetic phase ks , which is oriented along the applied magnetic field H. The radius of this circle is directly
related to the spin-wave stiffness of this system. This scattering depends on the neutron polarization showing the
one-handed nature of the spin waves in Dzyaloshinskii-Moriya helimagnets in the full-polarized phase. We show
that the spin-wave stiffness A for MnSi helimagnet decreased twice as the temperature increases from zero to the
critical temperature Tc.
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The competition between the ferromagnetic exchange
interaction and the antisymmetric Dzyaloshinskii-Moryia
(DM) interaction leads to the appearance of the helical
magnetic structure in the cubic B20-type compounds [1,2].
The ferromagnetic exchange interaction with the constant J

and the DM interaction with the constant D stabilize the
homochiral structure with the helix wave vector ks = D/J .
The constants J and D determine the energy landscape
of the magnetic system and therefore its spin dynamics as
well. The external magnetic field HC2 is needed to transform
the helix into the ferromagnetic collinear full-polarized (FP)
state. The difference in the energies gμBHC2 between the
FP and helical states is shown to be equal to Ak2

s , where
A = SJ is the spin-wave stiffness and S is the ordered spin
[3,4]. The highly anisotropic spin-wave spectrum has been
predicted for the DM helimagnets in [3,5,6] with the linear
dispersion at q ‖ ks and the quadratic dispersion at q ⊥ ks

for the long-wave excitations (q < ks). Thus was shown that
the helimagnon behaves like an antiferromagnetic magnon in
the longitudinal direction, but like a ferromagnetic one in
the transverse direction. Another remarkable feature of the
helimagnon spectrum is its intrinsic multimode nature caused
by periodic potential of the helical structure.

There were numerous attempts to study the spin-wave
dynamics in MnSi, one of the best-known representatives of
the DM helimagnets [7–11]. The first neutron experiments
were performed in the FP on MnSi in the magnetic field
above HC2. These measurements revealed the individual
magnetic excitation mode [7,8]. The inelastic scans with
constant Q were summarized in a quadratic dispersion curve
εq = Aq2 + � with the spin-wave stiffness constant equal to
A = 52 ± 2 meV Å2 with the field along [111] direction of
the crystal at T = 5 K [7]. The same set of the data could be
used to estimate the temperature dependence of the spin-wave
stiffness. The recent investigations of the spin waves in MnSi in
the helimagnetic state (H � HC2) demonstrated a rich variety
of the anomalous excitation spectra [10]. The latest study of
the MnSi using high-resolution inelastic neutron scattering

allowed one to resolve the band structure of helimagnons [11].
It was shown that the whole set of the data at T = 20 K
is well described with the spin-wave stiffness constant equal
to A = 48 meV Å2. Furthermore, the authors of [11] could
estimate the temperature evolution of the spin-wave stiffness
in the single magnetic-helix domain.

The peculiarities of the magnon spectrum in the helimag-
nets both above and below HC2 was described by Kataoka
in [5]. Kataoka has additionally pointed out the differences
of the spin-wave energy for the helical systems with the
antisymmetric exchange interactions (DM type) and those with
the symmetric exchange interactions (RKKY type). Moreover,
the spin-wave energy in the case of the DM interaction for the
fields above HC2 was explicitly given:

εq = A(q − ks)
2 + (H − HC2), (1)

where ks matches the orientation of the external magnetic field
and equals D/J . The sign of the DM constant determines
the direction of the helix wave vector ks being parallel or
antiparallel with respect to the direction of the field. The
dispersion curve looks similar to the ferromagnetic one but
has the three important features. First, the only minimum of
the curve is shifted from the position q = 0. Second, the sign
of the DM constant determines the preferred direction of the
propagation of the spin waves. Third, the spin-wave gap related
to the magnetic field is shifted for the value gμHC2. The FP
state of the DM helimagnets is predicted to be the only known
system with the excitations described by the asymmetrical
dispersion relation. The triple axis spectroscopy (TAS) used
for such studies suffers from the low-Q resolution, which is
of the order of the helix wave vector ks , and therefore cannot
reveal the chiral anisotropy of the spin-wave spectrum.

To verify the main features of the dispersion relation Eq.
(1) one can apply the neutron scattering method that was
used to measure the spin-wave stiffness in the ferromagnets
[12–16]. The essence of the method was proposed at the
beginning of the 1960s, then it was supplanted by the
triple-axis spectroscopy, and renovated in the 1980s using
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the polarized neutron technique. In its latest version [12–14]
the small-angle polarized neutron scattering was used in the
so-called inclined geometry, when the magnetic field was
applied to the ferromagnetic sample in the direction inclined
for 45◦ to the incident neutron beam. The polarized neutrons
are used in order to extract the scattering arising from the spin
waves. In this case the energy-integrated neutron cross section
contains a part which depends on neutron polarization and has
a left-right asymmetry in the plane determined by directions
of the field and the neutron beam. It can be analytically shown
in the case of the ferromagnet that this neutron scattering is
concentrated mostly within a narrow cone limited by the cutoff
angle θC . This scattering can be interpreted as scattering of the
heavy neutron particle on the light magnon quasiparticle. The
maximal scattering angle θC is equal to the ratio of the two
masses. In this Rapid Communication we show the possibility
to measure the main magnetic dynamic parameter of the helical
magnets with the DM interaction using small-angle polarized
neutron scattering technique.

The method can be considered as a complimentary one for a
measurement of spin-wave stiffness constant by the triple axis
spectroscopy. The main advantage of application of small-
angle neutron scattering (SANS) is very high resolution of
the SANS instruments in the Q space, which is orders of
magnitude better than that of the TAS instruments. It is a key
point for the system with DM interaction as the value of the
helix wave vector ks is very small. Thus, one cannot resolve
the shifted position of the minimum of the spin-wave spectrum
by means of TAS. The resolution in the momentum transfer
of TAS is too rough to distinguish the dispersion curve so
close to ks . The small-angle neutron scattering technique can
be applied in order to overcome this difficulty. Second the
SANS method is much faster in the data collection to reach
the statistic needed to satisfactorily treat the data. It is related
to the integration over the energy transfer upon detection of
the scattered neutrons. The method gains an additional factor
as it works in the range of small angles where the magnetic
form factor is close to 1. As a consequence, one can use a
smaller amount of the sample for measurements, or make a
much shorter exposition time. The disadvantage of the method
is that it is model dependent. Nevertheless, if the model suits
the system, as in the case of the DM ferromagnets, then it
produces nice results.

Since the cross section is a scalar quantity, it may depend
on the axial vector of polarization P0 of the incident beam
only if the system is characterized itself by another axial
vector. One of the most interesting examples of the axial-
vector interaction—the Dzyaloshinskii-Moriya interaction—
provides the polarization-dependent (chiral) scattering in the
cubic helimagnets. As it was shown by Maleyev [17–19],
the inelastic magnetic chiral contribution in the neutron cross
section σch(Q,ω) can be represented by

σch(Q,ω) = kf

ki

2r2|Fm|2 1

π (1 − e−ω/T )
〈S〉P0(Q̂ĥ)2

× [δ(ω − εQ) + δ(ω + ε−Q)], (2)

where kf and ki are momenta of the scattered and incident
neutron, respectively, r is the classical electron radius, Fm is
the magnetic form factor, 〈S〉 is the average atomic spin, and Q̂

is the unit vector along the momentum transfer. This equation
takes into account that the initial polarization is directed along
the unit vector of an applied magnetic field: P0 = P0ĥ, ĥ =
H/H ; εq represents the spin-wave dispersion. Equation (2)
is applicable for the cubic or amorphous ferromagnets with
the conventional quadratic dispersion as well as for the field-
induced ferromagnetic state of the cubic helimagnets with the
dispersion relation given by Eq. (1).

In order to consider the kinematics of the small-angle
scattering we introduce a Cartesian coordinate system with the
z axis directed along the incident beam and the x axis along
the magnetic field applied perpendicular to the incident beam.
In the small-angle scattering approximation the momentum
transfer Q can be split into the two elastic components,
which are perpendicular to the vector of the incident neutron
ki : Qx = kiθx , Qy = kiθy with scattered angles along and
perpendicular to the magnetic field respectively, and the
inelastic z component, which is oriented along ki : Qz =
ki(ω/2Ei), where Ei is the energy of the incident neutron.
Thus we have for the length of the momentum transfer

Q = ki

[
θ2
x + θ2

y + (ω/2Ei)
2
]1/2

. (3)

If the energy transfer is small ω � T , then one can replace
[1 − exp(−ω/T )]−1 in Eq. (2) for T/ω. In the case of small-
angle neutron scattering Eq. (2) has to be averaged over ω.
Using Eq. (3) one can obtain the chiral contribution to the
cross section as a function of the scattered angle θ :

σch(θ ) ∼ 〈S〉T P0

∫
dω

ω

(2Eiθx)2

ω2 + (2Ei)2
(
θ2
x + θ2

y

)
× [δ(ω − εQ) + δ(ω + ε−Q)]. (4)

According to the dispersion relation [Eq. (1)], the expres-
sions in the δ functions of Eq. (4) have the form

ω − εQ = ω − Ak2
i

[
θ2
x + θ2

y +
(

ω

2Ei

)2
]

+ 2Akiθxks − H, (5)

ω + ε−Q = ω + Ak2
i

[
θ2
x + θ2

y +
(

ω

2Ei

)2
]

+ 2Akiθxks + H. (6)

Using the standard transformation one can get

δ(ω − εQ) + δ(ω + ε−Q) = δ(ω − ω1) + δ(ω − ω2)

|1 − ω/(2Eiθ0)|
+ δ(ω − ω3) + δ(ω − ω4)

|1 + ω/(2Eiθ0)| , (7)

with the roots ωi(θx,θy) of the quadratic functions in the right-
hand sides of Eqs. (5) and (6):

ω1,2

2Ei

= θ0 ±
√

θ2
C − (θx − θB)2 − θ2

y ,

(8)
ω3,4

2Ei

= −θ0 ±
√

θ2
C − (θx + θB)2 − θ2

y ,

where we introduce a dimensionless parameter θ0 =
(2Amn)−1, which relates the spin-wave stiffness to the neutron
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FIG. 1. (Color online) Roots of right-handed sides of Eqs. (5)
and (6) ω1−4 as a function of the scattered angles θx,θy . Gray plane is
ω = 0 plane. The red sphere (ω1,2) placed in positive range of energy
transfer, while the blue sphere (ω3,4) is located in negative range
of ω.

mass mn, and the angle θC :

θ2
C(H ) = θ2

0 − θ0

Ei

H + θ2
B. (9)

A schematic view of the solutions given by Eq. (8) is
presented in Fig. 1. As one can see, the roots ω1,2 	= −ω3,4,
therefore, the integral of the antisymmetric function in Eq. (4)
is nonzero. Two pairs of surfaces (ω1,2 and ω3,4) form two
spheres in the (ω,θx,θy) space. If the incident neutrons is po-
larized along the magnetic field (+P0), then the scattering with
the energy gain is only allowed, while the energy loss process
is forbidden. A flip of the polarization −P0, on the contrary,
allows scattering with the magnon annihilation process and
makes the magnon creation process forbidden. The sign of the
DM constant in this case determines whether the neutrons with
+P0 will be scattered in the direction of the magnetic field (see
Fig. 1, for example) or in the opposite direction.

As a consequence, the chiral scattering from the spin waves
appears within the circle which has the radius given by θC

in Eq. (9) and centered at the Bragg angle θB . Hence, θC

is the cutoff angle for this type of scattering and bears the
information about the spin-wave stiffness A. The cutoff angle
depends also on the applied magnetic field and its square
decreases linearly when the field increases. The observation
of this scattering allows one to reveal the main features of the
spin waves in the FP state of the DM helimagnets. Moreover,
Eq. (9) provides a possibility to clearly extract the stiffness A

from the measurement of the cutoff angle in the small-angle
polarized neutron scattering experiment.

On the contrary for the ferromagnets with isotropic disper-
sion relation, the integral in Eq. (4) vanishes in the geometry
with the magnetic field applied perpendicular to the incident
beam. In order to provide the nonzero chiral scattering in
the conventional ferromagnets, the magnetic field has to be
inclined with respect to the direction of ki [12–14].

The polarized small-angle neutron scattering (PSANS)
were performed using the SANS-1 instrument at the FRM-II
(Germany). A polarized neutron beam with initial polarization
P0 = 0.93 and mean wavelength λ = 0.55 nm was used.
A magnetic field (0.1–1.5 T) was applied along Qx . The
MnSi single crystal, used in the experiment, is known to
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FIG. 2. (Color online) Maps of the SANS intensities for the chiral
single crystal MnSi at T = 15 K at the field below HC2 (0.4 T) (a)
and above HC2 (0.7 T) (b) for the polarization P0 opposite the guide
field (left column) and along it (right column). (c) The result of the
subtraction of the left and right SANS patterns at H = 0.7 T. The
arrow shows a direction of the field.

show a left-handed crystallographic configuration and also a
left-handed spin helix [20]. Figure 2(a) shows a typical SANS
map from the MnSi sample at the temperature below Tc and in
the field H below HC2 with initial polarization opposite to −P0

and along +P0 the magnetic field. One can see the Bragg peaks
at Q = ±ks for the polarization along and opposite the field
±P0. It is caused by the neutron scattering on the stable left-
handed helix structure. The analysis of the diffuse scattering
at H < HC2 [Fig. 2(a)] is out of the scope of this paper.

As the field reaches the value of HC2, the elastic scattering
disappears completely and only the inelastic diffuse scattering
centered at Q = ±ks remains [Fig. 2(b)]. This scattering is
well described by Eq. (4) and consists of the strong diffuse
scattering in the vicinity of the former Bragg peak and a round
spot limited by the critical angle θC . The diffuse scattering at
Q = ±ks is maximal at H ∼ HC2 and strongly suppressed by
an increase of the field. The round spot centered at Q = ±ks

can be observed in the field range up to H ≈ 2HC2.
In order to extract the polarization-dependent scattering

the patterns with the polarizations along and opposite to the
magnetic field were subtracted one from another [Fig. 2(c)].
The presence of this chiral scattering confirms that the
dispersion curve in the FP state of the DM helimagnets has
the only minimum that is shifted at q = ks .

To improve the statistics, the scattering intensity was
radially averaged over the angular sector of 120◦ degrees
with the center positioned at Q = ±ks as shown in Fig. 2(c).
The intensity is plotted as a function of the angle θ − θB

in Figs. 3(a)–3(d) at different values of the field and T =
15 K. The cutoff angle θC(H ) can be easily obtained from
the analysis of the I versus θ − θB plot. The steplike edge of
the measured intensity was fitted by the following function:
1/2 − (1/π ) arctan[2(θ − θc)/δ]. The position of the cutoff
angle was determined as a center of the arctan function θC . Its
width δ is related to the spin-wave damping.

Thus extracted values of the cutoff angle θC were plotted
as a function of the field in Fig. 3(e) for T = 15 K. The square
of the cutoff angle depends linearly on the field in accord with
Eq. (9). Using Eq. (9) one can determine the value of the
parameter θ0 (and the spin-wave stiffness) with high accuracy.
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FIG. 3. (Color online) The radially averaged scattering intensity
centered at the Bragg peak position I vs scattered angle θ − θB at
H = 0.7 T (a), H = 0.8 T (b), H = 0.9 T (c), H = 1.1 T (d). The
solid lines near the steplike edge show the results of the best fits
by the steplike function. The cutoff angle is observed. (e) The field
dependence of the square of the cutoff angle θ2

C at T = 15 K. Error
bars, obtained from the fit, are of the size of the symbols. The solid
line is a linear fit by Eq. (9).

It is important to note that the Stoner continuum in MnSi
takes places at a momentum transfer much larger than that
considered in the present work. As was shown in [7], the
spin-wave stiffness is field independent in the wide range of
the applied field. Moreover, the effect of the field on stiffness
would distort the linear law in the field dependence of the
square of the cutoff angle.

The spin-wave stiffness, obtained from the detection of
the cutoff angles at different temperatures is presented in
Fig. 4. For completeness we added the points measured by
the triple-axis spectroscopy in [7,9]. The value at 5 K given
in [7] coincides with our results. The measured temperature
dependence was fitted by the power law as follows: A(T ) =
A0[1 − c(T/TC)z], where z is equal to 1.8 ± 0.3 with A0 =
0.054 meV Å2 and c = 0.47.
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FIG. 4. (Color online) Temperature dependence of the spin-wave
stiffness A(T ): circles—polarized SANS; squares—TAS [7,9], dia-
monds estimation from the Bak-Jensen model [3,4]. Solid lines are
the fit by the power law (see text).

The spin-wave stiffness can be estimated from the theory
by Bak and Jensen [3,4] using the ratio relating the critical
magnetic field HC2 and the difference in the energies between
the FP and helical states gμBHC2 = Ak2

s . The temperature
dependence of the stiffness calculated in this model is shown
in Fig. 4. Both the magnitudes of the stiffness and a trend
for its small decrease with temperature are the same for the
calculated and measured values, except a small discrepancy
in the low-temperature range. The calculated values may
be overestimated since the above-given expression should
be slightly corrected by accounting for the cubic anisotropy
[21]. Nevertheless, we show that the expression linking HC2

and ks can be used for estimation of the spin-wave stiffness
in the whole temperature range from zero to the critical
temperature Tc.

In conclusion, we have experimentally proven the validity
of the spin-wave dispersion relation for helimagnets with the
DM interaction in the full-polarized state [Eq. (1)]. In spite
of similarity with the ferromagnetic dispersion, it shows the
only minimum that is shifted along the field axis from the
position q = 0 to the value of ks . Using polarized neutrons
we demonstrate that the sign of the DM constant determines
the preferable clockwise or anticlockwise rotation of the spin
waves, i.e., the chirality of the DM helimagnets results in the
one-handed excitations in the full-polarized state above HC2.
Analysis of the scattering allowed us to measure the temper-
ature dependence of the spin-wave stiffness. This method can
be used to investigate the parameter of the spin-wave dynamics
in the other representatives of DM helimagnets.

The work was supported by the Russian Foundation for
Basic Research (Grant No. 14-22-01073 ofi-m).
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