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Topological spin transport by Brownian diffusion of domain walls
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We propose thermally populated domain walls (DWs) in an easy-plane ferromagnetic insulator as robust spin
carriers between two metals. The chirality of a DW, which serves as a topological charge, couples to the metal
spin accumulation via spin-transfer torque and results in the chirality-dependent thermal nucleation rates of DWs
at the interface. After overpopulated DWs of a particular (net) chirality diffuse and leave the ferromagnet at
the other interface, they reemit the spin current by spin pumping. The conservation of the topological charge
supports an algebraic decay of spin transport as the length of the ferromagnet increases; this is analogous to
the decaying behavior of superfluid spin transport but contrasts with the exponential decay of magnon spin
transport. We envision that similar spin transport with algebraic decay may be implemented in materials with
exotic spin phases by exploiting topological characteristics and the associated conserved quantities of their
excitations.
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Introduction. Spintronics, or spin-transport electronics,
exploits spin degrees of freedom in condensed matter systems
to improve information processing technology that is tradition-
ally based on electric charge [1]. Conducting materials have
been used to transport spin by polarizing itinerant electrons,
which is associated with undesired energy dissipation due
to the electronic continuum. Magnetic insulators, which are
immune to Joule heating, provide alternative platforms to
seek an efficient spin-transport channel. Superfluid spin trans-
port [2–5] has been proposed for long-ranged spin transmission
in magnetic insulators with easy-plane anisotropy. The spin
superfluidity, however, can be destroyed by U(1)-symmetry-
breaking anisotropy within the easy plane.

Topological solitons in magnetic materials are nonlinear
excitations that are protected by their nontrivial topology [6].
A domain wall (DW) in an easy-axis magnet is a prototypical
topological soliton, which can store and deliver information
as demonstrated in the racetrack memory [7]. DWs can be
driven by various means, e.g., an external magnetic field [8],
an electric current (in conducting systems) [9], or heat
flux [10–16]. At a finite temperature, DWs with damped
dynamics undergo Brownian motion due to a random force
dictated by the fluctuation-dissipation theorem [17–21]; under
a temperature gradient, Brownian motion leads to a diffusive
transport (thermophoresis) of DWs [22].

In this Rapid Communication, we show that superfluidlike
spin transport can be achieved by utilizing thermally popu-
lated DWs in an easy-plane ferromagnetic insulator with an
additional easy-axis anisotropy within the easy plane. Long
thin ferromagnetic strips, for example, are naturally endowed
with such anisotropies due to magnetostatic interactions [8,23]
(see Fig. 1 for illustration). A DW is characterized by its
chirality q = ±1, associated with the sense of circulation of
the magnetization within the easy plane [6]. The chirality
of a DW is protected in the XY ferromagnet by topology,
and we thus refer to it as the topological “charge.” Sup-
pose the ferromagnet is driven out of equilibrium by the
spin accumulation in the positive z direction in the left
metal. The induced spin-transfer torque nucleates DWs with
the clockwise-rotating magnetization. When these DWs leave
the ferromagnet toward the right metal, the magnetization

at the interface rotates counterclockwise, which, in turn,
generates the spin current into the metal via spin pumping. In
the diffusive regime of DW motion, the spin current transported
by DWs decays algebraically as in superfluid spin transport [5]
owing to the conservation of the topological charge. This
topological spin transport can be inferred by measuring the
drag coefficient in a magnetoelectric circuit that was proposed
in Ref. [5] for detecting superfluid spin transport.

Main results. The model system consists of a quasi-one-
dimensional easy-xy-plane ferromagnetic insulator with an
additional easy-x-axis anisotropy attached on both sides by
nonmagnetic metals. In equilibrium, the anisotropy lays the
local spin density s ≡ sn in the xy plane, which allows us to
parametrize its direction as n = (cos φ, sin φ,0). A DW is a
topologically stable equilibrium texture that interpolates the
two uniform ground states, φ ≡ 0 or π . Its associated winding
is characterized by the topological charge:

q ≡ − 1

π

∫
dx ∂xφ , (1)

where the integral is over the DW along the longitudinal x

axis of the ferromagnet. Figure 2 illustrates four possible DW
types.
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FIG. 1. (Color online) An easy-xy-plane ferromagnetic insulator
with an additional easy-axis anisotropy in the x direction is sand-
wiched between two metals. The spin-transfer torque caused by the
out-of-equilibrium spin accumulation μ in the positive z direction
prefers injection of DWs with the clockwise-rotating magnetization.
The annihilation of these DWs generates the spin current into the right
metal via spin pumping. In the diffusive limit of DW motion, the spin
current decays algebraically as the ferromagnet’s length increases.
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FIG. 2. (Color online) (a), (b) The DWs with the topological
charge q = 1. (c), (d) The walls with q = −1.

A finite temperature causes spontaneous nucleation and
annihilation of DWs. In the bulk, DWs are created and
destroyed always in pairs with opposite charges as shown in
Fig. 3(a) [24]. The topological charge density, ρ ≡ ρ+ − ρ−
is, thus, preserved in the bulk [Figs. 3(b) and 3(c)], where
ρ± are the linear densities of DWs with q = ±1, respectively.
A topological charge can be injected or ejected through the
boundaries of the ferromagnet. In equilibrium, the DW density
is charge independent; ρ± → ρ0 ∝ exp(−E0/T ), where E0 is
the DW energy.

A DW should generally behave as a particle immersed
in a viscous medium due to its coupling to, e.g., lattice
vibrations [19] or other microscopic degrees of freedom. As
such, it must exhibit Brownian motion at a finite temperature
due to random forces, whose existence is dictated by the
fluctuation-dissipation theorem [17]. For a conglomerate of
DWs that diffuse by Brownian motion, the dynamics of the
topological charge density is described by the Fokker-Planck
equation [22]:

∂tρ + ∂xI = 0, I ≡ −D∂xρ , (2)

in the absence of an external force, where I is the topological
charge current. In equilibrium, the density and the current
of the topological charge are zero; ρ = 0 = I according to
the reflection symmetry in the xz plane and the time-reversal
symmetry.

The topological charge density can be injected by per-
turbing the ferromagnet by the nonequilibrium z axis spin
accumulation in the left metal, μ ≡ μẑ, which we assume
positive, μ > 0, for concreteness. The spin-transfer torque
caused by the spin accumulation is τ = (g′

L + gLn×)(μ ×
n)/4π , where g

↑↓
i ≡ gi + ıg′

i is the effective complex spin
mixing conductance associated with the ferromagnet/metal-i
interface [26]. The torque does work on the ferromagnet
favoring the nucleation of DWs with the positive charge:
Wq = qgLμS/4, where q is the charge of the wall and S

is the cross-sectional area of the ferromagnet. The resultant
nucleation rate of the topological charge is �LδW/T to linear
order in the bias, where �L is the equilibrium-nucleation rate
of DWs at the left interface and δW ≡ W+ − W− = gLμS/2
is the difference between the two works.

The injected topological charges diffuse by Brownian
motion and can leave the ferromagnet through the right
boundary. The conservation of the topological charge leads
to the steady-state current (as derived below):

I = gLμ

RL + RR + RB

, (3)
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FIG. 3. (Color online) Schematic for the conservation of the total
topological charge. (a) A pair of DWs with opposite charges, so that
the direction of the magnetization does not wind the circle as shown
in the right. The magnetization texture is, therefore, topologically
trivial and can be created or destroyed spontaneously. (b), (c) A pair
of DWs with the same charge. The direction of the magnetization
winds around the circle once, which makes the textured configuration
topologically stable from thermal annihilation. The total topological
charge, i.e., the net winding number, is conserved during interactions
between DWs.

where

RL ≡ 2T

�LS
, RR ≡ 2T

�RS
, RB ≡ 2T L

ρ0DS
, (4)

and L is the length of the ferromagnet. We may interpret the
topological charge current I as the applied “voltage” gLμ (with
units of J/m2) divided by the total “resistance” RL + RR + RB

(with units of J s/m2) of the series circuit, which is made of the
interface resistances, RL and RR , and the bulk resistance RB .
Note that the bulk resistance RB is proportional to the ratio of
the length to the cross-sectional area, L/S, which is analogous
to the electrical resistance.

The dynamics of the local spin density at the boundaries
injects spin current into the metals via spin pumping, which
is the Onsager reciprocal effect [17] to spin-transfer torque.
The spin current density associated with spin pumping at the
right interface is Js

R = �(g′
R + gRn×)ṅ/4π . The annihilation

of the topological charge pumps spin current polarized in the
z direction to the right metal:

J s
R = �gR

4
I = �gRgLμ

4(RL + RR + RB)
. (5)

This is a central result of our work. Note that the spin current
decays algebraically as a function of the ferromagnet’s length
L, which is similar to superfluid spin transport in an easy-plane
ferromagnet [5], but contrasts with the exponential decay of the
spin transport by thermal magnons [27]. The formalism that
we have developed is general enough to be readily extended to
other easy-plane magnets, e.g., the case of an antiferromagnet
with an additional easy-axis anisotropy within the easy-plane
is closely analogous [5].

Brownian motion. Let us provide an explicit model for
Brownian motion of DWs following Ref. [22]. We assume
the following free energy for the ferromagnet: U [n] =∫

dV (A|∂xn|2 + Kn2
z − κn2

x)/2, where A represents the ex-
change stiffness, and the positive coefficients κ and K

parametrize the anisotropy magnitudes. In equilibrium, the
local spin density s = sn lies in the xy plane, which can be
parametrized by its azimuthal angle φ. A static DW solution
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centered at X is given by

cos[φ0(x − X)] = ± tanh[(x − X)/	] , (6)

with the chirality of the DW given by sgn(cos φ0 sin φ0)|x>X,
the energy E0 = 2S

√
Aκ , and the width 	 = √

A/κ [8]. We
assume here and hereafter that the ambient temperature is
much lower than the ordering temperature, T 	 Tc, for which
thermally induced changes of DW properties can be ignored.
Figure 2 depicts possible types of DWs.

The dynamics of n at a finite temperature is described by
the stochastic Landau-Lifshitz-Gilbert (LLG) equation,

s(1 + αn×)ṅ = n × (h + hth) , (7)

where h ≡ −∂U/∂n is the effective field conjugate to n and
hth is the stochastic Langevin field [19]. The fluctuation-
dissipation theorem relates the Gilbert damping constant to
the correlator of the Langevin fields; 〈hth

i (r,t)hth
j (r′,t ′)〉 =

2αsT δ(r − r′)δ(t − t ′). The Langevin equation for the over-
damped dynamics of X can be obtained from the stochastic
LLG equation by the collective coordinate approach [28]:

Ẋ = η−1F + vth, (8)

where η ≡ αs
∫

dV (∂xφ0)2 = 2αsS/	 is the viscous
coefficient, F ≡ −∂U/∂X is the conservative force conjugate
to X, and vth ≡ −η−1

∫
dV (hth · ∂xn) is the stochastic

velocity [29]. The diffusion coefficient D in the correlator
of the stochastic velocity, 〈vth(X,t)vth(X′,t ′)〉 = 2Dδ

(X − X′)δ(t − t ′), is related to the viscous coefficient η

according to the Einstein-Smoluchowski relation: D = T/η

= 	T/2αsS (we set kB = 1).
Nucleation and annihilation. In the bulk of the ferromagnet,

DWs are nucleated and annihilated always in pairs with
opposite charges [Fig. 3(a)], which preserves the topological
charge density [24]. The source and the drain of the topological
charge, therefore, can be located only at the boundaries of
the ferromagnet. Following the reaction-rate theory [30], the
injection rate of DWs through each boundary is given by

I± = �±(T ,μ) − γ ±(T )ρ±, (9)

where �q(T ,μ) is the nucleation rate, γ q(T ) is the annihilation
rate per unit density, and ρq is the density of q-charged DWs.

The annihilation rate per unit density γ q(T ) is the charac-
teristic velocity parametrizing the escape of DWs, which, we
expect, does not depend on the charge of DWs: γ q(T ) = γ (T ).
Interpreting the width 	 as the mean free path of DWs yields
the mean thermal speed γ (T ) ∼ D(T )/	.

The nucleation rate of DWs at each interface is �q(T ,μ) =
ν(T ) exp[−Eq(μ)/T ], where Eq(μ) is the energy barrier for
the entering of a q-charged DW and ν(T ) is the characteristic
frequency that depends on details of the system [31]. We
take ν(T ) to be independent of the spin accumulation μ [32],
similarly to the Néel-Brown treatment for thermal switching
of magnetic nanoislands subjected to an electrical current [33].

Topological spin transport. In the presence of a finite spin
accumulation μ = μẑ in the left metal, the energy barrier
necessary for the injection of a q-charged DW is given by

Eq = E0 + S

∫
dx τ · (δφ ẑ) = E0 − qSgLμ/4 (10)

to linear order in μ, from which we obtain the charge-
dependent work Wq = qSgLμ/4 done by the spin-transfer
torque.

When the spin accumulation is in the positive z di-
rection, μ > 0, the entering of DWs with the positive
charge q = 1 is favored over q = −1. The nucleation rates
are �±(T ,μ) = �(T )(1 + W±/T ) to linear order in μ,
where �(T ) ≡ �(T ,μ = 0) is the equilibrium nucleation rate.
The injection rate of the topological charge through the left
interface is given by

IL ≡ I+
L − I−

L = �L(T )δW/T − γL(T )ρL. (11)

In the bulk, the topological charge current is I = −D∂xρ from
the Fokker-Planck equation (2).

At the right interface, in the absence of the nonequilibrium
spin accumulation, the nucleation rate of a DW is independent
of the charge; the topological charge does not enter the
ferromagnet, but only leaves it. The topological charge current
is, therefore, given by

IR = γR(T )ρR. (12)

The conservation of the topological charge density, I =
IL = IR , leads to the steady-state solution with the uniform
topological charge current,

I = ρ0

γ −1
L + γ −1

R + L/D

δW

T
, (13)

which can be recast as Eq. (3). γL and γR are the average
velocity of a topological charge to cross the left and right
interface, respectively; D/L is the average velocity of a
topological charge traversing the ferromagnet, which can be
seen from D/L = L/δt , where δt is the average time for a
DW to travel the distance L.

The spin current density by spin pumping through the
right interface is Js

R = �(g′
R + gRn×)ṅ/4π . Its z component

is J s
R ≡ ẑ · Js

R = �gRφ̇/4π to linear order in the bias. In the
steady state with the current I of the charge density −∂xφ/π ,
time evolution of the azimuthal angle φ is given by

φ̇/π = I. (14)

The resultant spin current is J s
R = �gRI/4 in Eq. (5).

Quantitative estimates. For quantitative estimates, let
us take the following parameters for YIG [5,34]: the
spin angular momentum density s = 10�/nm3, the Gilbert
damping constant α = 10−4, and the stiffness coefficient
A = 5 × 10−12 J/m. Long thin YIG strips with thickness
t = 2 nm and width w = 50 nm have the dipolar shape
anisotropy parametrized by K = 4 × 104 J/m3 and κ = 2 ×
103 J/m3 [35].

The algebraical decaying of topological spin transport
manifests clearly when the ferromagnet’s length L is much
larger than the crossover length L∗ ≡ D/γ , for which the
bulk resistance dominates the interface ones, RB � RL,RR .
The annihilation rate is estimated as γ ∼ D/	, which yields
the crossover length L∗ ∼ 	 = 60 nm. The Boltzmann factor
is exp(−E0/T ) ∼ 10−2 at room temperature T = 300 K.

Discussion. The topological spin transport by diffusion of
DWs can be experimentally detected in a hybrid structure
consisting of a ferromagnetic insulator and two identical
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FIG. 4. (Color online) Schematic plot of the drag coefficient
D = −J c

R/J c
L normalized by D0(Lα/L) as a function of the ambient

temperature T/E0, where E0 is the DW energy. The red straight line
is for the absence of anisotropy within the easy plane, κ = 0. The blue
solid curve is for the presence of an easy-axis anisotropy, κ > 0 at
low temperatures T < 3E0/4. The blue dotted line shows speculative
extrapolation of the solid curve to higher temperatures T ∼ E0.

metals with strong spin-orbit coupling, such as Pt|YIG|Pt
(see Fig. 4), as proposed for superfluid spin transport [5].
Given the applied electric-current density J c

L in the left metal,
the spin-current injection into the right metal induces the
electric-current density J c

R via the inverse spin Hall effect,
which defines the (negative) drag coefficient, D ≡ −J c

R/J c
L.

Figure 4 schematically depicts the drag coefficient as a
function of a temperature in two cases: the presence and
absence of an easy-axis anisotropy within the easy plane, κ =
0 and κ > 0. We focus on sufficiently long magnetic wires, for
which algebraic decaying is prominent: L � Lα for κ = 0 and
L � L∗ for κ > 0, where Lα ≡ �g/2παs (∼1μm for YIG)
and g is the real part of the effective mixing conductance
of the metal [5]. For κ = 0, superfluid spin transport is
sustained by a planar spiraling texture of the magnetiza-
tion. The drag coefficient is independent of a temperature;
D = D0(Lα/L) with D0 ∼ 0.1 for 1-nm-thick platinum [5].

For κ > 0, superfluidlike spin transport is realized by
Brownian diffusion of DWs. Using D = T 	/2αsS, the
drag coefficient is D(T ) = π2	ρ0(T )D0(Lα/L) for dilute
DWs, T 	 E0. The density of DWs is given by ρ0(T ) =
	−1√8E0/πT [36], which yields the blue solid line in
Fig. 4. When E0 → 0, D → D0(Lα/L); the algebraic decay
is retained, provided that the temperature is well below the
ordering temperature T 	 Tc so that the conservation of the
topological charge is maintained [24].

Thermal magnons, which have been disregarded in our
treatment, can influence the diffusive motion of DWs and
the associated spin transfer. Thermal magnons interact with
DWs and can affect the diffusion coefficient D at temperatures
higher than the magnon’s energy gap [21]. This could be
captured by modifying the diffusion coefficient D, which
enters in our main result, Eq. (5). In addition, thermal magnons
injected at the biased interface would exert a chirality-
independent drag force on DWs within the spin-diffusion
length [10–15,27]. The associated change in the proposed
DW spin transport is quadratic order in the bias; therefore,
the algebraic superfluidlike behavior of spin transport is not
modified at the linear order in the bias.

There exist other materials with exotic spin phases sup-
porting localized excitations with conserved “charges,” e.g.,
monopoles in spin ices with magnetic charges [37]. These
deconfined monopoles diffuse by Brownian motion as exper-
imentally demonstrated [38], which leads us to envision that
spin transport decaying algebraically may be implemented in
a broader class of materials.
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