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Electronic phase transition in hollandite titanates BaxTi8O16+δ
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We studied the physical properties of hollandite titanates, BaxTi8O16+δ , which have double chains of edge-
sharing TiO6 octahedra with d electrons in the t2g states. We found that there is an electronic phase transition at
∼220 K, at which various properties exhibit anomalies. This phase transition is characterized by a modulation
in the TiO6 chains and a spectral weight transfer of over 2 eV in the optical conductivity spectrum, which are
presumably caused by charge and orbital ordering of the Ti t2g electrons.
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It is known that quasi-one-dimensional (1D) conductors
often exhibit a characteristic ground state, charge density wave
(CDW) [1], arising from the nesting of the Fermi surface. It
is an interesting issue how this ordered state is modified if
the effect of electron correlation is added. In reality, however,
there are not many 1D conductors in 3d transition-metal oxides
having strong electron correlation, since many of them with 1D
structures become good insulators. There are several examples
in copper oxides based on the d9 electron configuration.
Sr14−xCaxCu24O41 [2,3] has Cu ladders and becomes con-
ducting with hole doping into the Cu ions by increasing x. The
ordering of the Cu holes was observed by resonant x-ray scat-
tering [4], though it barely affects the macroscopic properties.
PrBa2Cu4O8 [5,6] has a conducting Cu double chains and is
metallic down to the lowest T . There are also several examples
of the 1D conductors with transition metals on the left side of
the periodic table, thus having a small number of d electrons.
For example, β-Na0.33V2O5 [7,8] with 0.17 d electrons per
V exhibit a phase transition at Tc = 136 K with a tripling of
the unit cell along the 1D direction. The resistivity sharply
increases but the magnetic susceptibility exhibits only a small
anomaly at Tc. The optical measurement indicates a gap open-
ing and an evolution of a peak at ∼0.4 eV below Tc [9], which is
similar to the behavior of conventional CDW compounds [1].

Recently, it has been reported that transition-metal ox-
ides with a hollandite structure exhibits intriguing phase
transitions [10–16]. The hollandite structure A2B8O16 is
characterized by double chains consisting of edge-sharing
BO6 octahedra (as illustrated in the upper panel of Fig. 1).
For K2V8O16, in which the average valence of the V ions is
+3.75 (1.25 d electrons per V), a structural phase transition
occurs at 170 K, where the resistivity jumps by two orders of
magnitude and the magnetic susceptibility is suppressed [10].
It was experimentally shown that charge segregation and V
dimerization with a spin-singlet state in the chains are the
origin of the phase transition at 170 K [11]. K2Cr2O16, in which
there are 2.25 d electrons per Cr, exhibits a ferromagnetic
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ordering at 180 K and a metal-insulator transition at 95 K [12].
Theoretically, it has been proposed that this metal-insulator
transition in the ferromagnetic phase is caused by a Peierls
instability in the fully spin-polarized state [14].

The number of d electrons per transition metal in holladiate
vanadate and chromate described above is larger than unity,
and for comparison, it is important to study the physical
properties of hollandite compounds with diluted d electrons.
For this purpose, hollandite titanates [17–19], in which the
number of d electrons per Ti is less than unity, are good
candidates, though their physical properties have not yet been
well studied. In the present study, we investigated single
crystals of BaxTi8O16+δ and found an exotic phase transition
at ∼220 K.

Single crystals of BaxTi8O16+δ were grown by the floating-
zone technique. BaTiO3, TiO2, and Ti were mixed and pressed
into a rod, which was directly melted in a floating-zone furnace
in a flow of two different gases, Ar and H2-7%/Ar. We found
that the crystals grown in Ar gas are tetragonal whereas those
grown in H2-7%/Ar gas are monoclinic at room temperature.
We also estimated the ratio of Ba, Ti, and O by induction-
coupled plasma analysis and thermogravimetric analysis and
found that, for the notation BaxTi8O16+δ , x = 1.06 and δ =
0.35, and thus the nominal number of electrons per Ti (n)
is 0.18 for the No. 1 tetragonal sample; x = 1.13, δ = 0.14,
and n = 0.25 for the No. 2 tetragonal sample; and x = 1.13,
δ = −0.49, and n = 0.40 for the monoclinic sample [20].
Since we observed a phase transition only in the tetragonal
samples, we mainly discuss their results below and discuss
the result of the monoclinic sample in the Supplementary
Material [21].

The resistivity was measured by a four-probe technique.
The magnetization was measured using a SQUID magne-
tometer. The thermopower and thermal conductivity were si-
multaneously measured by a steady-state method. The optical
reflectivity was measured between 0.01 and 0.8 eV using an
FTIR spectrometer and between 0.7 and 5 eV using a grating
spectrometer on polished surfaces. The Raman scattering
was measured by a technique described elsewhere [22].
A synchrotron x-ray powder diffraction measurement was
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FIG. 1. (Color online) (Top) Crystal structures of the tetragonal
(left) and monoclinic (right) phase. The crystal structure was drawn
by VESTA [24]. (a) and (b) Temperature dependence of (a) resistivity,
(b) inverse magnetic susceptibility, (c) Seebeck coefficient, and (d)
thermal conductivity for tetragonal BaxTi8O16+δ (No. 1) along the c

axis (parallel to the double chains) and the ab axis (perpendicular to
the chains).

performed with an incident wavelength of 0.7745 Å at SPring-
8 BL02B2 [23]. Electron diffraction experiments were carried
out in a temperature window between 298 and 115 K in a
JEM-2010 transmission electron microscope.

Figure 1(a) shows the temperature (T ) dependence of the
resistivity ρ for BaxTi8O16+δ with a tetragonal structure at
room temperature (No. 1). The resistivity along the c axis
(parallel to the chains), ρc, is 1–2 orders of magnitude smaller
than that along the a axis (perpendicular to the chains), ρa ,
indicating a modest one-dimensional character of the electrical
conduction. Both ρc and ρa exhibit an anomaly at ∼220 K,
below which ρc increases with decreasing T from 10−2 �cm
to more than 104 �cm. This suggests the existence of a phase
transition at 220 K and the opening of a charge gap below the
transition temperature.

The inverse magnetic susceptibility 1/(χ − χcore) of
BaxTi8O16+δ (No. 1) as a function of T is shown in Fig. 1(b).
(χcore is the T -independent diamagnetic susceptibility of this
compound, −4.8 × 10−5 cm3/Ti mol.) This T dependence
also indicates the existence of an anomaly at ∼220 K. The mag-
netic susceptibility obeys the Curie-Weiss law, χ − χcore =
C/(T + θ ), both above 220 K (C = 0.171 K cm3/Ti mol
and θ = 244 K) and below 150 K (C = 0.092 K cm3/Ti mol

and θ = 71 K) with different Curie constants C and Weiss
temperatures θ [25]. Note that the absolute values of C below
150 K are comparable to the value of 0.068 K cm3/Ti mol
expected if n = 0.18 d electrons per Ti are localized and act as
S = 1/2 spins. The Weiss temperature below 150 K indicates
a modest size of an antiferromagnetic interaction between the
localized magnetic moments.

Figures 1(c) and 1(d) show the T dependence of the
Seebeck coefficient (S) and the thermal conductivity (κ)
for BaxTi8O16+δ (No. 1). The sign of S is negative and
almost independent of T above ∼220 K with relatively large
absolute values (∼ − 120 and ∼ − 200 μV/K along the c

and a axes, respectively). These results are consistent with
the fact that this compound is conducting above ∼220 K
but the nominal number of d electrons per Ti is relatively
small (n∼0.18). As to the anisotropy of S (|Sa| > |Sc|), unlike
the case of the electrical conductivity, the anisotropy of S is
not directly correlated to the anisotropy of the effective mass
theoretically. Experimentally, the absolute value of S often
becomes larger in the direction along which the resistivity
is higher [26,27], similarly to the present compound. It also
should be pointed out that the so-called generalized Heikes
formula [28], considering the threefold degeneracy of the t2g

orbitals, gives S = −(kB/e) ln[6(1 − n)/n]∼ − 285 μV/K,
which is comparable to Sa experimentally obtained. Below
∼220 K, the absolute value of the Seebeck coefficient
increases with decreasing T and amounts to ∼ − 400 μV /K.
This indicates that the number of carriers decreases below
220 K.

The anomaly at 220 K also exists in the T dependence of the
thermal conductivity, as shown in Fig. 1(d). Above 220 K, the
thermal conductivity decreases with decreasing T , and below
220 K, the thermal conductivity first exhibits a small additional
decrease but then increases with further decreasing T below
200 K. In the same figure, the electron thermal conductivity
(κe) obtained from the electrical conductivity (σ ) [the inverse
of ρ shown in Fig. 1(a)] with the Wiedemann-Franz relation
κe = (π2/3)(kB/e)2T σ is shown by dashed lines. As can be
seen, the anomaly observed around 220 K in the thermal
conductivity cannot be explained by the electron thermal
conductivity and thus, it should be attributed to the change
in the phonon thermal conductivity with T .

To investigate the anomaly at 220 K from the viewpoint
of the crystal structure, we measured the synchrotron powder
x-ray diffraction. It was found that some of the diffraction
peaks are split below 220 K [Fig. 2(a)], which can be
interpreted as a structural phase transition from tetragonal
to monoclinic with the same symmetry as the monoclinic
sample, as shown in Fig. 2(b). We also measured the Raman
scattering of tetragonal BaxTi8O16+δ with the incident light of
�ω = 2.41 eV, and the spectra with the polarization directions
along the c axis for both incident and scattered light [the (cc)
polarization configuration] are shown in Fig. 2(c). As can be
seen, many peaks evolve below Tc whose intensities are much
larger than those in the (aa) polarization spectrum shown in
the same figure. According to group theory analysis, 6 and
12 Ag modes exist in the tetragonal and monoclinic phases,
respectively, but in all of them the atoms move along the ab

plane but not along the c axis. It is unlikely that all of such
modes are observed only in the cc polarization spectrum but
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FIG. 2. (Color online) (a) Synchrotron x-ray powder diffraction
pattern around the (310) peak for No. 2 tetragonal BaxTi8O16+δ , and
(b) T dependence of lattice parameters (a, b, and the monoclinic angle
γ ) obtained from x-ray diffraction. (c) Raman scattering spectra for
No. 1 tetragonal BaxTi8O16+δ with the polarization directions along
the c axis for both the incident and scattered light, (cc), and those
along the a axis, aa. (d), (e), and (f) Electron diffraction patterns of
No. 1 tetragonal BaxTi8O16+δ taken from the [11̄0] direction.

not observed at all in the aa polarization spectrum, unless
strong resonance effect exists, which is also unlikely.

To obtain information about such a small structural
change, we performed electron diffraction measurement on
BaxTi8O16+δ . Figures 2(d), 2(e), and 2(f) show the electron
diffraction patterns at various temperatures taken from the
[11̄0] direction. As can be seen, superlattice peaks exist along
the (00l) direction even above Tc, which divide the span
between the (000) and (002) peaks into nine, i.e., the peaks are
located at (00 2n

9 ) [Fig. 2(d)]. Below Tc, additional superlattice
peaks appear at the midpoint between the neighboring peaks,
i.e., at (00 n

9 ) [Fig. 2(e)]. Note that among the (00 n
9 ) peaks, n =

7 and 11 (shown by yellow triangles) have larger intensities.
With further decreasing T , the (00 n

9 ) peaks with n = 7 and 11
and the (00 2n

9 ) peaks with n = 2 and 7 [shown by red triangles
in Fig. 2(e)], i.e., the (00l) peaks with l = 4/9, 7/9, 11/9, and
14/9 maintain their intensities but change into diffuse peaks
[Fig. 2(f)]. Note that these l values are close to 2n/5 with
n = 1–4 [29].

Superlattice structures along the chain direction are often
observed in hollandite compounds, which arise from the
ordering of the A-site ions [30]. For BaxTi8O16+δ , x = 2
corresponds to the stoichiometric composition and thus, only
a half the sites are occupied by Ba ions in the No. 1 tetragonal
crystals (x = 1.06). Thus the ordering of the Ba ions is
possible, resulting in the superlattice peaks above Tc at (00 2n

9 ).
On the other hand, the (00 n

9 ) peaks appearing below Tc can
be attributed to an electronic phase transition occurring at
Tc = 220 K, which induces a modulation in the electronic

structure of the Ti d states. The fact that only the (00l) peaks
with l = 4/9, 7/9, 11/9, and 14/9 survive as diffuse peaks
at lower T suggests that the superlattice peaks arising from
the modulation of the d electrons in the Ti chain should be
at (00 2n

5 ), but the locking of the modulation occurs in the
presence of ninefold modulation for the Ba ions, whereas the
ordering of the Ba ions itself is modulated by the modulation
in the Ti chain.

There are several differences between the present com-
pounds and conventional CDW compounds. In the latter case,
the magnetic susceptibility decreases at the transition tempera-
ture, but at lower T , it exhibits T -independent behavior arising
from Pauli paramagnetism and Larmor diamagnetism [31].
However, the magnetic susceptibility of BaxTi8O16+δ exhibits
a Curie-Weiss behavior even below the transition temperature
Tc = 220 K, as shown in Fig. 1(b). Furthermore, the decrease
in the thermal conductivity with decreasing T above Tc

and its increase with decreasing T below Tc [Fig. 1(d)]
is not a typical behavior of CDW compounds [32–34].
Instead, it is observed in strongly correlated electron systems
exhibiting orbital ordering [35–37]. In such systems, acoustic
phonons, by which heat is carried, are scattered by an orbital
fluctuation above the transition temperature, resulting in a
decrease in thermal conduction, whereas a long-range orbital
ordering suppresses the orbital fluctuation below the transition
temperature, resulting in an increase in thermal conduction.

To understand this phase transition at 220 K from the
viewpoint of the electronic structure, the optical reflectivity
spectra of tetragonal BaxTi8O16+δ (No. 2) were measured
and converted to optical conductivity spectra σ (ω) by the
Kramers-Kronig transformation. Figure 3(a) shows the optical
reflectivity spectra with the polarization along the c axis and
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FIG. 3. (Color online) (a) Reflectivity and (c) optical conductiv-
ity spectra for tetragonal BaxTi8O16+δ (No. 2) at room temperature
with the polarization direction along the c axis and ab plane. (c)
Optical conductivity spectra and (d) optical conductivity difference
spectra [σT (ω) − σ300K(ω)] for No. 2 tetragonal BaxTi8O16+δ along
the c axis at various temperatures.
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along the ab plane. An edge at ∼1.8 eV and an increase
below this energy are observed only in the c-axis reflectivity
spectrum. In the optical conductivity spectra [Fig. 3(b)], a
peak structure centered at ∼1 eV exists in σc(ω), whereas
such a structure is absent in σa(ω). On the basis of the
crystal structure of the present compound, it is reasonable
to assign this peak at ∼1 eV to the conducting d electrons
of the Ti ions along the double chains. The contribution of
such conducting d electrons along the chain does not produce
a Drude spectrum but produces a peak structure, probably
because the conducting carriers are trapped by lattice distortion
and form small polarons even above Tc. The peak at 4 eV
existing both in σc(ω) and σa(ω) is attributed to charge-transfer
excitation from the oxygen 2p level to the Ti 3d level.

Figure 3(c) shows the σc(ω) spectra at 300 and 5 K. With
decreasing T , σc below 1 eV decreases, whereas the valley in
the σc(ω) spectrum at ∼2 eV is filled. Note that this is different
from the conventional behavior of optical spectra, in which
peaks narrow and the valley should deepen with decreasing
T . Figure 3(d) shows the σc(ω) difference spectrum, σc(ω)T −
σc(ω)300K. As can be seen, dips at ∼0.4 and ∼1 eV develop
whereas a peak develops at ∼2 eV with decreasing T . We
point out that in conventional CDW compounds, the energy
scale of the spectral weight transfer in the optical conductivity
spectrum is usually much lower than 1 eV [38,39], and this
is the case for β-Na0.33V2O5. The anomalously large energy
scale (∼2 eV) in the spectral weight transfer associated with
the phase transition in BaxTi8O16+δ indicates an important
role of the electron correlation effect for this phase transition,
similarly to the charge/orbital ordering in magnanites [40].

These experimental results indicate that the phase transition
at 220 K in BaxTi8O16+δ is caused by the charge and orbital

ordering of the Ti 3d electrons, which induces a modulation
of the crystal structure along the Ti chain. A possible charge
ordering pattern consistent with the approximate five-fold
modulation along the c axis [Fig. 2(f)] is shown in the upper
right panel of Fig. 1. Note that the number of the “charged” site
in this model (= 1/5) is roughly consistent with the nominal
number of the d electrons in this compound, n = 0.18. This
charge/orbital ordering also induces a monoclinic distortion,
which may be due to the fact that the charge/orbital ordering
causes the localization of d electrons on the Ti ions and
increases the effective ionic radius of the Ti ions [20]. It should
also be pointed out that the periodicity of the Ba-ion ordering
existing at high T in BaxTi8O16+δ is related to x, whereas
that of the charge/orbital ordering is related to n = (x − δ)/4.
This means that the modulation in the Ti chain coexists but
competes with the ordering of the Ba ions along the c axis,
resulting in the complex behaviors of the superlattice peaks
below Tc.

In conclusion, we found an exotic electronic phase tran-
sition at Tc = 220 K in BaxTi8O16+δ , which is characterized
by the modulation in the Ti chains and the spectral weight
transfer of over 2 eV in the optical conductivity spectrum.
These results indicate that the novel ground state of the present
compound is dominated by the electron correlation effect and
the coupling between the electronic structure and the lattice
distortion.

This work was supported by JSPS KAKENHI Grant
No. 25287090. The synchrotron radiation experiments were
performed at BL02B2 in SPring-8 with the approval of
the Japan Synchrotron Radiation Research Institute (JASRI)
(Proposal No. 2014B1146).
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