
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 92, 220403(R) (2015)

Critical damping constant of a spin torque oscillator with a perpendicularly magnetized
free layer and an in-plane magnetized reference layer

Hiroko Arai,1,2 Rie Matsumoto,2 Shinji Yuasa,2 and Hiroshi Imamura2,*

1JST PRESTO, Kawaguchi, Saitama 332-0012, Japan
2National Institute of Advanced Industrial Science and Technology (AIST), Spintronics Research Center, Tsukuba, Ibaraki 305-8568, Japan

(Received 1 October 2015; revised manuscript received 17 November 2015; published 7 December 2015)

We theoretically analyzed the effects of damping on spin torque induced oscillation in a spin torque oscillator
with a perpendicularly magnetized free layer and an in-plane magnetized reference layer. It was found that there
exists an unexpectedly small critical damping constant, above which no steady-state oscillation can be excited by
spin torque. It was also found that the critical damping constant is almost independent of the anisotropy constants
but increases with the spin polarization of the injected current.
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A spin torque oscillator (STO) is a nanosized microwave
oscillator utilizing the spin torque (ST) induced magnetization
dynamics and magnetoresistance effect [1–13]. It has been
attracting a great deal of attention from both scientific and
application points of view. The STO with a perpendicularly
magnetized free layer (p-FL) and an in-plane magnetized
reference layer (i-RL) is one of the promising candidates
for practical applications because of its high emission power
and narrow linewidth [11–13]. The ST induced oscillation in
this type of STO was first demonstrated by Rippard et al.
in magnetic nanocontact devices [11]. In their experiments,
the output power was only in the order of 1 nW because the
STO was based on the giant magnetoresistance effect with
a small magnetoresistance ratio [14,15]. Recently, Kubota
et al. fabricated a MgO-based STO nanopillar and successfully
enhanced the output power up to the order of 1 μW [12]
owing to the high magnetoresistance ratio of the MgO-based
magnetic tunnel junctions [16–19].

In this type of STO, it has been assumed that the trajectory
of the steady-state oscillation is a circle of latitude, i.e.,
equienergy circle on the Bloch sphere [11,12]. This assumption
enables us to treat the dynamics of the polar and azimuthal
angles of the magnetization separately and therefore makes
analysis much simpler. This assumption is justified in the
limit of the small damping constant α. However, even for
a small α (0.01), the effects of deviation of the trajectory
from the equienergy circle on the oscillation properties such as
critical current and oscillation frequency were clearly observed
[13]. Therefore, it is important to study how such oscillation
properties depend on α. It is also important to investigate
a critical value of the damping constant for ST induced
oscillation, if it exists.

In this Rapid Communication, the effects of α on ST
induced oscillation are analyzed based on the macrospin
model. We find that there exists a critical value of the damping
constant αc above which no steady-state oscillation can be
excited by ST. The value of αc is much smaller than unity,
which is the critical value for magnetic field induced switching.
The dependence of αc on the anisotropy constant and spin
polarization are also discussed.

*h-imamura@aist.go.jp

Figure 1(a) shows a schematic illustration of a circular-
shaped pillar type STO and the coordinate system. The x and
y axes are taken to be the in-plane directions, while the z axis is
taken to be the out-of-plane direction. The STO is assumed to
be so small that the magnetization dynamics can be described
by the macrospin model, which is justified for a disk with
a diameter of less than a few tens of nanometers. The unit
vectors m and p represent the magnetization directions of the
FL and the RL, respectively. The magnetization of the RL is
assumed to be fixed along the positive x direction by strong
antiferromagnetic interlayer exchange coupling with a bottom
ferromagnetic layer (pinned layer—not shown in the figure).
The ST induced magnetization dynamics in the RL [20] is
neglected for simplicity. In the absence of the current, m is
aligned along the z axis by uniaxial anisotropy. The positive
current is defined such that electrons flow from the FL to
the RL.

The FL has first- and second-order uniaxial anisotropy,
and the magnetic energy is expressed as E = K1 sin2 θ +
K2 sin4 θ + 1

2μ0M
2
s cos2 θ , where θ is the polar angle of

m = (sin θ cos φ, sin θ sin φ, cos θ ), μ0 is the magnetic per-
meability of vacuum, Ms is the saturation magnetization, and
K1 and K2 are the first- and second-order uniaxial anisotropy
constants, respectively. The last term of E represents the
demagnetization energy denoted as Ed. We assume that the
FL is so thin that Ed is expressed only in terms of mz.

The dynamics of m is obtained by solving the following
Landau-Lifshitz-Gilbert (LLG) equation with the Slonczewski
ST term [21,22],

dm
dτ

= −m × heff + β

1 + P 2m · p
m × (m × p)

+αm × dm
dτ

, (1)

where τ = γMst and heff are dimensionless time and effective
field, respectively. Here, γ is the gyromagnetic ratio, and P

is the polarization factor of a spin current. The effective field
acting on m is given by

heff = − 1

μ0M2
s

∂E

∂m
= (

κeff
1 + 2κ2 sin2 θ

)
cos θ ez, (2)

where κeff
1 = κ1 − 1, κ1,2 = K1,2/Ed, and ez is the unit vector

pointing in the positive z direction. The coefficient of the ST

1098-0121/2015/92(22)/220403(4) 220403-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.220403


RAPID COMMUNICATIONS

ARAI, MATSUMOTO, YUASA, AND IMAMURA PHYSICAL REVIEW B 92, 220403(R) (2015)

(a) (b)

z
Damping-torque

Spin-torque x

m

I>0

-e

m

p

Free

Ref.

x

z

y

(c)

m

m

-1

1
0

-1

0

1
-1

0
1 m

x

z

y (d)

m

m

-1

1
0

-1

0

1
-1

0
1 m

x

z

y

α=0.060.06

y

FIG. 1. (Color online) (a) Schematic illustration of a spin torque
oscillator with a perpendicularly magnetized free layer (p-FL) and
an in-plane magnetized reference layer (i-RL). Positive current is
defined such that electrons flow from the FL to the RL. The unit
vectors m and p represent the magnetization directions of the FL and
the RL, respectively. (b) Directions of spin torque (solid arrow) and
damping torque (dashed arrow) acting on m. (c) Typical trajectories
for α = 0.01. From inner to outer, β/α = 3.24 (red), 5.0 (green),
and 5.4 (blue), respectively. (d) Typical trajectories for α = 0.06.
From inner to outer, β/α = 3.2 (red), 3.29 (green), and 3.3 (blue),
respectively. For (c) and (d), the following parameters are used: κeff

1 =
0.4, κ2 = 0.2, and P = 0.5. The fixed point is indicated by the solid
circle.

term in Eq. (1) is defined as β = �IP/(2|e|μ0M
2
s V ), where �

is the Dirac constant, I is the current, e is the electron charge,
and V is a volume of the FL. Hereafter we will refer to β/α as
the normalized current. The anisotropy constants are assumed
to satisfy the condition

κ2

κeff
1

>
1

2P 4

[
2√

1 − P 4
− (2 + P 4)

]
, (3)

which is necessary for a ST induced oscillation in the absence
of an external magnetic field [13].

The mechanism for how the steady-state oscillation is
induced by ST is as follows. The ST and damping torque
acting on m are schematically illustrated in Fig. 1(b) by the
thin solid and dashed arrows, respectively. Since the direction
of the ST is given by m × (m × p), the ST acts as an extra
damping for mx > 0 while it acts as a negative damping for
mx < 0. If one applies a direct current, which is large enough
to balance the energy gain owing to the ST with the energy
loss due to the damping torque over one oscillation period, the
steady-state oscillation of m is maintained. It should be noted
that the trajectory is raised up to the north pole for mx > 0
while it is lowered down to the equator for mx < 0. Since the
rotation direction of the steady-state oscillation is given by the
vector ez × m, as indicated by the arrow in Figs. 1(c) and 1(d),
the rotation axis of the steady-state oscillation tilts toward the
negative y direction.
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FIG. 2. (Color online) (a) Polar angle of the steady-state oscil-
lation as a function of β/α. The solid black curve corresponds
to Eq. (4). The dashed lines represent Eq. (5) for different values
of the damping constant α. The solid circles denote the results
of numerical simulations for each α with the same color as the
dashed lines. The parameters are the same as those in Fig. 1(c).
(b) Dimensionless oscillation frequency obtained from numerical
simulations as a function of β/α for different values of α. The solid
black line represents an analytical result derived in Ref. [13].

Figure 1(c) shows the typical trajectories of the ST induced
dynamics for α = 0.01. The other parameters are as follows:
κeff

1 = 0.4, κ2 = 0.2, and P = 0.5. From the inner to the outer,
the normalized current is β/α = 3.24 (red), 5.0 (green), and
5.4 (blue), respectively. The rotation axis of the steady-state
oscillation (red and green) slightly but clearly tilts toward the
negative y direction. For β/α = 5.4, the trajectory (blue) ends
at the fixed point of mx = −1, which is indicated by the solid
black circle. A further increase of β cannot extricate m from
the fixed point. The trajectory of ST induced dynamics is
sensitive to the increase of α, as shown in Fig. 1(d), where
α = 0.06 is assumed. Other parameters are the same as those
in Fig. 1(c). From the inner to the outer, the normalized current
is β/α = 3.2 (red), 3.29 (green), and 3.3 (blue), respectively.
Although the value of α = 0.06 is still much smaller than unity,
the rotation axis of the steady-state oscillation tilts largely
compared with the results of α = 0.01.

In Fig. 2(a), the polar angle of steady-state oscillation is
plotted as a function of β/α. The solid black curve shows the
analytical result [13] given by

β

α
= −P 2g(θ ) sin2 θ

(
1 − 1√

1 − P 4 sin2 θ

)−1

, (4)

where g(θ ) = κeff
1 + 2κ2 sin2 θ . Equation (4) was derived by

assuming that the trajectory of the steady-state oscillation is a
circle of latitude. The dashed lines represent the polar angle of
the fixed point obtained by solving dm/dτ = 0 as

β

α
= 1

α
g(θ ) cos θ sin θ. (5)

There are two characteristic values of β/α. One defines
the threshold current for the ST induced oscillation, which is
denoted as β(1)

c /α. The other, denoted as β(2)
c /α, defines the

critical current above which m stays at a fixed point of mx =
−1. Under the assumption that the trajectory of the steady-state
oscillation is a circle of latitude, the approximate value of
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FIG. 3. (Color online) (a) First and second critical currents,
β (1)

c /α and β (2)
c /α, are plotted against α. Inset: Linear functions are the

fits to β (1,2)
c /α at the last two points, α = 0.0650 and α = 0.0675. The

intersecting point of linear fits representing αc = 0.0681 is indicated
by the arrow. (b) β/α dependence of the polar angle of steady-state
oscillation. The solid curve (black) represents Eq. (4). The dashed red
curve represents Eq. (5) for α = αc. The dotted-dashed blue curve,
which is tangential to the solid curve, represents Eq. (5) for the
approximate value of αc denoted as α̃c.

β(1)
c /α is given by taking the limit of θ → 0 in Eq. (4) as

β(1)
c

α
� 2κeff

1

P 2
. (6)

The approximate value of the other characteristic value of β/α

is also obtained by taking the limit of θ → π/2 in Eq. (4) as

β(2)
c

α
� 1 − P 4 + √

1 − P 4

P 2

(
κeff

1 + 2κ2
)
. (7)

The solid circles in Fig. 2(a) represent the results obtained
by numerically integrating Eq. (1) for each α with the same
color as the dashed lines. Parameters other than α are the
same as those in Fig. 1(c). In the numerical calculations, the
polar angle of the oscillation is obtained from mz averaged
over 1 ns after reaching steady-state oscillation. The deviation
of the numerical results from the analytical result indicated
by the black curve increases with increasing α. The steady-
state oscillation is obtained for α = 0.01–0.06, but not for
α � 0.07, which implies that there exists a critical value of the
damping constant above which no steady-state oscillation can
be excited.

The dimensionless oscillation frequencies corresponding
to the results shown in Fig. 2(a) are plotted in Fig. 2(b) as
functions of β/α. The black curve represents the analytical
result derived in Ref. [13]. Since β(1)

c /α is almost independent
of α, the oscillation frequency at β(1)

c /α, fc, is also almost
independent of α, as seen in Fig. 2(b). For small α (<0.03), the
oscillation frequency takes a maximum value fmax at a certain
value of β/α other than β(1)

c /α. For α � 0.03, however, fmax

is merged into fc, and the oscillation frequency monotonically
decreases with increasing β/α.

Let us focus on the critical damping constant αc. In Fig. 3(a),
numerically obtained values of β(1)

c /α and β(2)
c /α are plotted

as a function of α by the solid and open circles, respectively.
Parameters other than α are the same as those in Fig. 1(c).
The region of the normalized current providing steady-state
oscillation, β(1)

c /α < β/α < β(2)
c /α, decreases with increasing

α and disappears at a certain critical value of α. A magnified
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FIG. 4. (a) Critical damping constant αc (solid circles) and
approximate value α̃c (dashed line) are plotted as a function of κ2/κ

eff
1 .

(b) αc and α̃c are plotted as a function of P . Solid circles denote the
results obtained by numerical simulations.

view for the region 0.058 � α � 0.072 is shown in the inset
of Fig. 3(a). The solid and dashed lines are respectively the
linear fits of β(1)

c /α and β(2)
c /α of the data points at α = 0.065

and 0.0675. The critical value of the damping constant is
determined to be αc = 0.0681 by the crossing point of these
two lines, as indicated by the down arrow. It should be noted
that the obtained value of αc is much smaller than unity, which
is the critical damping constant for field switching.

For practical applications, it is important to obtain the
approximate value of the critical damping constant α̃c without
solving the LLG equation directly. Let us define α̃c by the
value of α, at which the curves representing Eqs. (4) and (5)
are tangential to each other, as shown by the dotted-dashed blue
and solid black curves in Fig. 3(b). This crude approximation
is based on the finding that the curve representing Eq. (5) for
αc is very close to that for α̃c, as shown in Fig. 3(b). As will be
shown below, this definition of α̃c actually gives a value fairly
close to αc. Moreover, it enables us to predict the dependence
of αc on anisotropy constants and spin polarization.

The value of α̃c is easily obtained by substituting the value
of θ at a tangential point into the equation representing α

satisfying both Eqs. (4) and (5) given by

α = P 2 cot θ

(
1√

1 − P 4 sin2 θ
− 1

)
. (8)

It should be noted that Eq. (8) is independent of the anisotropy
constants because both Eqs. (4) and (5) depend in the same
way on the anisotropy constants through g(θ ). Therefore, α̃c

is independent of the anisotropy constants. In Fig. 4(a), we
plot αc and α̃c as a function of κ2/κ

eff
1 by the solid circles and

the dashed line, respectively. Parameters other than κ2 are the
same as those in Fig. 1(c). One can clearly see that αc is almost
independent of κ2/κ

eff
1 and α̃c is actually a good approximation

for αc.
From Eq. (8), on the other hand, one can expect that α̃c and

therefore αc will increase with P . In Fig. 4(b), we plot αc and
α̃c as a function of P by the solid circles and dashed curve,
respectively. Parameters other than P are the same as those
in Fig. 1(c). As shown in Fig. 4(b), both αc and α̃c increase
with an increase of P , as expected, and α̃c is a very good
approximation for αc.
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In summary, we analyzed the effects of damping on ST
induced oscillations in a STO with a p-FL and i-RL. We found
that there is a critical damping constant for the ST induced
oscillation, which is much smaller than unity. The critical
damping constant was shown to be almost independent of
the anisotropy constants but to increase with an increase of
the spin polarization. A method to obtain a good approximate

value of the critical damping constant without numerically
solving the LLG equation was also provided.
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