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Asymptotic freedom in quantum magnets
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Phase transitions in isotropic quantum antiferromagnets are described by an O(3) nonlinear quantum field
theory. In three dimensions, the fundamental property of this theory is logarithmic scaling of the coupling
constant. At the quantum critical point the coupling asymptotically vanishes, and the quasiparticles become free.
This logarithmic decay of the coupling constant has never been observed. In this Rapid Communication, we
derive finite-temperature properties of the field theory and use our results to analyze the existing data on the real
antiferromagnet TlCuCl3. Including finite temperatures in the theory, we find that agreement between theory and
experiment is sufficiently sensitive to unambiguously identify the asymptotic decay of the coupling constant. We
also comment on the unique possibility to study Landau pole physics in quantum magnets.
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Asymptotic freedom plays a crucial role in quantum chro-
modynamics. The freedom, which is due to non-Abelian gauge
fields, means a logarithmic decay of the coupling constant
at high energies. Ultimately, at infinite energies particles do
not interact; this is ultraviolet asymptotic freedom [1,2]. In
three-dimensional (3D) nongauge quantum field theories as
well as in Abelian gauge theories, the coupling constant
decays logarithmically at low energies [3]. However, usually,
this decay is terminated because of a low-energy cutoff. For
example, in quantum electrodynamics the cutoff is due to the
rest energy of the electron. The low-energy logarithmic decay
can be observed only at a quantum critical point (QCP) where
the cutoff energy is zero. Slightly overstretching the accepted
terminology, we call this phenomenon “infrared asymptotic
freedom.” Three-dimensional quantum antiferromagnets in
the vicinity of a QCP provide a perfect testing ground for
such behavior. Like in QCD the effect is related to the
dimensionality of the problem; it occurs only at the upper
critical dimension (3D + time). Logarithmic running of the
coupling is known in other condensed-matter systems too. For
example, the Fermi velocity in graphene grows logarithmically
at low energy [4]. This results in a logarithmic effective
coupling constant [5]; however, unlike in field theory the quasi-
particle dispersion is changing. A closer analogy to the present
discussion is known in 1D spin systems, where the effective
interaction between spinons logarithmically decays at low
energy [6,7]. This, however, is unrelated to physics at the
upper critical dimension.

The 3D quantum antiferromagnet TlCuCl3 can be driven
from a magnetically disordered to magnetically ordered phase
by pressure [8]. This provides a unique opportunity to study
the physics described above. The low-energy logarithmic
behavior at a QCP can, in principle, be pinned down even
at zero temperature [9]. The zero-temperature case is well
understood theoretically; a 3D quantum antiferromagnet at
zero temperature is equivalent to a four-dimensional (4D)
classical antiferromagnet at finite temperature. The 3D QCP
corresponds to the Néel transition in the 4D case. Thermo-
dynamic quantities scale as powers of the running coupling
constant [10]. Unfortunately, the existing zero-temperature
experimental data are insufficient to pin down the logarithmic
scaling. On the other hand combined zero and nonzero
temperature data on TlCuCl3 [11–13] provide an excellent

opportunity to search for fingerprints of asymptotic freedom
at the QCP. To perform this search we develop a theory of the
QCP which accounts for both quantum and thermal fluctua-
tions. After that we compare the theoretical predictions with
experimental data. The comparison unambiguously indicates
a logarithmically running coupling constant.

The phase diagram of the dimerized 3D quantum antiferro-
magnet TlCuCl3 is shown in the vertical panel of Fig. 1. The
disordered quantum state consists of an array of spin dimers
(spin singlets), and the ordered quantum state has a long-range
Néel order, as illustrated in Fig. 1. The Néel temperature curve
(red line) separates ordered and disordered phases, with QCP
indicated by a yellow dot.

Excitations in the disordered phase, triplons, are gapped.
These are triplet excitations of spin dimers [Fig. 2(a)]. There
are two kinds of excitations in the ordered phase: gapped
longitudinal Higgs and gapless Goldstone excitations. They are
illustrated in Figs. 2(b) and 2(c). The horizontal panel in Fig. 1
displays excitation gaps versus pressure at zero temperature.

Overall, the experimental data [11–13] provide the follow-
ing information: (i) Néel temperature versus pressure, (ii) the
magnetic excitation gap in the disordered phase for various
temperatures and pressures, (iii) the Higgs magnon excitation
gap in the antiferromagnetic phase for various temperatures
and pressures, and (iv) the magnetic excitation width (lifetime)
for various temperatures and pressures. In our analysis we do
not use fully the width data; the width is used only to indicate
the dimensional crossover region around the Néel temperature.
However, we fully use the data from points (i), (ii), and (iii).
There is a small spin-orbit anisotropy in TlCuCl3 which gaps
one of the “Goldstone” modes in the antiferromagnetic phase.
This implies that the number of dynamic degrees of freedom
changes from three at high energy to two at very low energy.
We neglect this effect here, but in Supplemental Material
Section E [14] we show that this effect does not influence
our conclusions.

The quantum phase transition (QPT) between ordered and
disordered phases is described by the effective field theory
with the following Lagrangian [15–18]:

L = 1
2∂μ �ϕ∂μ �ϕ − 1

2m2
0 �ϕ 2 − 1

4α0[ �ϕ 2]2. (1)

The vector field �ϕ describes staggered magnetization, and in-
dex μ enumerates time and three coordinates. The QPT results
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FIG. 1. (Color online) The phase/energy diagram of TlCuCl3

[11]. The vertical panel shows the pressure-temperature phase
diagram; the Néel temperature curve separates magnetically ordered
and magnetically disordered phases. The light red band around
the Néel curve indicates the region of dimensional crossover. The
horizontal panel shows both the triplon gap �t in the paramagnetic
phase and the Higgs magnon gap �H in the antiferromagnetic phase
vs pressure at zero temperature.

from tuning the mass term m2
0, for which we take the linear

expansion m2
0(p) = γ 2(pc − p), where γ 2 > 0 is a coefficient

and p is the applied pressure. Varying the pressure leads to
two distinct phases; (i) for p < pc we have m2

0 > 0, and the
classical expectation value of the field is zero ϕ2

c = 0. This
describes the magnetically disordered phase; the system has a
global rotational symmetry, and the excitations are gapped
and triply degenerate. These excitations are referred to as
“triplons.” (ii) For pressures p > pc we have m2

0 < 0, and the

field obtains a nonzero classical expectation value ϕ2
c = |m2

0|
α0

.
This describes the magnetically ordered, antiferromagnetic
phase. Varying m2

0 from positive to negative spontaneously
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FIG. 2. (Color online) Excitations of a dimerized quantum an-
tiferromagnet. (a) illustrates the triply degenerate gapped triplon
excitations. (b) illustrates the gapped longitudinal (Higgs) excitation.
(c) illustrates the quantum phase transition; the strength of the
interactions in either phase is depicted by the steepness of the
“well.” Within the ordered phase, the “Mexican hat” potential has
a flat direction which supports the gapless Goldstone excitations (red
arrows). Precisely at the QCP (dashed line), all directions flatten: the
Higgs and triplon excitations become gapless and noninteracting, i.e.,
asymptotically free.

Γ = = + + . . . , Σ =

FIG. 3. Diagrams for the vertex � and self-energy �.

breaks the O(3) symmetry of the system. In the broken phase
there are two gapless transverse (Goldstone [19]) excitations
and one gapped longitudinal (Higgs) excitation. One easily
recovers the known relation; Higgs gap/triplon gap = √

2 [20],
explicitly �t (p) = m0(p) and �h(p) = √

2|m0(p)|.
The above analysis does not account for quantum or thermal

fluctuations. All fluctuations considered in the present Rapid
Communication originate from the vertex and self-energy
diagrams shown in Fig. 3. The vertex corrections result in
the running coupling constant α	 (see, e.g., Ref. [10] or
Supplemental Material Section A),

α	 = α0

1 + (N+8)α0
8π2 ln(	0/	)

. (2)

Here 	 is the energy/momentum scale, 	0 is the normalization
point, α	0 = α0, and N = 3 corresponds to O(3) spin sym-
metry of the system. Equation (2) has been obtained within
the single-loop renormalization group, which implies that
α0/8π � 1. At the same time the logarithmically enhanced
denominator in (2) can be arbitrarily large. Note that the
normalization point 	0 can be arbitrary; generally, it is not
equal to the ultraviolet cutoff related to the lattice spacing.
Equation (2) has a pole at 	 = 	L = 	0e

8π2/(N+8)α0 . This
is the famous Landau pole much debated in quantum field
theory [3]. Remarkably, quantum magnets can shed light on
the problem; we return to this point later. The running coupling
constant at zero temperature versus pressure is plotted in
Fig. 4. This curve is extracted from available experimental
data. The coupling constant vanishes at the QCP, indicating

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Pressure [kbar]

α
8π

α
/8

π

Asymptotic Freedom 

Pressure [kbar] 

FIG. 4. (Color online) Zero-temperature running coupling con-
stant vs pressure in TlCuCl3. The constant vanishes at the QCP
(yellow point).
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the asymptotic freedom. Figure 4 represents one of our central
results; below we explain how we obtain it.

At zero temperature, equations for the running mass and
for the running staggered magnetization are well known [10]
(see also Supplemental Material Sections B and C),

m2(p,	) = γ 2(pc − p)

[
α	

α0

] N+2
N+8

, (3)

ϕ2
c (p,	) = γ 2(p − pc)

α0

[
α0

α	

] 6
N+8

. (4)

To find actual values of the gap in the disordered phase one
has to solve Eq. (3) at p < pc with �t = 	 = m. To find the
Higgs gap in the ordered phase one has to solve Eq. (3) at
p > pc with �H = 	 = √

2|m|. The relation �H/�t = √
2

[20] remains valid with logarithmic accuracy.
We need to extend the theory to nonzero temperatures.

Our goal is to find excitation spectra; therefore we cannot use
the imaginary-time Matsubara technique. We need to work
with real frequencies at a nonzero temperature. Generally,
there is not a regular diagrammatic technique which allows
us to calculate real-frequency Green’s functions at nonzero
temperature. Fortunately, in the present case such a calculation
is possible within standard techniques. This possibility comes
from the two following observations. (i) Multiloop logarithmic
corrections are universal; they are not sensitive to whether
frequency/energy is real or imaginary. (ii) The leading in α

correction which contains powers of temperature comes only
from the self-energy diagram shown in Fig. 3. Calculation of
this diagram does not cause problems since, while it depends
on temperature, it is frequency independent. Still, there is a
minor complication related to point (ii). The complication is
due to temperature broadening (quasipraticle lifetime) because
of scattering from the heat bath of magnons. Below we
explain how we address this issue. To be specific let us
consider the triplon gap in the disordered phase. Calculation
of the self-energy � (Fig. 3) gives the following answer (see
Supplemental Material Section B):

�2
t (p,T ,	) = γ 2(pc − p)

[
α	

α0

] N+2
N+8

+ (N + 2)α	

∑
k

1/ωk

e
ωk
T − 1

. (5)

At zero temperature the second term on the right-hand side
is zero, and Eq. (5) becomes identical to Eq. (3). The
value of the lower logarithmic cutoff in (5) is obvious,
	 = max{�t,T }. The triplon dispersion is harder. The naive

formula ωk =
√

k2 + �2
t is incomplete because at small k

and close to the Néel temperature where �t → 0 the line
width �t (temperature broadening) becomes larger than the
gap. Physically, the inequality �t > �t is an indication of
the dimensional crossover, 4D → 3D. Sufficiently close to the
Néel temperature, critical indices take the 3D classical values.

To resolve the problem we take ωk =
√

k2 + �2
t + �2

t ; this
is a standard way to describe a damped harmonic oscillator
(see, e.g., Ref. [11]). Of course, the modified dispersion is
not sufficient to fully describe the dimensional crossover, but

it is sufficient for the purposes of the present work. The line
broadening we take directly from experiment, �t = ξT , where
ξ ≈ 0.15 [11]. Solution of Eq. (5) with �t = 0 gives the Néel
temperature as a function of pressure TN (p).

One can also approach the Néel temperature from the
ordered phase (see Supplemental Material Section C). In this
case there are two Goldstone modes and one Higgs mode. The
equation for the Higgs gap is similar to (5),

�2
H (p,T ,	) = 2

{
γ 2(p − pc)

[
α	

α0

] N+2
N+8

− (N − 1)α	

×
∑

k

1/k

e
k
T − 1

− 3α	

∑
k

1/ωk

e
ωk
T − 1

}
. (6)

Again, 	 = max{�H,T },ωk =
√

k2 + �2
H + �2

H , and
�H = ζT . The Néel temperature determined from the
condition �t = 0, Eq. (5), must be identical to that
determined from �H = 0, Eq. (6). From here we conclude
that broadening of the Higgs mode is larger than that of the
triplon, ζ ≈ 0.3 compared to ξ ≈ 0.15. The larger broadening
is consistent with the data [11]. We note that the critical
exponent of the magnetization in Eq. (4) is identical to that
found for the Néel temperature by solving Eq. (5) or (6). This
agrees with the latest quantum Monte Carlo simulations on
the 3D dimerized antiferromagnet [21].

Now, we are fully armed to perform fits to experimental
data. We set the normalization point 	0 = 1 meV. We remind
the reader that this choice is arbitrary; one can always use a
different normalization point with an appropriate rescaling of
the coupling α0. There are three fitting parameters, the critical
pressure pc, the coefficient γ 2 in the pressure dependence of
the bare mass, and the coupling constant α0. Points in Fig. 5(a)
show experimental values of the triplon and Higgs gaps for
various pressures at T = 1.85 K. Points in Fig. 5(b) show
Néel temperatures for various pressures. The data are taken
from Refs. [11–13].

Solid curves in both panels show fits of the data with
Eqs. (2), (5), and (6). Values of the fitting parameters are

pc = 1.01 kbar, γ = 0.68 meV/kbar1/2,
α0

8π
= 0.23 . (7)

It is worth noting that while T = 1.85 K is a pretty low
temperature, the temperature corrections in Eqs. (5) and (6)
are not negligible. In the present work we set the triplon speed
equal to unity. If one restores three different speeds along
three different principal directions of the lattice, c1,c2,c3, then
Eq. (7) is changed to α0/(8πc1c2c3) = 0.23. This value is close
to the value α0/(8πc1c2c3) = 0.21 obtained in Ref. [17] from
the lifetime of the Higgs mode. Reference [17] did not account
for the running coupling constant; however, experimentally,
the major contribution to the lifetime data comes from Higgs
magnons with energy of about 1 meV. This energy is taken
as the normalization point in the present work. Coincidence
of the energy scales explains the very close agreement between
the accurate result of the present work and the approximate
result of Ref. [17].

We stress that the coupling constant significantly changes
along the fitting curves in Fig. 5. To illustrate this change
we present Fig. 6, which shows how the constant runs
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FIG. 5. (Color online) (a) Triplon and Higgs gaps vs pressure
at temperature T = 1.85 K. Points show experimental data from
Ref. [13]. (b) Néel temperature vs pressure. Points show experimental
data from Ref. [12]. In both plots the solid and dashed curves are
quantum field theory fits with and without accounting for the running
coupling constant, respectively.

along the Néel temperature curve. Similar running is shown
in Fig. 4, where the coupling constant is plotted versus
pressure at zero temperature. In this case the infrared cutoff
in Eq. (2) for α	 is equal to triplon/Higgs gap. The position
of the Landau pole follows from the known value of the
coupling constant, 	L = 	0e

8π2/11α0 ≈ 3.5 meV. This energy
is higher than that of the experimentally studied regime
and is comparable to the expected ultraviolet cutoff related
to the dispersion along the third axis (see discussion in
Ref. [17]). Experimental and theoretical studies in this energy
range can shed light on Landau pole physics as well as the
expected dimensional crossover in TlCuCl3. Alternatively,
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FIG. 6. (Color online) Running coupling constant vs pressure
along the Néel temperature curve. Unlike Fig. 4 where the temperature
is zero, in this case T = TN (p). According to Eqs. (5) and (6), the
infrared cutoff in Eq. (2) for α	 is 	 = TN (p). The QCP is again
marked by the yellow dot.

Landau pole physics can be addressed in quantum Monte Carlo
studies of dimerized spin-lattice models [21,22]. In this case
	Lcan be smaller than the ultraviolet cutoff (inverse lattice
spacing).

Our central goal is to pin down the running coupling
constant which vanishes at the QCP giving rise to asymptotic
freedom. To check this statement we also perform a fit of
the data with a fixed coupling constant. We use the same
Eqs. (5) and (6) but set α	 = α0. Best-fit parameters
become pc = 1.01 kbar, γ = 0.64 meV/kbar1/2,
α0/8π = 0.16. Corresponding fitting curves are shown
in Fig. 5 by dashed lines. It is seen from the quality of
the fits that the running coupling plays a crucial role in
describing the static properties of the system; the analysis
clearly demonstrates the running coupling constant.

Asymptotic freedom is a prominent physical phenomenon.
It is the remarkable experimental control of the quantum
antiferromagnet TlCuCl3 that has allowed the present work
to identify the logarithmic decay of the coupling constant.
More generally, with such remarkable experimental control,
TlCuCl3 and other quantum antiferromagnets provide an ideal
playground for studies of the Landau pole physics and many
other nontrivial quantum phenomena.
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