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With the aid of the Keldysh effective action technique we develop a microscopic theory describing Andreev
level spectroscopy experiments in nontunnel superconducting contacts. We derive an effective impedance of
such contacts which accounts for the presence of Andreev levels in the system. At subgap bias voltages and low
temperatures, inelastic Cooper pair tunneling is accompanied by transitions between these levels resulting in a
set of sharp current peaks. We evaluate the intensities of such peaks, establish their dependence on the external
magnetic flux piercing the structure and estimate the thermal broadening of these peaks. We also specifically
address the effect of capacitance renormalization in a nontunnel superconducting contact and its impact on
both the positions and heights of the current peaks. At overgap bias voltages, the I -V curve is determined
by quasiparticle tunneling and contains current steps related to the presence of discrete Andreev states in our
system.

DOI: 10.1103/PhysRevB.92.214511 PACS number(s): 74.45.+c, 74.50.+r, 73.23.−b, 85.25.Cp

I. INTRODUCTION

The description of complex systems in terms of the
so-called “collective” variables has a long history in
condensed matter physics. An important example of such a
variable is the “order parameter field” usually employed for
the theoretical analysis of phase transitions. The convenience
of this approach is guaranteed by its concise formulation,
which, nevertheless, enables us to provide nontrivial results.
Sometimes, the correct description can even be constructed
phenomenologically, as was the case, e.g., with the celebrated
Ginzburg-Landau theory of superconductivity [1] justified
later on microscopic grounds [2].

Another milestone of this formalism is represented by
the Feynman-Vernon influence functional theory [3] and the
related Caldeira-Leggett analysis of quantum dissipation [4,5].
Within this description, all “unimportant” (bath) degrees of
freedom are integrated out and the theory is formulated in terms
of the effective action being the functional of the only collec-
tive variable of interest. Both dissipation and superconductivity
are combined within the Ambegaokar-Eckern-Schön (AES)
effective action approach [6,7] describing the macroscopic
quantum behavior of metallic tunnel junctions. In this case,
the collective variable of interest is the Josephson phase, and
the whole analysis can be formulated for both superconduct-
ing and normal systems embracing various equilibrium and
nonequilibrium situations.

Later on, it was realized that the AES type-of-approach can
be extended to arbitrary (though sufficiently short) coherent
conductors, including, e.g., diffusive metallic wires, highly
transparent quantum contacts, etc. Also, in this general case,
a complete effective action of the system can be derived both
within Matsubara [8] and Keldysh [9] techniques, however, the
resulting expressions turn out to be rather involved and usually
become tractable only if one treats them approximately in cer-
tain limits. The character of approximations naturally depends
on the problem under consideration. For example, Coulomb
effects on the electron transport in short coherent conductors
as well as on shot noise and higher current cumulants can be
conveniently studied within the quasiclassical approximation

for the phase variable [10–12], renormalization group methods
[13], instanton technique [14], and for almost reflectionless
scatterers [15,16]. Some of the above approximations are also
helpful for the analysis of the frequency dispersion of current
cumulants [16,17].

Another type of approximation is realized if one restricts the
phase fluctuations to be sufficiently small. This approximation
may be particularly useful for superconducting contacts
with arbitrary transmission coefficients of their conducting
channels. In this case, one can derive the effective action
in a tractable form [18] and employ it for the analysis of
various phenomena, such as, e.g., equilibrium supercurrent
noise, fluctuation-induced capacitance renormalization, and
Coulomb interaction effects.

An important feature of the effective action [18] is that it
fully accounts for the presence of subgap Andreev bound states
in superconducting contacts. In the case of sufficiently short
contacts, the corresponding energies of such bound states are
±εn(χ ), where

εn(χ ) = �
√

1 − Tn sin2(χ/2), (1)

� is the superconducting gap, Tn � 1 defines the transmis-
sion coefficient of the n-th conducting channel, and χ is
the superconducting phase jump across the contact. In the
tunneling limit Tn � 1, we have εn(χ ) � � for any value of
the phase χ , i.e., subgap bound states are practically irrelevant
in this case. For this reason, such states are missing, e.g., in
the AES action [6,7]. On the other hand, at higher values
of transmission coefficients, the energies of Andreev levels
(1) can be considerably lower than � and may even tend
to zero for fully open channels and χ ≈ π . The presence
of such subgap states may yield considerable changes in the
behavior of (relatively) transparent superconducting contacts
as compared to that of Josephson tunnel junctions.

Recently, the authors [19,20] performed experiments aimed
at directly detecting Andreev levels by means of microwave
spectroscopy of nontunnel superconducting atomic contacts.
In this work, we will employ the effective action approach
[18] and develop a microscopic theory of Andreev level
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spectroscopy in superconducting contacts with arbitrary dis-
tribution of values of transmission coefficients Tn. As a result
of our analysis, we will formulate a number of predictions
which would allow for explicit experimental verification of
our theory.

The structure of the paper is as follows. In Sec. II, we
will specify the system under consideration and formulate the
problem to be addressed in this work. In Sec. III, we will
employ our effective action formalism [18] and evaluate the
impedance of an effective environment formed by a system
involving subgap Andreev levels. These results will then be
used in Sec. IV in order to establish the P (E)-function for
our system and to determine the relative intensity of different
current peaks in the subgap part of the I -V curve. The effect
of capacitance renormalization on both the positions and the
heights of such peaks will be studied in Sec. V, while in
Sec. VI, we will address thermal broadening of these peaks.
In Sec. VII, we will analyze the I -V curve at larger voltages
where quasiparticle tunneling dominates over that of Cooper
pairs. The paper will be concluded in Sec. VIII by a brief
summary of our main observations.

II. STATEMENT OF THE PROBLEM

Following the authors [19,20] we will consider the circuit
depicted in Fig. 1. This circuit can be divided into two parts.
The part to the right of the vertical dashed line represents
a superconducting loop pierced by an external magnetic
flux �. This loop includes a Josephson tunnel junction
with normal state resistance RN and Josephson coupling
energy EJ connected to a nontunnel superconducting contact
thereby forming an asymmetric SQUID. The latter contact is
characterized by an arbitrary set of transmission coefficients
Tn of its transport channels and—provided the supercon-
ducting phase difference χ is imposed—may conduct the

FIG. 1. The circuit under consideration. The measured system,
shown to the right of the dashed line, represents an asymmetric
SQUID comprising a Josephson tunnel junction with resistance RN

and Josephson coupling energy EJ and a nontunnel superconducting
contact, characterized by an arbitrary set of transmission coefficients
Tn of its conducting channels. The total capacitance C consists of
a sum of geometric capacitances of both superconducting junctions
C� and also includes the renormalization term from the Josephson
element, cf. Eq. (13) below. The superconducting loop is pierced
by the magnetic flux �. The measuring device (the spectrometer) is
shown to the left of the dashed line. It incorporates a voltage-biased
tunnel junction with Josephson coupling energy EJS connected to the
measured system via a low resistance R and a large capacitance C0.

supercurrent [21]

IS(χ ) = e� sin χ

2

∑
n

Tn√
1 − Tn sin2(χ/2)

× tanh
�

√
1 − Tn sin2(χ/2)

2T
, (2)

where −e stands for the electron charge. Below, we will
assume that temperature T is sufficiently low T � � and
we will stick to the limit

RN � Rc, (3)

where 1/Rc = (e2/π )
∑

n Tn is the normal state resistance of
a nontunnel contact. In this case the critical current of the
Josephson tunnel junction ∝1/RN strongly exceeds that of
the nontunnel superconducting contact ∝1/Rc. In this limit,
the phase jump across the Josephson junction is close to zero,
while this jump across the nontunnel contact is χ ≈ 2π�/�0.
Here, �0 = πc/e is the superconducting flux quantum, c is the
light velocity and the Planck’s constant is set equal to unity
� = 1.

The remaining part of the circuit in Fig. 1 (one to the
left of the vertical dashed line) serves as measuring device
called a spectrometer [20]. It consists of a voltage biased
superconducting tunnel junction with Josephson coupling
energy EJS connected to the asymmetric SQUID via a large
capacitance C0.

Assuming that the value EJS is sufficiently small, one
can evaluate the inelastic Cooper pair current I across the
spectrometer perturbatively in EJS. At subgap values of the
applied voltage V , one readily finds [22,23]

I = eE2
JS

2
[P (2eV ) − P (−2eV )], (4)

where

P (E) =
∫ ∞

−∞
dteiEt exp

{
4e2

π

∫ ∞

0

dω

ω
Re[Z(ω)]

×
[

coth
ω

2T
(cos(ωt) − 1) − i sin(ωt)

]}
(5)

is the function describing energy smearing of a tunneling
Cooper pair due to its interaction with the electromagnetic en-
vironment characterized by a frequency-dependent impedance
Z(ω) and temperature T . Provided the function P (E) has the
form of a delta function P (E) ∝ δ(E − E0), the current will
be peaked as I (V ) ∝ δ(2eV − E0). This situation is similar to
a narrow spectral line on a photoplate, thereby justifying the
name of the measuring device.

Coupling of the spectrometer to a single environmental
mode (provided, e.g., by an LC circuit) was considered in
Ref. [23]. In this case, the environmental impedance takes a
simple form

Z0(ω) = iω

C
(
(ω + i0)2 − ω2

0

) . (6)

Here, C is an effective capacitance of the LC circuit and ω0 is
the oscillation frequency. As usually, an infinitesimally small
imaginary part i0 added to ω in the denominator indicates the
retarded nature of the response. Employing Eq. (5) together
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with the Sokhotsky’s formula

Im
1

x + i0
= −πδ(x), (7)

in the limit of low temperatures, one finds

P (E) = 2πe−ρ

∞∑
k=0

ρk

k!
δ(E − kω0), ρ = 4EC

ω0
. (8)

Here and below, EC = e2/2C is the effective charging energy.
Combining Eqs. (8) and (4) we obtain the I -V curve for our
device which consists of narrow current peaks at voltages

2eV = kω0, k = 1,2, . . . (9)

The physics behind this result is transparent: a Cooper pair
with energy 2eV that tunnels across the junction releases this
energy by exciting the environmental modes. In the case of an
environment with a single harmonic quantum mode considered
above, this process can occur only at discrete set of vol-
tages (9).

Turning back to the system depicted in Fig. 1, we observe a
clear similarity to the above example of the LC circuit. Indeed,
the asymmetric SQUID configuration on the right of Fig. 1
plays the role of an effective inelastic environment for the
spectrometer. Bearing in mind the kinetic inductances of both
the Josephson element and the nontunnel superconducting
contact, to a certain approximation this environment can also
be viewed as an effective LC circuit. An important difference
with the latter, however, is the presence of extra quantum
states—discrete Andreev levels (1)—inside the superconduct-
ing contact. Hence tunneling of a Cooper pair can also
be accompanied by upward transitions between these states
and—along with the current peaks at voltages (9)—one can
now expect the appearance of extra peaks at

2eV = kω0 + 2εn(χ ), k = 0,1,2, . . . (10)

This simple consideration served as a basic principle for
the Andreev spectroscopy experiments [19] as well as for their
interpretation [20]. While this phenomenological theory [20]
correctly captures some important features of the phenomenon,
it does not yet allow for the complete understanding of the
system behavior, see, e.g., the corresponding discussion in
Ref. [20]. Therefore the task at hand is to microscopically
evaluate the function P (E) for the asymmetric SQUID of
Fig. 1, which governs the response of the spectrometer to
the applied voltage. In the next section, we will describe
the effective formalism which will be employed in order to
accomplish this goal.

III. EFFECTIVE ACTION AND EFFECTIVE IMPEDANCE

Let us denote the total phase difference across the nontunnel
superconducting contact as χ + 2ϕ(t), where χ is the constant
part determined by the magnetic flux � and 2ϕ(t) is the
fluctuating part of the superconducting phase. Assuming that
the Josephson coupling energy of a tunnel junction EJ is
sufficiently large one can restrict further analysis to small
phase fluctuations 2ϕ(t) � 1 in both tunnel and nontunnel
contacts forming our asymmetric SQUID. The total action S

describing our system consists of three terms

S = SCh + SJ + Ssc, (11)

describing, respectively, the charging energy, the Josephson
tunnel junction, and the nontunnel superconducting contact.
In what follows, we will stick to the Keldysh representation of
the action in which case it is necessary to consider the phase
fluctuation variable on two branches of the Keldysh contour,
i.e., to define ϕ1(t) and ϕ2(t). At subgap frequencies, the sum
of the first two terms in Eq. (11) reads

SCh + SJ = −
∫

dtϕ−(t)[ϕ̈+(t)/(2EC) + 4EJ ϕ+(t)]. (12)

Here, as usually, we introduced the so-called “classical” and
“quantum” phases ϕ+(t) = (ϕ1(t) +ϕ2(t))/2, ϕ−(t) =ϕ1(t) −
ϕ2(t) and defined an effective capacitance

C = C� + π

16�RN

, (13)

which accounts for the renormalization of the geometric
capacitance C� due to fluctuation effects in the Josephson
junction [7]. The above expansion of the total effective action
in powers of (small) phase fluctuations remains applicable for

EJ � EC. (14)

Expanding now the action Ssc around the phase value χ , we
obtain [18]

iSsc = − i

e

∫ t

0
dt ′IS(χ )ϕ−(t ′) + iSR − SI , (15)

where IS(χ ) is defined in Eq. (2) and

SR =
∫ t

0
dt ′

∫ t

0
dt ′′R(t ′ − t ′′)ϕ−(t ′)ϕ+(t ′′), (16)

SI =
∫ t

0
dt ′

∫ t

0
dt ′′I(t ′ − t ′′)ϕ−(t ′)ϕ−(t ′′). (17)

Both kernels R(t) and I(t) are real functions related to
each other via the fluctuation-dissipation theorem. Defining
the Fourier transform of these two kernels respectively as
Rω = R′

ω + iR′′
ω and Iω (having only the real part), we obtain

R′′
ω = 2Iω tanh

ω

2T
. (18)

The action (15) results in the following current through the
contact [18]

I = IS(χ ) − e

∫
dt ′R(t − t ′)ϕ+(t ′) + δI (t). (19)

Here, δI (t) is the stochastic component of the current. In the
nonfluctuating case ϕ̇+(t) = eV (t), and Eq. (19) defines the
current-voltage relation.

The explicit expression for the kernel R(t) contains three
contributions [18]: one of them originates from the subgap
Andreev bound states, another one describes quasiparticle
states above the gap and, finally, the third term accounts for
the interference between the first two. As here we are merely
interested in the subgap response of our system, below we will
specify only the part of the kernel R governed by the Andreev
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bound states. In the limit of low temperatures, it reads (cf.
Eqs. (A3), (A5) in Ref. [18])

Rω =
∑

n

γn

4ε2
n(χ ) − (ω + i0)2

, (20)

where, as before, the summation is taken over the conducting
channels of the superconducting contact and

γn = 4T 2
n (1 − Tn)

�4

εn(χ )
sin4 χ

2
tanh

εn(χ )

2T
. (21)

Now we are in a position to evaluate the current through
the spectrometer. In the second order in EJS, we obtain

I (V ) = eE2
JS

2

∫
dt Re(e2ieV t 〈e2iϕ1(t)−2iϕ1(0) + e2iϕ2(t)−2iϕ1(0)

− e2iϕ1(t)−2iϕ2(0)−e2iϕ2(t)−2iϕ2(0)〉), (22)

where the angular brackets imply averaging performed with
the total Keldysh action (11). Under the approximations
adopted here this average is Gaussian and it can be handled
in a straightforward manner. As a result, we again arrive at
Eqs. (4) and (5), where the inverse impedance of our effective

environment takes the form

1

Z(ω)
= C

(
ω2 − ω2

0

)
iω

+
∑

n

e2γn

iω
[
4ε2

n(χ ) − ω2
] . (23)

Here and below, ω0 = √
8EJ EC is the Josephson plasma

frequency.
Equation (23)—combined with Eqs. (1) and (21)—is our

central result, which will be employed below in order to
evaluate the P (E) function and to quantitatively describe the
results of Andreev level spectroscopy experiments.

IV. INTENSITY OF SPECTRAL LINES

It is obvious from Eqs. (4) and (5) that the positions of the
current peaks are determined by zeros of the inverse impedance
(23). Our theory allows to establish both the positions and
relative heights of these peaks.

To begin with, let us assume that only one transport channel
with transmission coefficient Tn in our superconducting con-
tact is important, while all others do not exist or are irrelevant
for some reason. In this case, from Eq. (23), we obtain

Re[Z(ω)] = π

4C

⎧⎨
⎩

[
δ(ω − √

x1) + δ(ω + √
x1)

]⎡⎣1 + 4ε2
n(χ ) − ω2

0√(
4ε2

n(χ ) − ω2
0

)2 + (4e2γn/C)

⎤
⎦

+ [
δ(ω − √

x2) + δ(ω + √
x2)

]⎡⎣1 + ω2
0 − 4ε2

n(χ )√(
4ε2

n(χ ) − ω2
0

)2 + (4e2γn/C)

⎤
⎦

⎫⎬
⎭, (24)

where

x1,2 =
4ε2

n(χ ) + ω2
0 ∓

√(
4ε2

n(χ ) − ω2
0

)2 + 4e2γn/C

2
. (25)

Outside of an immediate vicinity of the “level intersection” point ω0 = 2εn, one can make use of the condition

γn � ECmax
(
ω2

0,ε
2
n(χ )

)
(26)

(which is typically well satisfied for the parameters under consideration) and expand the square roots in Eqs. (24) and (25) in
powers of γn. As a result, one finds

Re[Z(ω)] = π

2C

[
δ(ω − ω0) + δ(ω + ω0) + 2ECγn(

ω2
0 − 4ε2

n

)2 (δ(ω − 2εn) + δ(ω + 2εn))

]
. (27)

Introducing the dimensionless expressions

κn = ECω0γn

εn

(
ω2

0 − 4ε2
n

)2 , (28)

we get up to the first order in κn

P (E) = 2πe−ρ(1+κn)
∞∑

k=0

ρk

k!
[δ(E − kω0) + κnρδ(E − kω0 − 2εn)]. (29)

Substituting this result into Eq. (4), we recover the I -V
curve of our device at subgap voltages, which fully determines
the heights of all current peaks.

For instance, Eq. (29) in combination with Eq. (4) yields the
following ratio for the intensities of the two principal (voltage-

integrated) current peaks occurring at the points 2eV = 2εn

and 2eV = ω0:∫
eV ≈εn

I (V )dV∫
eV ≈ω0/2 I (V )dV

= κn ∝ sin4 χ

2

ε2
n(χ )

[
ω2

0 − 4ε2
n(χ )

]2 . (30)
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FIG. 2. The ratio of the intensities of the current peaks at
2eV = 2εn and 2eV = ω0. The parameters are Tn = 0.9,ω0 =
1.48�,e2/C = 0.4�. The dashed line results from the exact ex-
pression (24), the solid line represents the approximate expres-
sion (30).

Here, the integration is performed over the voltage values in
the immediate vicinity of the points V = εn/e and V = ω0/2e,
respectively, in the numerator and in the denominator. Equation
(30) determines relative intensities of the spectral lines as a
function of the phase χ (or, equivalently, the applied magnetic
flux �) and constitutes a specific prediction of our theory that
can be directly verified in experiments. Equation (30) holds
irrespective of the fact that in any realistic experiment the δ-
function current peaks can be somewhat broadened by inelastic
effects and it applies not too close to the point ω0 = 2εn. This
ratio of intensities is graphically illustrated in Figs. 2 and 3.
The parameters of the figures are chosen in such a way that
ω0 = 2εn at χ ≈ π/2. Figure 3 is characterized by the smaller
value of γn. The approximate expression (30) provides a good
description away from χ ≈ π/2 for both figures. It becomes
better in Fig. 3, since it corresponds to smaller γn.

The above consideration can be generalized to the case of
several conducting channels in a straightforward manner. For
the sake of definiteness let us consider the contacts containing
two transport channels with transmission coefficients Tn and
Tm. In this case, Eq. (25) should be modified accordingly.
Outside an immediate vicinity of the point ω0 = 2εn, we obtain

FIG. 3. The same as in Fig. 2 for e2/C = 0.1�.

the change of the root corresponding to the plasma mode

x1 = ω2
0 + 2ECγn(

ω2
0 − 4ε2

n

) + 2ECγm(
ω2

0 − 4ε2
m

) + . . . , (31)

where . . . stands for higher order in γn,m terms. Similarly, for
the other root, we get

x2 = 4ε2
n + 2ECγn(

4ε2
n − ω2

0

) − 4E2
Cγ 2

n(
4ε2

n − ω2
0

)3

+ E2
Cγnγm(

4ε2
n − ω2

0

)2(
ε2
n − ε2

m

) + . . . . (32)

It also follows that the coefficients in front of the δ functions
in Eq. (27) take the same form in the leading order in γn,m.
Thus, instead of Eq. (29), we now have

P (E) = 2πe−ρ(1+κn+κm)
∞∑

k=0

ρk

k!
[δ(E − kω0)

+ κnρδ(E − kω0 − 2εn) + κmρδ(E − kω0 − 2εm)].

(33)

Close to the intersection point between the plasma mode and
one of the Andreev modes the picture will still be governed by
Eqs. (24) and (25).

Thus Eq. (33) demonstrates that the two transport channels
just yield “additive” contributions to the P (E) function
describing the asymmetric SQUID under consideration. Along
the same lines, one can also recover the P (E) function for
the case of more than two transport channels available in the
contact.

V. CAPACITANCE RENORMALIZATION

In the above analysis, we implicitly assumed that the
Josephson plasma frequency ω0 does not depend on χ . In
the interesting for us limit (3), this assumption is well justified
provided all transmission coefficients Tn remain substantially
lower than unity. The situation may change, however, if at least
one channel is (almost) open Tn ≈ 1 and, on top of that, the
phase χ controlled by the magnetic flux � is driven sufficiently
close to π . In that case, capacitance renormalization effects
due to phase fluctuations in the superconducting contact may
yield an important contribution which needs to be properly
accounted for.

In order to do so, we make use of the results [18] where
the capacitance renormalization in a superconducting contact
with arbitrary distribution of transmission coefficients Tn was
investigated in details. Accordingly, Eq. (13) should in general
be replaced by

C(χ ) = C� + π

16�RN

+ δC(χ ), (34)

where [18]

δC(χ ) = e2

4�

∑
n

{
2 − (2 − Tn) sin2(χ/2)

Tn sin4(χ/2)

− (1 − Tn sin2(χ/2))−5/2

[
2Tn(Tn − 2) sin2(χ/2)

+ 5 + Tn + 2 − 2(1 + 2Tn) sin2(χ/2)

Tn sin4(χ/2)

]}
. (35)
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For any distribution of transmission coefficients and small
phase values χ � 1, Eq. (35) yields

δC � π

16�Rc

, (36)

while for small Tn � 1 and any χ , one finds

δC(χ ) = 3π

32�Rc

(
1 − cos χ

3

)
. (37)

In both cases under the condition (3), an extra capacitance
term δC(χ ) in Eq. (34) can be safely neglected and the latter
reduces back to Eq. (13). On the other hand, in the presence of
highly transparent channels with Tn ≈ 1, Eq. (35) results in a
sharp peak of δC at χ → π :

δC � e2

4�

∑
n

1

(1 − Tn)3/2
, (38)

which, depending on the parameters, may even dominate the
effective capacitance C at such values of χ . As a result, the
plasma frequency ω0 acquires the dependence on χ , which may
become quite significant for phase values approaching χ ≈ π .
In this case, in the results derived in the previous section, one
should replace ω0 → ω0(χ ) = √

8EJ EC(χ ), where EC(χ ) =
e2/2[C + δC(χ )].

The dependence δC(χ ) for various distributions of trans-
mission coefficients was studied in Ref. [18] (cf., e.g.,
Fig. 3 in that paper). One of the important special cases
is that of diffusive barriers. In this case, the distribu-
tion of transmission coefficients Tn approaches the uni-
versal bimodal form with some channels being almost
fully open and, hence, the capacitance renormalization ef-
fect should play a prominent role at χ ≈ π . At such
values of χ , one finds [18] δC(χ ) � [�Rc(π − χ )2]−1.

It should be emphasized that this capacitance renormaliza-
tion influences not only the Andreev peaks at eV = 2εn, but
also the peaks occurring at voltages (9). Namely, as the phase χ

approaches π , the positions of these peaks are shifted towards
smaller voltages [since ω0 ∝ 1/

√
C(χ )], while the magnitudes

of these peaks decrease [since ρ ∝ 1/
√

C(χ )]. Likewise, the
magnitudes of principal Andreev peaks ∝ρκn may decrease
significantly for χ → π .

VI. SPECTRAL LINEWIDTHS

Within the framework of our model, the width of current
peaks should tend to zero at T = 0. However, at any nonzero
T , these peaks become effectively broadened due to inelastic
effects. The corresponding linewidth can be estimated as δ ∼
1/(R̃C), where R̃(T ) is the effective resistance of our system,
which tends to infinity at T → 0 but remains finite at nonzero
temperatures. The value R̃(T ) is controlled by the imaginary
part of the kernelR. It is necessary to include two contributions
to this kernel—one from the nontunnel superconducting
contact (already discussed above) and another one from the
Josephson tunnel junction. Accordingly, for the imaginary part
of the Fourier component for the total kernel R̃, we have

R̃′′
ω = R′′

ω + R′′
Jω, (39)

where (for 0 < ω < 2�)

R′′
Jω = 1

e2RN

∫ ∞

�

dε[ε(ε + ω) + �2]√
ε2 − �2

√
(ε + ω)2 − �2

×
(

tanh
ε + ω

2T
− tanh

ε

2T

)
(40)

and R′′
ω is obtained from Eq. (18) combined with Eq. (A1)

from Ref. [18]. As a result, for the subgap region, we get

R′′
ω =

∑
n

{
T 3/2

n

[
tanh

ω + εn(χ )

2T
− tanh

εn(χ )

2T

]
θ (ω − � + εn(χ ))

∣∣∣∣ sin
χ

2

∣∣∣∣ �(ωεn(χ ) + �2(1 + cos χ ))

2εn(χ )((ω + εn(χ ))2 − ε2
n(χ ))

√
(ω + εn(χ ))2 − �2

+ Tn

π

∫ ∞

�

dε

√
ε2 − �2

√
(ε + ω)2 − �2(

ε2 − ε2
n

)
((ε + ω)2 − ε2

n)

(
ε(ε + ω) + �2 cos χ + Tn�

2 sin2 χ

2

)(
tanh

ε + ω

2T
− tanh

ε

2T

)}
. (41)

Note that in the lowest order in Tn this expression naturally
reduces to that in Eq. (40) (with RN → Rc). On the other
hand, for higher values of transmission coefficients the
difference between the two contributions (40) and (41) become
essential; while the former yields the standard thermal factor
∼ exp(−�/T ), the latter turns out to be proportional to∑

n exp(−εn/T ) (as long as ω + εn > �).
It follows from the above consideration that the width of

the plasma mode peak can be estimated as

δ ∼ 2ECR̃′′
ω0

ω0
, (42)

whereas the width of the current peak corresponding to the
nth Andreev level (away from its intersection with the plasma
mode) is

δ ∼ 2κnECR̃′′
2εn

ω0
(43)

with κn defined in Eq. (28). In the vicinity of the intersection
point ω0 = 2εn it is necessary to replace κn by a more
complicated expression resulting from Eq. (24).

These estimates demonstrate the crossover from the stan-
dard thermal broadening factor ∼ exp(−�/T ) to a bigger
one ∼ exp(−εn(χ )/T ) which accounts for the presence of
subgap Andreev levels. Note that our present consideration
is sufficient only in the absence of extra sources of dissipation
and under the assumption of thermalization. Both additional
dissipation and nonequilibrium effects can further broaden
the current peaks beyond the above estimates. Nonequi-
librium effects can be captured, e.g., within the effective
action formalism [24] which—being equivalent to that of
Ref. [18] in equilibrium—also allows for nonequilibrium
population of Andreev bound states. The corresponding
analysis, however, is beyond the frames of the present
paper.
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VII. QUASIPARTICLE CURRENT

To complete our analysis, let us briefly discuss the system
behavior at higher voltages eV > 2�. In this case, the I -V
curve of our device is determined by quasiparticle tunneling.
In the presence of an inelastic environment, one has [25]

Iqp(V ) =
∫ ∞

−∞

dω

2π

1 − e−eV/T

1 − e−ω/T
P (eV − ω)I (0)

qp

(
ω

e

)
. (44)

Here, Iqp(V ) and I (0)
qp represent the nonoscillating part of the

voltage-dependent quasiparticle current, respectively, in the
presence and in the absence of the environment. At T → 0,
the latter is defined by the well-known expression

I (0)
qp (V ) = �

eRNS

θ (v − 1)

[
2vE(1 − v−2) − 1

v
K(1 − v−2)

]
,

(45)

where RNS is the normal resistance of the spectrometer
junction, v = eV/2� and E(k),K(k) are complete elliptic
integrals defined as

E(k) =
∫ π/2

0
dφ

√
1 − k sin2 φ,

K(k) =
∫ π/2

0

dφ√
1 − k sin2 φ

. (46)

Combining Eqs. (44)–(46) with the expression for the
P (E) function [which is still defined by Eq. (29) with ρ →
ρ/4 = EC/ω0] we arrive at the I -V curve, which contains
two sets of current jumps (steps) at eV = 2� + kω0 and
eV = 2� + kω0 + 2εn. This behavior for an effective two
mode environment is illustrated in Fig. 4, in which P (E) is
taken in the form

P (E) = 2πe−ρ1−ρ2

∞∑
k=0

∞∑
l=0

ρk
1

k!

ρl
2

l!
δ(E − kω1 − lω2). (47)

VIII. CONCLUSIONS

In this work, we developed a microscopic theory enabling
one to construct a quantitative description of microwave
spectroscopy experiments aimed at detecting subgap Andreev
states in nontunnel superconducting contacts. Employing
the effective action analysis [18], we derived an effective
impedance of an asymmetric SQUID structure of Fig. 1,
which specifically accounts for the presence of Andreev levels
in the system.

FIG. 4. (Color online) Zero-temperature quasiparticle current
(44) with the environment characterized by two quantum modes
with frequencies ω1 = 0.4� and ω2 = 0.7�. We set ρ1 = 2 and
ρ2 = 1. The current steps are observed at eV = 2� + kω1 + lω2.
If ρ2 were much smaller than unity, P (E) function (29) would be
recovered and the steps would be observed at eV = 2� + kω1 and
eV = 2� + kω1 + ω2.

At subgap voltages, the I -V curve for the spectrometer is
determined by inelastic tunneling of Cooper pairs and has the
form of narrow current peaks at voltage values (9) and (10).
Our theory allows to explicitly evaluate the intensity of these
current peaks and establish its dependence on the external
magnetic flux � piercing the system. We also estimated
thermal broadening of the current peaks to be determined by
the factor ∼ exp(−εn(χ )/T ) rather than by the standard one
∼ exp(−�/T ).

In the vicinity of the point � ≈ �0/2 and provided at
least one of transmission coefficients Tn is sufficiently close
to unity, the positions and heights of the current peaks may
be significantly influenced by capacitance renormalization in
a superconducting contact. For instance, the positions of the
current peaks can decrease at the flux values � ≈ �0/2. We
speculate that this effect could be responsible for experimental
observations [19] of such a decrease in one of the samples
(sample 3). This sample had about 20 conducting channels
some of which could well turn out to be highly transparent, thus
providing necessary conditions for substantial χ -dependent
capacitance renormalization.

Finally, we also analyzed the system behavior at overgap
voltages eV > 2� in which case the I -V curve is mainly
determined by quasiparticle tunneling. The presence of both
the plasma mode and Andreev levels results in the sets of
current steps on the I -V curve of our device, as illustrated,
e.g., in Fig. 4. All the above theoretical predictions can be
directly verified in future experiments.
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