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Coordinated wave function for the ground state of liquid 4He
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We present a variational ansatz for the ground state of a strongly correlated Bose system. This ansatz goes
beyond the Jastrow-Feenberg functional form and explicitly enforces coordination shells in the structure of the
wave function. We apply this ansatz to liquid helium-4 with a simple three-variable parametrization of the pair
functions. The optimized wave function is found to give an excellent description of the mid-range correlations
in the fluid. We also demonstrate the possibility to use this ansatz to study inhomogeneous systems. The phase
separation and free surface emerge naturally in this wave function, even though it is constructed of short-range
two-body functions and does not contain one-body terms. Because no explicit description of the surface is
necessary, this provides a powerful description tool for cluster states.
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I. INTRODUCTION

Interest in the microscopic nature of the ground state of
liquid 4He has drawn attention for over half a century and
has shaped the development of many aspects of the quantum
many-body theory [1]. The question continues to be of interest,
especially as new correlated bosonic systems are becoming
the subject of experiment, including the cold atomic gases
[2–5]. An explicit and numerically efficient expression for the
many-body wave function also has a practical use in computer
calculations. A good approximation to the ground state reduces
the numerical costs and improves the statistical accuracy of
the true ground state results obtained with the diffusion Monte
Carlo [6,7] as well as the path-integral ground state Monte
Carlo [8–11] methods.

The variational ansatz for liquid 4He has followed the path
of improving the Jastrow-Feenberg form of the wave function
[12,13],

ψ(r1, . . . ,rN )

=
∏
i<j

e
1
2 u2(r i−rj )

∏
i<j<k

e
1
2 u3(r i−rj ,rj −rk ,rk−r i ) . . . , (1)

where N is the number of atoms, and the k-body correlation
factors uk must have proper symmetry under the exchange of
particles. Because each successive term in Eq. (1) increases
the the numerical complexity by an additional factor of N , one
is in practice limited to two- and three-body terms. Limiting
Eq. (1) to two-body factors results in the Jastrow function
[14,15]. In an early work, McMillan [16] and Schiff and
Verlet [17] used a Jastrow function with the two-body function
u2 = −(b/r)5. Parameter b was determined variationally. The
McMillan function captures the most significant features of the
system caused by the core of the interparticle potential, and
it continues to be used successfully as a guiding function for
projector Monte Carlo [11,18,19]. Successive improvements
in the ground state of helium refined the two- and, later,
three-body factors in the form [Eq. (1)]. Published progress on
this topic is too numerous to cover in any detail here. Relevant
to this work, we note the addition of the mid-range correlation
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[20,21] which among other things allowed to replicate the
first correlation peak of the pair distribution function g(r), the
addition of long-range terms in the two-body function u2 that
allows to account for the long-wavelength zero-point phonons
[22,23], the computation of u2 based on the maximum overlap
with the true ground state [24,25], and finally, a detailed
optimization of the pair factors expanded in terms of the pair
scattering eigenstates [26,27] which along with the inclusion
of the three-body factors allowed to account for nearly all the
correlation energy. The success of the above works came at
the expense of the increased complexity and the number of
variational parameters that are needed to accurately describe
the functions uk . The general functional form of Eq. (1),
though, remained unchanged [28].

The development of the shadow wave function (SWF)
methods [29,30] has to a large degree overtaken the
development of the wave function for liquid helium. The SWF
allows to account for the correlations missed by the Jastrow
function and results in an excellent description in terms of both
energy and structure [31,32] of 4He. Relevant to this work,
we notice that SWF can support self-bound states of liquid
4He [33]. Shadow wave function accounts for correlations via
integrals on auxiliary (shadow) variables. The inclusion of the
shadow variables may be seen as going beyond the Jastrow-
Feenberg form of Eq. (1). However, the integrals on the shadow
variables must be taken numerically by a Monte Carlo scheme,
and in this sense the shadow wave function is not explicit,
partially limiting its adoption in quantum Monte Carlo.

We will present a variational ansatz for the ground state of
liquid 4He which is built upon the Jastrow wave function but
goes beyond the general functional form of Eq. (1). This ansatz
allows us to explicitly control the mid-range structure of the
liquid and results in a stark improvement of the atomic pair
distribution already with a three-parameter wave function. The
wave function is presented in Sec. II, and the computational
results are shown in Sec. III. Section IV presents results for
inhomogeneous systems, followed by a discussion.

II. THE COORDINATED WAVE FUNCTION

A. Variational ansatz

Our proposed wave function consists of a product of the
Jastrow function [limiting Eq. (1) to two-body terms] and of
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the additional term which we refer to as the “coordination
term.” The wave function has the following form,

ψJC(r1, . . . ,rN ) =
∏
i<j

e
1
2 u2(|r i−rj |)

∏
i

∑
j �=i

y2(|r i − rj |). (2)

The factors y2(r) must vanish at large distances. At short
distances, y2 is expected to rise to a constant.

The effect of the coordination term in Eq. (2) can be seen by
inspection. Suppose the function y2(r) vanishes for distances
r beyond the mean interparticle distance. In this case, y2(rij )
will have significant value only for the pairs of immediate
neighbors 〈i,j 〉. On the other hand, the number of neighbors
for each atom is limited by the presence of the repulsive core
and by the Jastrow part of the wave function. Thus the overall
number of nonvanishing terms y2(rij ) in the system is, roughly
speaking, fixed. Under such a restraint, the product of sums in
the coordination part of Eq. (2) is maximized when all sums
are equal to each other. That is, the nonvanishing values of
y2(rij ) are distributed equally between the products. The wave
function ψJC , while constructed only of pairwise functions,
has a “global” property in that it explicitly demands that each
atom in the system has an equal expected number of immediate
neighbors. As we will see, this allows to improve the mid-range
properties of the system independently of the Jastrow factor.

B. Inspiration and origin

The inspiration for the coordinated wave function ψJC

comes from the symmetrized Bose-solid wave function pro-
posed by Cazorla et al. [34]. This symmetrical solid wave
function does an excellent job describing the quantum Bose
solid, both variationally [35] and as a guiding function for the
importance sampling in quantum Monte Carlo simulations of
Bose solids [36–39]. In fact, one will recognize that Eq. (2)
is the wave function of Cazorla et al., except that the site
locations of a crystalline structure are here replaced by the
positions of atoms themselves.

The solid wave function of Ref. [34] forces atoms to be
located in the vicinity of one of the externally specified lattice
sites while at the same time imposing the global restraint by
favoring single site occupancy. In the liquid, the translational
symmetry is not broken, and there are no preferred positions;
instead, the atoms in Eq. (2) are “localized” around their
neighbors. As the overlap of atomic cores is prohibited by
the Jastrow term, this creates the coordination shells.

An important distinction between ψJC of Eq. (2) and the
symmetrized Nosanow-Jastrow wave function of Ref. [34] is
in the nature of the sum factors. As discussed in Ref. [35],
factors that bind atoms to the lattice sites in the solid wave
function of Ref. [34] can be seen as a generalized symmetrical
form of the one-body factor; the coordination part of Eq. (2),
however, is by the same criterion a full N -body term.

C. Separability

If the particles of the system are divided into subgroups
separated by a large distance, the wave function ought to
reduce to the product of the wave functions for the individual
subgroups [40]. While such a cluster property is obviously
satisfied by the Jastrow function, it is less transparent for the

coordination term. Suppose all particles are divided into two
groups, or clusters, A and B. Let the corresponding number of
particles be NA and NB , NA + NB = N . The distance between
these clusters is sufficiently large such that the function y2

vanishes for any pair of particles from across the two groups,

∀i ∈ A,j ∈ B : y2(|r i − rj |) = 0.

In this case, the coordination sum for any particle in a subgroup
reduces to the sum on that subgroup only, and the coordination
term separates,

ψC(r1, . . . ,rN ) =
∏

i

∑
j �=i

y2(|r i − rj |)

=
⎛
⎝∏

i∈A

∑
j �=i

y2(|r i − rj |)
⎞
⎠

×
⎛
⎝∏

i∈B

∑
j �=i

y2(|r i − rj |)
⎞
⎠

=

⎛
⎜⎜⎝∏

i∈A

∑
j �=i

j∈A

y2(|r i − rj |)

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝∏

i∈B

∑
j �=i

j∈B

y2(|r i − rj |)

⎞
⎟⎟⎠

= ψC

(
r i ′1 , . . . ,r i ′NA︸ ︷︷ ︸

i ′∈A

) × ψC

(
r i ′′1 , . . . ,r i ′′NB︸ ︷︷ ︸

i ′′∈B

)

= ψC(A)ψC(B).

Thus a wave function for the two clusters reduces to the product
of the wave functions for the individual clusters.

D. Computational complexity

The evaluation of the coordinated wave function of Eq. (2)
requires the computation of O(N2) interparticle distances, and
the overall computational cost also scales as the second order
in the number of particles. The scaling holds for the application
of the Hamiltonian and other relevant operators. To see this,
we write Eq. (2) as

ψJC(r1, . . . ,rN ) =
∏
i<j

e
1
2 u2(|r i−rj |)

∏
i

Si(r1, . . . ,rN ),

with

Si(r1, . . . ,rN ) =
∑
j �=i

y2(|r i − rj |).

In order to compute all N sums Si , one needs to compute
N (N − 1)/2 values of y2(|r i − rj |) so long as the sums are
stored in memory. This is not a taxing requirement, given
one must in any case store 3N atomic coordinates. Once the
sums are computed, the computation of the product

∏
i Si only

requires N operations.
Similar considerations apply to the computation of the

Hamiltonian and other relevant expressions. For quantum
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Monte Carlo, one generally needs to compute the contribution

to the local kinetic energy
∑

i

∇2
i ψ

ψ
and the “quantum velocity”

vector 2∇iψ

ψ
. The relation

∇2ψ

ψ
= ∇2 log ψ + (∇ log ψ)2 (3)

allows us to separate the contributions from the Jastrow and the
coordination terms. The later is labeled below as ψc. We also
use a label (·)s,t for the t th spatial dimension corresponding to
particle s; that is, 1 � t � D, and s spans from 1 to N . It is
convenient to define vectors v and u,

vs,t = 1

Ss

∑
i �=s

y ′
2(rsi)

xs,t − xi,t

rsi

, (4)

us,t =
∑
i �=s

y ′
2(rsi)

1

Si

xs,t − xi,t

rsi

. (5)

The quantum velocity is obtained by

∇s,t log ψc = (u + v)s,t . (6)

The second derivative, summed on the spatial dimension, can
be written as

D∑
t=1

∇2
s,t log ψc

=
∑
i �=s

{[
y ′′

2 (rsi) + D − 1

rsi

y ′
2(rsi)

]

×
(

1

Ss

+ 1

Si

)
−

[
y ′

2(rsi)

Si

]2
}

−
∑

t

v2
s,t . (7)

Notice the cancellation between v2 terms from Eqs. (6) and
(7) suggested by Eq. (3).

Written in the above form, it is clear that the relevant
calculations involve the order of N2 operations with a storage
requirement of only the first order in N . The calculation may
proceed as follows. First, one loops through N (N − 1)/2
pairs of particles and computes the sums S. Then the loop
is repeated, this time summing the contributions to the vectors
v and u given by Eqs. (4) and (5) and the contribution to the
second derivative given by the first sum on the r.h.s. of Eq. (7).
To complete the calculation of the kinetic energy, one needs to
perform N additional operations to compute the second sum
in the r.h.s. of Eq. (7) and to sum the square of the gradient
vector according to Eq. (3) [41]. Thus the computations with
the coordinated wave function of Eq. (2) scale only as the
second order in the number of particles, although the usual
loop over the particle pairs needs to be repeated twice.

E. The form of the pair and coordination factors

To test the coordinated wave function of Eq. (2), we have
decided to limit the Jastrow term to the simple McMillan form
[16] with u2 = −(b/r)5. As this term aims to capture the
short-range correlations in the fluid, the mid-range correlations
are left to be treated with the coordination term. Having only
one variational parameter in the Jastrow product simplifies the
parametrization of the wave function. However, the simple

form of the McMillan factor misses over 1 K of the correlation
energy, most of it due to its imperfection at short distances. One
should not hope to recover this energy with any improvement
to the mid-range correlations.

For calculations, we used the following form of the pairwise
functions,

u2(r) = −1

2

(
b

r

)5

− 1

2

(
b

2Lc − r

)5

+
(

b

Lc

)5

(8)

y2(r) = 1 − exp

[
−

(
δ

R(r)

)m]
(9)

R(r) = r

1 − (r/Lc)4
, (10)

where b, m, and δ are the three variational parameters, and
Lc is the cutoff distance of the calculation given by half the
dimension of the simulation box.

The coordination function y2 was chosen to provide a
reasonably sharp cutoff beyond a certain distance δ. At the
same time, we found it quite important to have a “flat” y2 at
small distances, as otherwise the derivative of y2 interferes
with the energy terms produced by the derivatives of the pair
factors u2. Because of this effect, using y2 of a Gaussian or
exponential form results in wide flat energy plateaus in the
space of variational parameters. Instead, the form given by
Eq. (9) assures that y2 reaches a constant at small distances.
The relevant small distances are given by the parameter b, and
the condition can be formulated as

exp[−(δ/b)m] 	 1.

Satisfying the above condition effectively decouples the
optimization of u2 and y2, allowing for a clear interpretation of
both terms and for a straight-forward variational optimization.
Indeed, we found that variationally optimized parameters b,δ,
and m fulfill the above condition to about 10−3.

As is beneficial for a variational calculation, both Jastrow
and the coordination terms are symmetrized to result in zero
gradient of the wave function at the computational cutoff Lc.
The pair term in Eq. (8) is symmetrized in the traditional
manner, while the coordination factor y2 employs a scaling
function R(r) to assure that y2 vanishes smoothly at the cutoff
distance r = Lc. The use of the scaling function allows for
a robust implementation of the cutoff at Lc, yet introduces
minimal disturbance to y2 at the relevant distances r ≈ δ, as in
our case (δ/Lc)4 < 10−2. We found that using scaling function
provides a convenient way for symmetrizing the wave function.

III. RESULTS

A. Variational optimization

We carried the variational optimization with three-
dimensional 512-atom 4He system at the equilibrium density
[43] of liquid 4He, ρ0 = 0.365σ−3 = 21.8 nm−3. Here and
below, we use the reduced unit of length equal to σ = 2.556 Å.
All observables where computed on Markov chains generated
by the Metropolis method [44] with single-particle updates.
We used a GPU cluster to speed up the calculations using
a modification of the QL quantum Monte Carlo package
[45]. The coordinated wave function of Eq. (2) was taken
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FIG. 1. (Color online) Variational energy (per particle) for the
coordinated wave function given by Eqs. (2) and (8)–(10) (bullets)
and the Jastrow function with the McMillan pair factor given by
Eq. (8) (triangles). Both energies are shown as a function of parameter
b which enters the two-body correlation factors. For each value of b,
the coordinated function was optimized with respect to its parameters
m and δ. For the unit of distance, we use σ = 2.556 Å. The energies
were computed for 512-particle systems interacting with Aziz-II [42]
pairwise potential. Statistical errors are smaller than the symbol size.

in three-parameters form given by Eqs. (8–10). The system
Hamiltonian

Ĥ = − �
2

2m

∑
i

∇2
i +

∑
i<j

V (rij )

was used with the pair potential by Aziz [42].
The three variational parameters b, m, and δ were optimized

on a grid. Figure 1 shows variational energy as a function of
parameter b, given optimal m and δ for each value of b. The
results are compared to the (noncoordinated) Jastrow function
with the McMillan factor given by Eq. (8). Optimal value of
the parameter b for for the coordinated function was found
to be b = 1.19σ , slightly below the optimal value of the
noncoordinated function b = 1.20σ . As expected, we found
little variation in optimal value of δ with respect to changing
the value of parameter b. In the range shown in Fig. 1, optimal
δ varies less than two percent. We also notice relatively weak
correlation between parameters δ and m near the variational
minimum.

The optimized values of variational parameters are shown
in Table I. The table also shows the value of optimized energy
extrapolated to the thermodynamic limit. For comparison,
Table I also lists the energy for the Jastrow function with
the McMillan factor. This energy differs slightly from the
one obtained by McMillan [16], which can be prescribed to
the difference in the interaction potential. As expected, one
will notice that the gain in the correlation energy is mild and
amounts to just under 200 mK. This is in part due to the fact
that the missing mid-range correlations are not responsible for
a large amount of energy, but also because the presence of the
coordination term ever so slightly offsets the correlation hole
which in turn carries an energy penalty.

TABLE I. Optimized parameters of the coordinated and noncoor-
dinated Jastrow wave functions with the McMillan factor. Distances
are specified in units of σ = 2.556 Å. Lowest line shows the
thermodynamic limit extrapolation of the per-particle energy, with
up to 1920 particles used for the calculation. The interaction was
modeled with the Aziz pair potential from Ref. [42].

Coordinated Noncoord.

b/σ 1.19 1.20
δ/σ 1.60
m 6.55
E/N (K) −6.05 (1) −5.88 (1)

B. Structural properties of the coordinated function

As both the potential energy and the wave function are
built from the pairwise functions, the properties of the system
are captured by the pair distribution function. The computed
pair distribution function g(r) is shown in Fig. 2, along
with the results for the McMillan function and an unbiased
(pure) estimate for the g(r) obtained with the diffusion Monte
Carlo (DMC). The unbiased DMC estimator for g(r) was
obtained with the ancestry tracking algorithm of Casulleras
and Boronat [46]. Such an unbiased estimator is computed
from the projected ground state and can be expected to reflect
accurately on the experimental values [46–48]. In properly
converged calculations, pure DMC results do not depend on
the DMC guiding function. However, it is worth pointing out
that the guiding function for the DMC calculation was in
fact the Jastrow function with the McMillan factor, and it did
not contain the coordination factor. In all three cases shown
in Fig. 2, the calculations were performed with 512-particle

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6

0 2 4 6 8 10 12 14

g
(r

)

r/σ

r (Å)

pure-dmc ψ0

ψJ−M

ψJC−M

0.8

1

1.2

1.4

1 2

4 6

g
(r

)

r/σ

r (Å)

FIG. 2. (Color online) Pair distribution function g(r) as a func-
tion of the interparticle distance, obtained for a 512-atom system. For
the unit of distance, we use σ = 2.556 Å. Unconnected black errors
bars: unbiased (pure) estimator obtained with DMC, as described
in the text. Connected green triangles: Jastrow function with the
McMillan pair factor as specified in Eq. (8). Connected red bullets:
energy-optimized three-parameter coordinated wave function ψJC

with the McMillan factor, given by Eqs. (2) and (8)–(10). Errors
bars for both VMC calculations are smaller than their corresponding
symbol sizes. The inset shows the details of the first correlation peak.
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TABLE II. The degree to which the computed pair distribution
functions g(r) capture the unbiased estimate g∗(r). The values
are computed as |g(rm) − g∗(rm)|/|1 − g∗(rm)|, where rm are the
locations of extrema of g∗(r). The simulation conditions are described
in Fig. 2.

1st 1st 2nd 2nd 3rd 3rd
max min max min max min

Coordinated 1.0 0.9 0.7 0.6 0.4 0.4
Noncoord. 0.8 0.6 0.5 0.3 0.2 0.2

systems at the equilibrium density of 4He, ρ = 0.365σ =
21.8 nm−3. The variational parameters were chosen by energy
optimization, as specified above, and are given in Table I.

It is notable that the coordinated wave function reproduces
accurately the first correlation peak in the pair distribution
function. The inset in Fig. 2 shows the detail of the first
maximum. The first correlation minimum is reproduced
slightly less accurately. The following oscillations in the
pair distribution function are also reproduced better by the
coordinated wave function, albeit with decreasing accuracy.
The position of the maxima and minima in the pair distribution
was also considerably improved by the coordination term. The
details are given in Table II. However, the absolute value
of these successive oscillations is minute, and they are at
distances where the pair potential is vanishing rapidly. Thus
their influence to the overall energy is nonsignificant.

IV. INHOMOGENEOUS SYSTEMS

Jastrow wave functions based on short-range pair factors
cannot support the formation of a self-bound state. That
is, a simulation in a sufficiently large box will result in a
low-density uniform gas with near-zero potential and kinetic
energy. Helium liquid, however, is self-bound. To describe
inhomogeneous systems, one generally adds one-body factors
which bind the liquid phase to a desired shape [48–51]. This
has obvious disadvantages if the surface shape is complex and
may pose additional challenges when one needs to maintain
the translational symmetry in the system [52]. Parametrization
of the surface adds to the required number of the variational
variables. Self-binding may also be enforced through the use of
long-range terms in the two-body factors, such as introduced
in Ref. [53], with an additional term in the two-body function
u2(r) proportional to the distance between the particles r .
Such a wave function serves well as a trial wave function
for a projector Monte Carlo calculation, yet variationally, the
kinetic per-particle energy of a system with u2 ∼ −αr for
large r is divergent with the increasing number of particles
N as ∼(�2/m)ρ1/3

0 N2/3α, where ρ0 is the bulk density. This
presents a number of challenges, as at the very least α must be
N dependent.

The coordinated wave function has an unexpected feature
in that by design it supports a self-bound state of the atoms.
Upon inspection, one will notice that the coordination sum
factors in Eq. (2) in fact vanish in the limit of low-density,
uniformly distributed gas. Thus the coordination term requires

FIG. 3. (Color online) Progression of Markov chain during Metropolis sampling of a system with N = 1000 atoms with the coordinated
wave function. The size of the cubic box is equal to L = 100 σ = 256 Å, which would correspond to a very dilute homogeneous system.
Top row, left to right, shows the initial state of the system (with atoms distributed randomly and uniformly) and the system correspondingly
after 103, 104, and 105 macroupdates. After 105 updates, the Markov chain reaches droplet configuration which is then sampled throughout
the (periodic) simulation cell. The bottom row, left to right, shows configurations after 2 × 105, 3 × 105, 106, and 2 × 106 macroupdates.
Wave-function parameters are b = 1.19σ , δ = 4.60σ , m = 6.55. Metropolis sampling was carried via single-particle updates, with a fixed
Gaussian distribution of displacements which resulted in the acceptance ratio of above 20% in the homogeneous phase to below 35% in the
condensed phase. Each “macroupdate” equals N single-particle Metropolis attempts.
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that atoms form clusters, so far as function y2(r) falls off
sufficiently rapidly with distance. The size and number of
the clusters is determined by the variational parameters and
particle density. For instance, a gas of dimers already has a
nonzero coordination term. Increasing the range of y2 (which
in our case translates to increasing δ or decreasing m) increases
the size of the clusters. The parameters also provide control
over the structure of the surface.

We have carried a variational calculation with the coor-
dinated wave function with 1000 atoms in a simulation box
that resulted in particle density 10−3 σ−3 ≈ 0.06 nm−3. The
Jastrow wave function results in a ground state of dilute
gas with close to zero energy. However, the coordinated
wave function resulted in a bound state for a wide range of
parameters m and δ. Only small δ resulted in the unbound
states albeit with positive energy. We also find that the extent
of function y2 controls the average cluster size and thus the
energy. Variational optimization of m and δ results in a state
with a single liquid droplet.

To demonstrate the robustness of the inhomogeneous sim-
ulation, we carried Monte Carlo sampling of the coordinated
wave function with parameters m = 6.55 and δ = 4.50σ (i.e.,
with y2 having larger extent than for the bulk). The initial
coordinates of the 1000 particles were randomly distributed
in the simulation box. The sampling sequence is presented
in Fig. 3. Soon after the start, the Markov chain arrives at
configurations with multiple small clusters. As the clusters
merge, a single droplet is eventually formed. The center of
mass of the system is not fixed, and the droplet continues to
sample the entire simulation cell.

The inner structure of the droplets and clusters depend
strongly on the two-body function u2. However, Jastrow func-
tion with the McMillan factor underestimates the equilibrium
density of the bulk 4He. Without the fixed density constraint,
it is to be expected that the inhomogeneous simulation should
result in lower densities of the condensed phase. This was
indeed observed. For example, the droplet shown in Fig. 3 has
inner density that is less than 70% of the bulk equilibrium
helium density. Thus the droplet calculation presented here
should be seen as a demonstration of principle. The details of
their structure, which require a more detailed Jastrow term,
will be the subject of further investigation.

V. CONCLUSION

We have considered a wave-function ansatz for a strongly
correlated Bose system that goes beyond the Jastrow-Feenberg
expansion. Originating from a symmetrical solid wave func-
tion proposed by Cazorla et al. [34], it is a Bose-liquid wave
function which explicitly promotes the creation of the coordi-
nation shells around atoms. The function is translationally and
exchange symmetric. It is fully explicit and is computationally

hard as O(N2), making it well suitable for treatment with
quantum Monte Carlo.

To demonstrate the coordination effect, we have studied the
wave function with the one-parameter McMillan factor for the
Jastrow term and a two-parameter coordination function. The
resulting three-parameter wave function was straightforward
to optimize variationally. The short-range nature of the
McMillan factor allowed us to directly observe the effects
of the coordination terms on the mid-range structure of
the liquid. Indeed, the optimized wave function results in
superior description of mid-range correlations in the system.
Comparing with an unbiased estimate for the pair distribution
function obtained with the diffusion Monte Carlo, we find
that the first correlation peak is reproduced almost exactly.
Moreover, the structure of the pair distribution function is
improved consistently throughout larger distances as well.

As was first demonstrated in Ref. [20], the first correlation
peak can be reproduced rather exactly with the Jastrow func-
tion. However, this required eight variational parameters, and
already the description of the first minimum was significantly
lacking. Other approaches to accurately describe the mid-range
structure with the Jastrow factors alone have also been reported
[54]. In our case, the addition of the coordination term allows
us to separate the short- and middle-range correlations, which
can be accounted for correspondingly by the Jastrow and the
coordination terms.

By construction, the coordinated wave function supports
a self-bound state. Consequently, the simulation of inhomo-
geneous systems does not require the addition of one-body
terms. Moreover, inhomogeneity and surface formation at low
densities result directly from the variational optimization of
the bulk wave function. Since the variational ansatz does not
require knowledge of the surface geometry, this also provides
a powerful tool for cluster states of matter. However, we find
that a satisfactory description of the inhomogeneous phase of
helium requires improvements in the Jastrow pair term, which
was here limited to the McMillan form for simplicity.

The separation of the mid-range correlations into the
coordination term which was demonstrated here means that
the Jastrow pair term in the coordinated wave function only
needs to account for the short-range correlations and possibly
for the well-understood long-range correlations arising from
zero-point phonons. This makes it promising that an accurate
short-range pair term can be designed in the future with a
simple parametrization.
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