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Bogoliubov quasiparticles coupled to the antiferromagnetic spin mode in a vortex core
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In copper- and iron-based unconventional superconductors, the Bogoliubov quasiparticles interact with a
spin resonance at momentum (π,π ). This interaction is revealed by specific signatures in the quasiparticle
spectroscopies, like kinks in photoemission and dips in tunneling. We study these signatures, as they appear
inside and around a vortex core in the local density of states (LDOS), a property accessible experimentally by
scanning tunneling spectroscopy. Our model retains the whole nonlocal structure of the self-energy in space
and time and is therefore not amenable to a Hamiltonian treatment using Bogoliubov–de Gennes equations.
The interaction with the spin resonance does not suppress the zero-bias peak at the vortex center, although it
reduces its spectral weight; neither does it smear out the vortex LDOS, but rather it adds structure to it. Some
of the signatures we find may have been already measured in FeSe, but remained unnoticed. We compare the
LDOS as a function of both energy and position with and without coupling to the spin resonance and observe,
in particular, that the quasiparticle interference patterns around the vortex are strongly damped by the coupling.
We study in detail the transfer of spectral weight induced both locally and globally by the interaction and also by
the formation of the vortex. Finally, we introduce a new way of imaging the quasiparticles in real space, which
combines locality and momentum-space sensitivity. This approach allows one to access quasiparticle properties
that are not contained in the LDOS.
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I. INTRODUCTION

A renewed interest in topological states of matter [1] has
contributed to bring again into focus the zero modes, which
appear at the interface between regions with mismatched
topologies. The electronic states bound to the core of vortices
in type-II superconductors belong to this family [2–4]. They
are tied to the nontrivial topology of the vortices, which
carry an odd winding number of the order-parameter phase.
These states—which are rather near-zero modes, because
the topology may not impose a state at exactly zero energy
in all cases—were predicted by the Bogoliubov–de Gennes
equations [5,6] and directly observed experimentally in
NbSe2 by scanning tunneling spectroscopy (STS), providing
a striking verification of the theory [7,8]. In cuprate high-Tc

superconductors (HTS), similar STS experiments in vortex
cores [9–16] failed to reveal the signature expected for bound
states in a d-wave superconductor [17–19]. This is surprising,
because zero modes are in principle protected by topology and
should be robust. Several explanations have been put forward
[20–30], but a definitive interpretation of the vortex-core
tunneling spectrum in high-Tc oxides remains to be found.
By contrast, the iron-based high-Tc superconductors generally
present vortex cores with the expected zero-energy peak
characteristic of the bound states [31–33], although in one
case there are core states but no peak [34].

In dirty superconductors, the zero-bias peak associated
with the bound states is broadened [35,36], leading to a flat
tunneling spectrum in the core. This alone cannot resolve the
cuprate puzzle, because the vortex-core spectrum is gapped at
zero bias in these materials, with features reminiscent of the
spectrum observed in the pseudogap phase above Tc [37]. This
has lead to the idea that the vortex cores are electronically
similar to the mysterious pseudogap phase. It remains unclear
how the pseudogap and superconductivity would interact in
the vortex core and, in particular, how this interaction could
release the topological frustration which demands a zero mode.

Far from vortices, or in zero field, the low-temperature
tunneling spectrum of bismuth-based HTS is rather well
understood. It was recently found that an extension of the BCS
theory taking into account the band structure and a coupling to
the antiferromagnetic spin resonance [38] is able to reproduce
the STS data of Bi2Sr2Ca2Cu3O10+δ (Bi-2223) quantitatively
[39]. This modeling shows that the interaction with the spin
resonance changes the density of states significantly in zero
field, by redistributing spectral weight over a broad energy
range. A question naturally follows: how would this interaction
change the electronic structure in a vortex? One possibility
is that the antiferromagnetic order becomes static in the
cores [20], as several experiments have suggested [40–43].
The local density of states (LDOS) in a vortex core with
competing antiferromagnetic order may indeed share some
similarities with the STS data for the cuprates [26,29]. In
the present work, we explore the opposite scenario, in which
the antiferromagnetic fluctuations are not frozen, but remain
dynamical in the vortex core. In contrast to the static case,
the dynamical case cannot be formulated as a Hamiltonian
mean-field problem: the coupling to the spin resonance
enters via a nonlocal and energy-dependent self-energy. A
simplified version of this model, ignoring nonlocal terms in
the self-energy, was used earlier to study the effect of the spin
resonance on the LDOS around a nonmagnetic impurity [44].
Very recently, the same approach was applied in a small cluster
to investigate charge-density wave formation [45]. Here, we
solve this problem for a vortex of dx2−y2 symmetry in a two-
dimensional one-band system with parameters appropriate for
Bi-2223. Although our results for the LDOS disagree with
the vortex-core measurements in this material [46], they show
how the tunneling spectrum would look like in Bi-2223, in
the absence of a pseudogap or on the strongly overdoped
side, if the interpretation given in zero field in terms of
Bogoliubov quasiparticles interacting with the spin resonance
is correct. The spin fluctuations are a candidate for the pairing
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interaction in the iron-based superconductors, as they can
generate the attraction for a pairing with s± symmetry between
different Fermi-surface sheets in these multiband systems. We
believe that many of our results are relevant for the qualitative
understanding of the recently measured vortex spectra in these
materials. We will argue that the measurements reported in
Ref. [31] contain signatures of the interaction with the spin
resonance.

The STS studies have so far been limited to—more pre-
cisely, designed to—measuring locally, targeting the LDOS,
which is the diagonal part of the real-space electron Green’s
function. Some important properties of the quasiparticles, such
as their nodal or antinodal character or their mean free path,
do not appear clearly in the LDOS, but only indirectly, for
instance via quasiparticle interference. After having discussed
the LDOS, we will present another way of imaging the
quasiparticles directly in real space. This approach probes
the off-diagonal terms of the Green’s function and combines
locality with nonlocal (momentum-space) sensitivity. Such
a measurement is a considerable experimental challenge,
requiring finely controlled double-tip tunneling, but could
greatly enrich our knowledge of quasiparticles in correlated
metals. We illustrate this by showing, in particular, that the
zero-energy quasiparticles remain nodal in the vortex core,
despite the fact that the zero-energy LDOS extends along the
antinodal directions.

The model used and the methods employed to solve it are
described in Sec. II and Appendices A and B. The results are
presented in Sec. III: the self-consistent vortex order parameter
in Sec. III A, the LDOS and a study of the spectral-weight
transfer in Sec. III B, and the new quasiparticle imaging in
Sec. III C and Appendix C. A discussion is proposed in Sec. IV.

II. MODEL AND METHODS

The Bogoliubov quasiparticles of a superconductor can
emit or absorb spin fluctuations and thereby become short-
lived, if they are coupled to the spectrum of spin excitations.
In a translation-invariant superconductor, these inelastic pro-
cesses are described by self-energy corrections in momentum
space, which modify both the normal (quasiparticle) and
anomalous (gap) dispersions. At leading order, the self-energy
is proportional to the convolution of the spin susceptibility with
the quasiparticle propagator [38]. In real space, the momentum
convolution becomes a product and the self-energy takes the
form

�̂(r − r ′,iωn) = − 1

β

∑
i�n

g2χs(r − r ′,i�n)

× ĜBCS(r − r ′,iωn − i�n). (1)

The self-energy is a matrix in Nambu space: the matrix
element �11 (�22) describes the renormalization and lifetime
of particlelike (holelike) quasiparticles and the matrix ele-
ments �12 and �21 contain the renormalization and lifetime
effects for the superconducting gap. The symmetry relations
connecting these matrix elements are discussed below. In
Eq. (1), the self-energy is a function of the fermionic Matsubara
frequency ωn = (2n + 1)π/β with β = (kBT )−1 the inverse
temperature, while the spin susceptibility χs is a function of the

bosonic frequency �n = 2nπ/β. ĜBCS is the Green’s function
describing the BCS–Bogoliubov quasiparticles in Nambu
space, in the absence of coupling to the spin excitations.
Finally, g is a coupling parameter. The justification for a
constant (momentum-independent) coupling is that for the
cuprates, in the energy range of interest, the spin susceptibility
is dominated by the antiferromagnetic resonance [47], the
weight of which is mostly localized near the momentum (π,π ).

Since the spin susceptibility has a sharp structure at the
spin-resonance energy �s , while the BCS Green’s function
has structure at the gap edges ∼	, the main structure of
the self-energy develops around �s + 	, producing a kink
in the quasiparticle dispersion and a dip in the tunneling
spectrum [38]. The interplay of the van Hove singularity can
induce additional structures and change these energies slightly
[39,48]. In the core of a BCS vortex, the main structure
of the Green’s function comes from the bound states near
zero energy. One may therefore expect that the scattering
rate due to spin fluctuations is largest at the energy �s in
the core, which would produce a dip at this energy in the
final vortex-core spectrum. This naive expectation may miss
part of the story, however, because it assumes a purely local
effect of spin fluctuations, while in the homogeneous case
the self-energy has a marked momentum dependence [38,49],
indicating significant nonlocal components.

In order to compute the effect of spin fluctuations on the
tunneling spectrum in a d-wave vortex, we replace the Green’s
function ĜBCS of a uniform BCS d-wave superconductor in
expression (1) by the BCS Green’s function Ĝvtx calculated in
the presence of a vortex. The latter is significantly modified
with respect to ĜBCS along with the formation of the core states
and, in particular, looses translation invariance:

�̂(r,r ′,iωn) = − 1

β

∑
i�n

g2χs(r − r ′,i�n)

× Ĝvtx(r,r ′,iωn − i�n). (2)

We neglect a possible feedback of the vortices on the spin
susceptibility and assume that it remains translation invariant.
We shall compute the self-energy (2) numerically on the real-
frequency axis, as explained further below. An example of
a numerical result is shown in Fig. 1. With the self-energy
ready, the last step in order to obtain the vortex-core spectrum
is to solve the modified Gorkov equations, written hereafter
in matrix form with the Nambu indices explicit and for an
arbitrary complex energy z:(

G −1
0 (z) − �11(z) −	 − �12(z)

−	† − �21(z) −[
G −1

0 (−z)
]T − �22(z)

)

×
(

G11(z) G12(z)
G21(z) G22(z)

)
=

(
1 0
0 1

)
. (3)

All products are matrix products in the implied spatial
coordinates. G −1

0 (z) ≡ G −1
0 (r,r ′,z) = (z + μ)δr r ′ − tr r ′ is the

noninteracting normal-state Green’s function, with μ the
chemical potential and tr r ′ the hopping amplitude [50]. 	(r,r ′)
is the superconducting pair potential describing a vortex with
dx2−y2 symmetry. The symbol “T ” means transposition of
the spatial coordinates and “†” means the same transposition
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FIG. 1. (Color online) Local self-energy at the center of an iso-
lated vortex (solid red lines) and outside the vortex (dashed blue lines)
for electronlike quasiparticles coupled to a (π,π ) mode of energy �s

at T = 2 K. The dark gray regions indicates energies |ω| < �s and
the light gray regions correspond to �s < |ω| < �s + 	0. All model
parameters are the same as in Sec. III.

followed by complex conjugation. It should be emphasized
that the spin resonance is not the primary source of pairing in
our model: the pair potential 	(r,r ′) is generated by a different
interaction of unspecified origin, via static Bogoliubov–de
Gennes equations. We are predominantly interested in the
component G11, whose diagonal elements provide the local
density of states:

N (r,ε) = − 1
π

Im G11(r,r,z = ε + i�). (4)

The Dyson equation for G11 is, as usual, G −1
11 = G −1

0 − �, with
the corresponding self-energy obtained by solving Eq. (3):

�(z) = �11(z) − [	 + �12(z)]

× {[
G −1

0 (−z)
]T + �22(z)

}−1
[	† + �21(z)]. (5)

The difficulty of this problem stems from the combination
of broken translational invariance and nonlocality in time.
The rest of this section is mostly technical and describes our
practical implementation of the solution. An overview of the
calculation workflow is given at the end of the section.

If the components �ij of (2) are given, the calculation of
the self-energy (5) for one particular energy requires a matrix
inversion in the spatial indices. The quantity {· · · }−1, which
is the renormalized propagator of the holelike quasiparticles,
is indeed better written as (1 − G T

0 �22)−1G T
0 . For practical

reasons, such matrix inversions limit the system size to a
few thousands lattice sites. One further matrix inversion is
needed in order to obtain the local density of states, by
solving the Dyson equation, also rewritten in the form G11 =
(1 − G0�)−1G0. The reason for preferring these rewritings, as
opposed to simply solving, e.g., G11 = (G −1

0 − �)−1—which
also requires only one matrix inversion because G −1

0 is known
analytically—is that they allow for a better energy resolution
by minimizing finite-size effects. Thanks to its translation
invariance, the matrix G0 is best computed as a Fourier trans-
form G0(r,r ′,z) = (1/N )

∑
k eik·(r−r ′)/(z − ξk) with ξk the

dispersion measured from the chemical potential. We do this
on a dense mesh of k vectors, with N = 1024 × 1024 points in
the two-dimensional Brillouin zone, such that boundary effects
are negligible. The expression (1 − G0�)−1G0 thus delivers a

Green’s function free of boundary effects if � = 0, as opposed
to the expression (G −1

0 − �)−1.
Let us now turn to the practical calculation of Eq. (2) for real

frequencies. Following previous studies [38,39,48], we use for
the spin susceptibility a phenomenological model inspired by
experiments:

χs(r − r ′,i�n) = WsF (r − r ′)
∫ ∞

−∞
dε

I (ε)

i�n − ε
. (6)

I (ε) represents a Lorentzian-broadened spin resonance at
frequency �s and F (q) is peaked around the antiferromagnetic
vector (π,π ). In order to evaluate analytically the frequency
sum in Eq. (2), we use the representation of the Matsubara
Green’s function in terms of retarded (R) and advanced (A)
functions:

Ĝvtx(r,r ′,iωn) = i

2π

∫ ∞

−∞
dε

ĜR
vtx(r,r ′,ε) − ĜA

vtx(r,r ′,ε)

iωn − ε

≡
∫ ∞

−∞
dε

ρ̂(r,r ′,ε)

iωn − ε
. (7)

Performing the frequency sum and the analytic continuation
iωn → ω + i0+, we obtain the retarded self-energy on the real
axis:

�̂(r,r ′,ω) = g2WsF (r − r ′)
∫ ∞

−∞
dε ρ̂(r,r ′,ε)

×
∫ ∞

−∞
dε′ I (ε′)

f (−ε) + b(ε′)
ω − ε − ε′ + i0+

= α2F (r − r ′)
∫ ∞

−∞
dε ρ̂(r,r ′,ε)B0(ω,ε), (8)

B0(ω,E) = −B∗
0 (−ω,−E) (9)

= �2
∫ ∞

−∞
dε [L�s

(ε − �s) − L�s
(ε + �s)]

× f (−E) + b(ε)

ω − E − ε + i0+ . (10)

The parameters α2 and � are a dimensionless coupling and a
typical energy scale (nearest-neighbor hopping), respectively
(see Ref. [39]). L�s

is the Lorentzian, with �s the energy width
of the spin resonance, while f and b are the Fermi-Dirac
and Bose-Einstein distribution functions, respectively. The
function B0(ω,E) is analytically known and corresponds to the
function B(ω,E) of Ref. [39], in which the Dynes parameter �

is set to 0+. This function is peaked near E = ω − �ssign(E),
such that the energy integration in Eq. (8) is well convergent.
The Dynes broadening is absent from the function B0 because
it is already implemented in the vortex Green’s functions Ĝ

R, A
vtx .

We show now that the spectral functions ρij (r,r ′,ε), needed
for the calculation of the self-energy (8), can all be deduced
from the element “11” of the retarded Nambu matrix ĜR

vtx,
element 11 denoted hereafter simply Gvtx. The vortex matrix
Green’s function for a general complex energy z is the solution
of Eq. (3) with �ij ≡ 0. The element 11 satisfies the Dyson
equation G −1

11 = G −1
0 − �vtx, with the BCS vortex self-energy

given by setting �ij = 0 in Eq. (5): �vtx = −	G T
0 (−z)	†.
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For real frequencies, we have G11 = Gvtx and

�vtx(r,r ′,ω)

= −
∑
r1 r2

	(r,r1)G0(r2 − r1,−ω − i�)	∗(r ′,r2). (11)

One can see (Appendix A) that the solution of Eq. (3) with
�ij ≡ 0 has the analytic property G11(z) = G †

11(z∗), from
which we deduce that GA

11(ε) = [GR
11(ε)]† and further that

ρ11(r,r ′,ε) = i

2π
[Gvtx(r,r ′,ε) − G∗

vtx(r ′,r,ε)]

= ρ∗
11(r ′,r,ε). (12)

Note that Gvtx(r,r ′,ε) �= Gvtx(r ′,r,ε), such that the spectral
function ρ11 is complex. We also have the property G22(z) =
−G ∗

11(−z∗), which implies

ρ22(r,r ′,ε) = i

2π
[Gvtx(r ′,r,−ε) − G∗

vtx(r,r ′,−ε)]

= ρ∗
11(r,r ′,−ε). (13)

Together with the property (9), the relations (12) and (13)
imply that the particlelike and holelike self-energies are related
by �22(r,r ′,ω) = −�∗

11(r,r ′,−ω). Finally, we have G12(z) =
G †

21(z∗) = G ∗
21(−z∗) and we deduce

ρ21(r,r ′,ε) = i

2π
[F+

vtx(r,r ′,ε) − F+
vtx(r ′,r,−ε)]

= −ρ21(r ′,r,−ε) = ρ∗
12(r ′,r,ε), (14)

where, following the usual notation, the anomalous vortex
Green’s function is F+

vtx(ε) ≡ G21(ε + i0+). The latter can also
be expressed in terms of Gvtx. Eq. (3) with �ij ≡ 0 gives
G21(z) = −G T

0 (−z)	†G11(z), which means on the real axis:

F+
vtx(r,r ′,ε)

= −
∑
r1 r2

G0(r1 − r,−ε − i�)	∗(r2,r1)Gvtx(r2,r ′,ε).

(15)

The relations (14) impose a connection between the pairing
self-energies, namely, �12(r,r ′,ω) = �∗

21(r,r ′,−ω).
The numerical calculation runs as follows. (1) Set the model

parameters (dispersion ξk, pairing interaction) and determine
the self-consistent BCS vortex pair potential 	(r,r ′); for this
step, we use the Chebyshev expansion method described in
Ref. [51] and briefly recalled in Appendix B. (2) Choose the
system size and use Eq. (11) and the corresponding Dyson
equation to calculate the vortex Green’s function Gvtx and to
deduce F+

vtx with Eq. (15). (3) Calculate and store the spectral
functions ρij using Eqs. (12)–(14) for all relevant energies and
positions. (4) Set the spin-resonance parameters, perform the
energy integration in Eq. (8) and store the self-energies �ij .
(5) Evaluate the modified vortex self-energy (5) on the real
axis and solve the corresponding Dyson equation to obtain the
Green’s function and finally the LDOS from Eq. (4).

All calculations of the self-energy (5) are performed at T =
2 K, which is the base temperature of the experiments reported
in Ref. [39]. The self-consistent order parameter 	(r,r ′) is
computed at T = 0 for simplicity.

FIG. 2. (Color online) Self-consistent vortex pair potential cal-
culated for the nearest-neighbor bonds on the square lattice, using
the Chebyshev expansion (lattice size: 1001 × 1001, expansion
order: 2000; relative convergence to self-consistency: <6 × 10−4;
see Appendix B). The color of dots in (a) and (b) varies from red
(antinodal direction) to blue (nodal direction). The dashed black
and solid purple lines in (b) show two functional dependencies as
indicated, with ξ = 2.96a, ξ0 = 0.68a, and ξ1 = 10.5a.

III. RESULTS

A. Self-consistent vortex pair potential

A tight-binding model for the low-energy band structure of
Bi-2223 was obtained in Ref. [39], by fitting tunneling spectra
in zero field. We use the parameters corresponding to the spec-
trum with a peak-to-peak gap of 44 meV. These parameters are
(t1,t2,t3,t4,t5,μ) = (−206,56,−36,−10.3,27.9,−237) meV.
The bare BCS d-wave gap is 	0 = 48.6 meV. Figure 2 displays
the self-consistent BCS pair potential 	(r,r ′) calculated at
T = 0 for an isolated vortex. The pair potential vanishes in
the core over a length scale similar to the bulk coherence
length, consistently with previous Bogoliubov–de Gennes
calculations for d-wave superconductors [17,18,52,53]. The
pair potential is nonzero only on the nearest-neighbor bonds
(|r − r ′| = a). The pairing strength was adjusted to reproduce
the bulk gap 	0 far from the vortex. The dots in Fig. 2(a)
show the modulus of the pair potential for each bond; this
representation differs from that in Ref. [52], where local dx2−y2

and extended-s wave components were defined at each site.
Beside the modulus shown in Fig. 2(a), the pair potential
carries the x2 − y2 signature, namely, a plus (minus) sign on
bonds running along x (y), as well as the topological phase
given to an excellent approximation by −ϑ , where ϑ is the
angle defined by the middle of the bond and the vortex center
[see Fig. 2(a)].

The pair-potential modulus has cylindrical symmetry at
large distances from the core, but presents some anisotropy
at intermediate distances, as shown in Fig. 2(b). The gap
increases faster along the (1,1) direction than along the (1,0)
direction. By changing the band parameters, we have found
that this behavior is model dependent. As already noted in
Refs. [6,18], the relaxation of the gap is not very well described
by the Ginzburg-Landau functional form, tanh(r/ξ ), whatever
the value of ξ . The BCS expression of the coherence length
is ξ = �〈vF〉/(π	0). With our band parameters, the average
Fermi velocity is 2.63 × 107 cm/s and thus ξ = 1.13 nm.
The corresponding expected tanh(r/ξ ) dependency is shown
in Fig. 2(b) as the dashed line. No good fit can be achieved
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with any value of ξ . We find that a different two-parameter
functional form fits the numerical data much better, as
indicated by the purple line.

A self-consistent pair potential is nice to have, but not
essential for the study of the LDOS in the core region [54].
We have not found significant differences between the LDOS
calculated using the Ginzburg-Landau and the self-consistent
pair potentials. All data shown below correspond to the
self-consistent case.

B. Local density of states and spectral-weight transfer in the
vortex coupled to the spin resonance

The spin resonance is characterized by its energy �s =
33.7 meV, energy width �s = 4.2 meV, and momentum width
	q = 1.15/a. With a coupling α = 0.7 [55] these parameters
yield the zero-field DOS shown in the inset of Fig. 3, in very
good agreement with the experimental tunneling spectrum
[39]. Note that the peak maxima in this zero-field DOS define
a gap 	p = 46 meV, slightly larger than the experimental gap
of 44 meV. We calculate the vortex-core LDOS in a 71 × 71
cluster having the vortex at its center [53]. In order to estimate
the importance of finite-size effects, we replace the vortex pair
potential by a uniform d-wave gap and compare the resulting
LDOS at the central site with the fully converged DOS
calculated in momentum space using 1024 × 1024 k points
(inset of Fig. 3). The good agreement between the two curves
shows that the finite-size effects are small. Whenever this is
possible, i.e., in the case without coupling to the spin mode,
we also check our calculations against Chebyshev-expansion
calculations in a much bigger cluster of size 1001 × 1001
(Appendix B).

The LDOS curves calculated in the region of the core with
and without the coupling to spin fluctuations are compared in
Figs. 3–7. Figure 3 emphasizes the spectral differences at the
vortex center, Fig. 4 compares two spectral traces along the
directions (1,0) and (1,1), Figs. 5 and 6 illustrate the transfer
of spectral weight, and Fig. 7 compares LDOS spatial maps at
fixed energies.

The interaction with the spin resonance leads to additional
structure in the spectra. The rearrangement of spectral weight
can be qualitatively understood along the lines given in
Ref. [48]: additional dips not present in the BCS spectrum
correspond to energies where the scattering rate is large, due
to enhanced emission or absorption of spin fluctuations. The
additional peaks are less informative, because the spectral
weight they carry is the one expelled from the dips towards
both higher and lower energies. Schematically, the emission is
strong at energies ε > �s if the BCS DOS at energy ε − �s

is large and, inversely, the absorption is strong at ε < −�s

if the BCS DOS at ε + �s is large. The strong emission
region marked as e1 in Fig. 3 and characterized by a significant
removal of spectral weight between ∼20 and 60 meV, as well
as the absorption region marked a1, result from the zero-bias
peak in the BCS spectrum: quasiparticles at these energies
decay into the near-zero energy vortex-core states. Similarly,
the absorption and emission dips at a2 and e2 correspond to
quasiparticles decaying into states at the gap edges, which
survive as weak peaks at energies slightly lower than 	0 in the
BCS vortex-core spectrum. The peaks between a1 and a2 and

FIG. 3. (Color online) Redistribution of spectral weight in the
core of a d-wave vortex, due to interaction with an antiferromagnetic
spin resonance of energy �s . The black line with pink shade is the
LDOS with the interaction turned on, while for the shaded blue
line (BCS) it is turned off. Vertical blue bars indicate the main
spectral features of the BCS spectrum; pink bars indicate energies
corresponding to the blue bars, shifted by ±�s . (Inset) Illustration of
finite-size effects. Solid line: converged DOS in zero field. Dashed
line: LDOS at the central site, after replacing the vortex by a uniform
d-wave gap.

between e1 and e2 collect part of the spectral weight removed
from the corresponding dips, but it is also seen that a great part
of this weight is transferred to energies larger than ±100 meV.
The small peaks right at a1 and e1 seem more difficult to
assess, but an inspection of the spectral traces in Fig. 4 reveals
that they mark the onset of scattering at ±�s . Below this
threshold, the imaginary part of the self-energy (2) vanishes
(see Fig. 1) and consequently the levels are renormalized to
lower energy, but not broadened. In zero field or outside the
vortex, the scattering rate tracks the linear increase of the
d-wave BCS DOS and grows roughly linearly for |ω| > �s ,
the Kramers-Kronig related renormalization bends over with
a weaker slope and as a result the coherence peaks develop a
shoulder (white arrows in Fig. 4). In the vortex core, however,
the scattering rate jumps at |ω| = �s due to the zero-bias peak
in the BCS spectrum and decreases for |ω| > �s (Fig. 1); the
renormalization drops abruptly and changes sign, explaining
the peaks at a1 and e1.

The spectral traces shown in Fig. 4 confirm the trends
observed at the vortex center. The LDOS has more structure
in the presence than in the absence of the coupling and dips
in the interacting LDOS can be traced back to peaks in the
BCS LDOS. On leaving the core, the dips at a2 and e2

become the usual dips of the zero-field spectrum (inset of
Fig. 3). A tiny shift of these dips to lower binding energy
in the core follows the tiny shift of the BCS coherence
peaks. The coherence peaks themselves, which are washed out
in the core due to both loss of superconducting coherence
and increased scattering, start to develop near 	p = 46 meV
for r > 3a, where the modulus of the pair potential is close
to its asymptotic value (Fig. 2). The small peaks at a1 and
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FIG. 4. (Color online) Comparison of the LDOS in the vicinity
of the vortex core with the coupling to the spin resonance turned off
(left) and on (right). Upper and lower panels show a trace starting at
the core center and going along the x axis and along the diagonal of
the square lattice, respectively. The white and black arrows mark the
energies ±�s and −(�s + 	0), respectively.

e1 become the shoulders on the coherence peaks as already
discussed. Finally, the zero-bias peak, depleted form much of
its spectral weight, splits into several structures reminiscent of
the Caroli-de Gennes-Matricon bound states, which disperse
with increasing distance from the center and whose intensity
decreases over a length larger than the core size. Using the
Chebyshev-expansion method on a large 1001 × 1001 cluster,
we have found that the wiggles in the BCS spectrum at energies
above 	0 in the core are finite-size artifacts: the converged
spectrum is smooth at these energies. However, all little peaks
at subgap energies in the BCS spectra of Fig. 4 are real. The
energies and the amplitudes of these peaks depend on the band-
structure parameters. A similar verification is not possible with
the coupling turned on, but we believe that the subgap peaks
in the interacting LDOS are real spectral features as well.

FIG. 5. (Color online) Total (a) and local (b) spectral-weight
transfer induced by the spin resonance (see text). The colored ranges
in (a) correspond to the four energy domains in (b). Only half of the
spatial region defined by L = 25a is shown in (b). The purple line
represents the modulus of the pair potential as determined in Fig. 2.

It is interesting to study the spatial and energy dependence
of the spectral-weight redistribution. To this end, we compare
the spectral-weight transfer (SWT) induced by the spin
resonance in zero field and around the vortex. In zero field,
the SWT is defined in an energy domain E as [56]

	W = 1

W

∫
|ε|∈E

dε N (ε) − 1

WBCS

∫
|ε|∈E

dε NBCS(ε),

where W and WBCS are the total spectral weights, defined
for our purposes as W = ∫

|ε|<200meV dε N (ε). The variation
of 	W as a function of εmax for E = [0,εmax] is displayed
in Fig. 5(a) as the black line. Not much happens at subgap
energies. The weight removed at the lowest energies is
overcompensated, such that some weight is gained at �s and
slightly above: this is the shoulder on the coherence peaks.
The action really starts above 	p, where 10% of the weight is
removed over 50 meV and recovered at energies higher than
100 meV: this is the dip. In the vortex, we repeat the analysis by
replacing the zero-field DOS by the average vortex LDOS over
a square extending from −L to +L in both directions. There is
a range of L values, between 20a and 30a, where the result is
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almost independent of L [Fig. 5(a)]. We therefore set L = 25a

in the following. Smaller values of L focus too much on the
core region, much larger values, if accessible, would mask
the signature of the vortex and approach the zero-field result.
With L = 25a, there is compensation of the average SWT
very close to the two characteristic energies �s and 	p. The
question arises, whether some weight is redistributed spatially
among neighboring sites: the answer is yes. In Fig. 5(b), the
local SWT is plotted in four energy domains. The local SWT
is defined as

	W (r) = 1

W̄

∫
|ε|∈E

dε N (r,ε) − 1

W̄BCS

∫
|ε|∈E

dε NBCS(r,ε),

with W̄ and W̄BCS the average integrated spectral weights in
the spatial region considered (L = 25a). At low energy |ε| <

�s , a SWT of the order of 5% occurs from the vortex center
to the surroundings. The depleted region is more extended
than the core where the pair-potential modulus is significantly
suppressed. The loss of low-energy weight in the vortex is
obvious in Figs. 3 and 4, but the spatial compensation which
occurs at distances r � 15a cannot be seen on those figures.
Between �s and 	p, there is again a net SWT from inside
the vortex to outside, although much weaker. The two small
maxima at the vortex center in Fig. 5(b) are associated with
the gain of weight near a1 and e1 (see Fig. 3). Therefore,
although there is no global SWT at the energy 	p, locally
there is a deficiency of weight in the vortex core and an excess
outside. This unbalance is compensated in the region of the
dip: between 	p and 100 meV, there is a loss of spectral weight
everywhere, but much less in the core than outside, such that at
100 meV, the global loss of weight is nearly uniform in space,
as confirmed by the nearly uniform recovery above 100 meV.

From an experimental perspective, the SWT induced by
the spin resonance is not accessible and thus not a quantity
of particular interest: its measurement would require to turn
off the interaction with the spin resonance. However, the SWT
induced by the vortex itself is, in principle, directly accessible
with nowadays technology, by switching the magnetic field on
and off and measuring the LDOS with and without the vortex.
The local vortex-induced SWT is defined as

	W (r) = 1

W̄

∫
|ε|∈E

dε N (r,ε) − 1

W

∫
|ε|∈E

dε N0(ε)

with N (r,ε) the LDOS of the vortex and N0(ε) the zero-field
DOS. The total vortex-induced SWT is obtained by replacing
N (r,ε) by its average in the same spatial region as above
(L = 25a). The result is displayed in Fig. 6 for the cases
with and without the coupling to the spin resonance. There
are qualitative differences, offering a chance to distinguish
experimentally the two situations. The total SWT shows an
accumulation of states at low energy [Fig. 6(a)]. Part of these
states are outside the vortex core [Fig. 6(b)] and correspond to
the increased DOS due to the Doppler shift of the dispersion
[58]; part of them correspond to the zero-bias peak in the core.
Both the Doppler-shift and the core contributions are reduced
by a factor close to two when the interaction in present. This is
consistent with a renormalization of the quasiparticle velocity
by a factor 1/(1 + λ), since the renormalization factor λ is
close to unity [39]. The Doppler-shift approximation is valid
at low energy and indeed one sees that it breaks down when

FIG. 6. (Color online) (a) Total spectral-weight transfer induced
by the vortex in the energy range |ε| < εmax, with and without
coupling to the spin resonance. Three energy domains are defined
in each case: below the maximum transfer (light-blue), between the
maximum and the minimum (orange) and the high-energy region
(red). The local spectral-weight transfers for the three domains are
shown in (b).

approaching the gap scale. In this energy domain, the LDOS
outside the vortex is lower than in the absence of field and
as a result the total SWT decreases. In the BCS case, the
compensation is complete at the energy 	0. This is only true
on average, though, because locally there is still excess weight
in the core and deficiency outside at the energy 	0. This is
restored by a very nonuniform SWT at higher energy, as seen
in Fig. 6(b). Here, we observe the most significant differences.
With the coupling on, there is no compensation on average
at the peak energy 	p and the local compensation occurring
near 60 meV at the minimum of the total SWT is almost
complete, such that the high-energy SWT is small and much
more uniform spatially than in the BCS case.

We close this section by comparing in Fig. 7 the spatial
LDOS distributions in the presence and in the absence of
the coupling, at a few characteristic positive energies. Similar
behaviors are found at negative energies. The most significant
differences occur at ε = �s and ε = �s + 	0. The zero-
energy states are similar in both cases: they are localized on a
few lattice sites and spread along the principal axes, not along
the nodal directions. At ε = �s , the BCS case shows a square,

214505-7



C. BERTHOD PHYSICAL REVIEW B 92, 214505 (2015)

FIG. 7. (Color online) LDOS N (r,ε) at several characteristic energies in the presence (bottom) and absence (top) of coupling to the spin
resonance. The color scale goes from white (low) to dark blue (high) and covers the whole data range in each panel, such that absolute intensities
in different panels cannot be compared [57].

which resembles a Caroli–de Gennes–Matricon state. The
radius of such a state at energy E may be estimated as [54] rE =
(E/	0)[1 + 2rc/(πξ )]rc, where rc represents the core radius.
For E = �s , this expression gives the value r�s

∼ 5a indicated
by the data if one takes rc = 3.9a, which is a reasonable value,
considering the gap profile shown in Fig. 2. The spatial struc-
ture of the LDOS is completely changed by the spin resonance:
the density is spread out of the vortex (see also Fig. 5), such
that there is no (quasi-)localized state at this energy. At the gap
edge, the LDOS shows in both cases a depression in the core,
but the latter appears to be shrunk and rotated by 45◦ by the spin
resonance. The difference is most spectacular at the dip energy
�s + 	0. In the BCS case, there is a deficiency of density in
the core (see also Fig. 6) and the LDOS displays quasiparticle
interference patterns. The latter are due to scattering on the
vortex, but also on the cluster’s boundaries. We have checked
this by repeating the calculation in a much bigger cluster with
the Chebyshev-expansion method. These interference patterns
disperse with energy, as seen in the 150 meV map. They
are also present a lower energies, but too weak to be clearly
resolved in comparison with the vortex-related structures. With
the spin resonance, there appears to be an excess rather than a
deficiency of density in the core. As already discussed, �s +
	0 is the energy where the scattering rate is largest outside
the vortex, due to the BCS coherence peaks at 	0. Although
also large, the scattering rate is about two times smaller in the
core where these coherence peaks are reduced (see Fig. 1).
Hence less density is removed in the core than outside. It
should be noted that this difference is small, of the order of
6%, but is magnified by the choice of the color scale in Fig. 7.
For comparison, the LDOS difference at ε = 0 between the
maximum and the minimum is ∼90% [57]. Even more striking
at �s + 	0 is the complete washing out of the interference
patterns by the spin resonance. This suggests that the mean
free path does not exceed the quasiparticle wavelength. We
may tentatively estimate the mean free path as � = 〈v∗

F〉τ ,
where 〈v∗

F〉 is the average renormalized Fermi velocity, which

is 1.15 × 107 cm/s, τ = �/(2Zγ ) is the quasiparticle lifetime,
γ being the scattering rate, and Z = 〈v∗

F〉/〈vF〉 the quasiparticle
residue. Outside the vortex, γ is typically 100 meV at the en-
ergy �s + 	0 and 50 meV at higher energies (Fig. 1). The cor-
responding values of � are 2.3a and 4.5a, respectively. The
former is shorter than the period of the BCS quasiparticle
oscillations in Fig. 7, while the latter is comparable. This
may explain why no interference at all is seen at �s + 	0,
while some traces remain at 150 meV. Our naive formula
underestimates the mean free path, however: a more rigorous
evaluation, to be performed in the next section, gives values
nearly five times larger.

C. Bogoliubov quasiparticles in real space

The quasiparticle LDOS discussed in the previous section
can be measured using a scanning tunneling microscope
(STM) [37]. There are other important quasiparticle properties
which are not visible in the LDOS alone. For instance, their
nodal character: the fact that the zero-energy LDOS in Fig. 7
extends along the lattice axes rather than along the diagonal
does not imply that the zero-energy quasiparticles in the vortex
have lost their nodal character. This nodal character is still
present, as we will see. As another example, the short mean
free path of the quasiparticles coupled to the spin resonance is
not directly apparent in the LDOS, but only indirectly through
its effect on the interference patterns. It is therefore useful to
go beyond the LDOS and to consider nonlocal effects that
reveal directly these quasiparticle properties. While the LDOS
is encoded in the diagonal elements G(r,r,ε) of the retarded
Green’s function G, the off-diagonal elements G(r,r ′,ε)
contain all additional information about the single-particle
excitations. It is well established that these off-diagonal terms
are accessible experimentally, for instance by local double-tip
tunneling [59,60]. A double-tip STM with nanometer distances
between the tips has already been demonstrated [61]. Here, we
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FIG. 8. (Color online) Nonlocal conductance ratio at zero energy in zero field (columns 1 and 2) and close to a vortex (columns 3 and 4).
r1 is fixed to (0,0), corresponding to the center of the panel, in columns 1, 2, and 4; r1 = (−20,5)a in column 3 (black dot). The yellow circles
indicate the vortex center. All panels in a row share the same color scale displayed on the right.

consider the quantity

R(r1,r2,ε) = Im[G(r1,r2,ε) + G(r2,r1,ε)]

Im[G(r1,r1,ε) + G(r2,r2,ε)]
. (16)

We show in Appendix C that this quantity is the relative change
of the tunneling conductance measured at zero temperature
with two coupled tips at points r1 and r2, with respect
to the conductance measured with two uncoupled tips at
the same two positions. We refer to this as the nonlocal
conductance ratio (NLCR). In the proposed setup, the two tips
are coherently connected to the same reservoir. As a result,
the NLCR can be positive or negative, unlike in the setup of
Ref. [60], where the “transconductance” is positive definite.
In a translation-invariant system, R(r1 − r2,ε) is proportional
to the imaginary part of the Fourier transform of the Green’s
function G(k,ε). Because G(k,ε) = G(−k,ε), this is identical
to the Fourier transform of the imaginary part of G(k,ε),
i.e., the Fourier transform of the spectral function A(k,ε).
For ε < 0, this quantity could in principle be deduced from
photoemission data, but this has not been reported so far, to
the best of our knowledge.

The NLCR at zero energy, calculated without magnetic
field as well as close to a vortex, are compared in Fig. 8. Since
R(r1,r2,ε) has a geometrical 1/r decay for long distances, we
multiply by |r1 − r2| for plotting. In zero field, the NLCR is
shown for large distances (first panel in each row) and for
short distances over the area corresponding to the cluster
size of the vortex calculation (second panel in each row).
The nodal character and the long-range nature of the zero-
energy excitations appear very clearly in this representation,
both without and with the coupling to the spin resonance.
The period of oscillation corresponds to the nodal Fermi
wavelength, as indicated in the figure. In the BCS case, the

Fermi wavelength is almost exactly commensurate with the
lattice, 2π/kFn = 3.003(a,a). It is renormalized to slightly
lower values 2π/k∗

Fn = 2.961(a,a) by the spin resonance: this
small incommensurability explains the Moiré pattern with a
period ∼36a along the diagonals.

In order to visualize excitations in the vicinity of the vortex
core, we first take r1 = (−20,5)a and plot R(r1,r2,0) as a
function of r2. This may be loosely understood as the long-time
behavior of the wave function for a particle created at r1. It
is seen that the latter is similar to the zero-field quasiparticle.
The spreading away from the nodal directions appears to be
wider than in the zero-field case, but this is a finite-size effect.
The scattering on the vortex is clearly visible; one also sees
that it is a relatively weak effect. Note that the Doppler effect,
by which all momenta are shifted by a quantity (�/2r)eϑ ,
where r is the distance to the vortex and eϑ is the direction
of the supercurrent, is too small to be seen. For r ∼ 20a, the
relative change of wavelength is 1/(1 + 2kFr) ∼ 2%. When
the particle is created right at the vortex center (rightmost panel
in each row), the NLCR is globally smaller because the LDOS
at this point is large. The excitation remains nevertheless nodal,
despite some loss of nodal intensity (which is less pronounced
in the presence of the spin resonance), in contrast to the
LDOS, which extends along the antinodal directions at ε = 0
(Fig. 7).

Figure 9 shows the NLCR calculated at the energy ε =
�s + 	0, where the effects of the spin resonance are strongest.
In the BCS case, the spectral weight is mostly in the antinodal
region, such that the NLCR extends mainly along (1,0) and
(0,1). At this energy, the antinodal wave vector is kA =
(0.22,1)π/a, corresponding to a period of 9.1a along one
direction and 2a along the other, as indicated in the figure.
Some nodal states are also mixed in, but their contribution
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FIG. 9. (Color online) Same as Fig. 8, at the energy ε = �s + 	0. The dashed circle indicates the mean free path, calculated by fitting an
exponential decay to the NLCR.

is weak. Note that the scattering on the vortex is inexistent
at this energy, both in the BCS and spin-resonance cases.
Three major differences are seen with the coupling to the
spin resonance. First, the amplitude of nonlocal effects is
reduced by an order of magnitude (see color scales on the
right of Fig. 9). Second, the (π,π ) scattering suppresses
spectral weight and broadens states in the antinodal region,
such that the better-defined nodal states are dominating the
shape of the NLCR. Third, the appearance of a mean free
path is manifested by an exponential decay of the NLCR
with increasing distance |r1 − r2|. Fitting this exponential
decay, we obtain a mean free path � = 11a (dashed circle
in the figure), which is much larger than our previous estimate
based on the average Fermi velocity and scattering rate.
Repeating the same fitting as a function of energy, we find
that the mean free path tracks the energy dependence of
the average scattering rate, but with an exponent different
from −1. Both quantities are approximately related by �/a ≈
320 × (γ /meV)−2/3. In this analysis, the average scatter-
ing rate was defined as γ (ε) = (1/2)〈p(k,ε)Im[−�11(k,ε) −
�22(k,ε)]〉BZ, with p(k,ε) = A0(k,ε)/〈A0(k,ε)〉BZ, A0(k,ε)
being the spectral function without pairing gap (	k = 0) and
〈· · · 〉BZ standing for a Brillouin-zone average.

IV. DISCUSSION

The model (1) reproduces the zero-field STM data of Bi-
2223 very well [39]; yet, the same model (2) fails to reproduce
the experimental vortex-core spectrum of this material [46].
The latter is similar to published results for Bi-2212 [10–
13,15,16], lacking a zero-bias peak in the core, but showing
weak low-energy structures on top of a (pseudo-)gapped
spectrum. The self-energy (2) does not suppress the zero-bias
peak, although it reduces its weight; neither does it smear out

the BCS spectra in a way which would turn the vortex-core
spectrum into the structureless signature observed in dirty
superconductors, but rather it adds structure to it. Lastly,
while the experiment suggests that the dip is disappearing
in the vortex core, it is not the case with the model (2).
The fact that the model (2) yields a peak in the vortex core
illustrates the robustness of this zero-bias feature, associated
with the topological defect carried by the vortex. It is unlikely
that any theory in which the zero-field spectrum is entirely
made of (possibly damped) Bogoliubov quasiparticles of a
BCS superconductor can produce a vortex-core LDOS without
zero-bias peak, unless something that goes beyond the BCS
theory happens in the vortices. The nucleation of a static
antiferromagnetic order is one possibility [20,26,29], but a
detailed comparison of this theory with STM data of the
cuprates is still missing. Charge order in the vortices has
also been suggested experimentally [62], but the local spectral
signatures of such an order remain so far unknown. While
these interpretations focus on the possible non-BCS nature of
the vortices, many experiments point to a non-BCS nature of
the zero-field spectrum as well, in relation to the phenomenon
of the pseudogap. In this perspective, the success of the model
(1) in reproducing the zero-field data must be an accident, indi-
cating that the general BCS-Eliashberg structure of the Green’s
function would be correct, despite the fact that the underlying
physics would be wrong. The failure of (2) in the vortex core
would then reveal the trick, because there the BCS–Eliashberg
structure, which assumes superconducting coherence of all
excitations, would be inappropriate. Discriminating between
the two scenario requires a complete microscopic theory of the
pseudogap and its interaction with superconductivity, which is
not yet available.

In ferropnictides, the role of antiferromagnetic spin fluctua-
tions as the driving force for pairing is more firmly established
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than in the cuprates [63]. Tunneling spectra in zero field
and in vortices are available for a number of these materials
and spectral structures suggestive of a coupling to the spin
resonance, as measured by neutron scattering, are routinely
observed [31–33,64–66]. For example, in Ba0.6K0.4Fe2As2,
the (π,π ) resonance is measured at 14 meV [67], the tunneling
spectrum shows a gap of 7 meV and presents the expected DOS
structure near 21 meV [65]. The evidence of the coupling in the
vortex-core spectra is more elusive, but encouraging. In FeSe,
for instance, the vortex-core spectrum reported in Fig. 2 A of
Ref. [31] has a lot in common with that displayed in Fig. 3. The
weak structures at ±3 meV in the former are reminiscent of the
ones observed at the onset of scattering in the latter (a1 and e1);
the structures at ±5 meV correspond to the main absorption
and emission at a2 and e2. These numbers are consistent
with the value of the zero-field gap, observed near 2 meV,
and the value of the spin resonance energy which, although
not yet measured by neutron scattering, is expected near
4.4kBTc = 3 meV in this material [63,65]. Further evidence
could emerge from a careful study of the spatial structure of
the LDOS, or from an analysis of the vortex-induced spectral
weight transfer.

The study of quasiparticle interference (QI) by STM has
been a fruitful development in the last decade. QI does not
image the quasiparticles directly, but their interferences due to
multiple scattering on defects: this is an advantage, because
the interferences are long-ranged even if the quasiparticles
are not, but it is also a weakness of the method, which
makes it impractical for clean systems. Measuring the nonlocal
conductance ratio (NLCR) introduced in Sec. III C would
provide additional information about the quasiparticles. This
is a considerable challenge by tunneling, perhaps less so by
photoemission, although with the latter technique the local
information is lost and positive energies are not accessible.
The NLCR exists also in clean systems and images the quasi-
particles directly, showing their momenta—while QI shows
differences of momenta—as well as their spatial coherence
range. Via the NLCR, local tunneling can probe the reciprocal
space with two advantages compared to photoemission: an
easy access to positive energies and the possibility to follow
local variations of the reciprocal-space properties.

V. CONCLUSIONS

We have calculated the electronic properties of a vortex in a
two-dimensional one-band d-wave superconductor, in which
the Bogoliubov quasiparticles interact with a spin resonance
centered at momentum (π,π ). Unlike previous calculations
dealing with a static antiferromagnetic order in the vortex
core, the dynamical case considered here is not amenable to
a mean-field treatment, but requires to evaluate a self-energy
that is nonlocal in space and time. We have discussed several
signatures of the coupling to the spin resonance in the local
density of states near the core. In spite of the fact that the
model we use fits quantitatively the tunneling spectrum of
Bi2Sr2Ca2Cu3O10+δ in zero field, it fails to reproduce the
peculiar vortex-core spectra of the cuprates. We believe that
passing the test of the vortex-core spectrum is a tough sanity
check for all theories of the cuprates electronic structure.
Our results may nevertheless be useful to understand the

vortex-core tunneling spectra of iron-based superconductors
and we have argued that some of the signatures we discuss
may be present in published data for FeSe.

Bogoliubov quasiparticles coupled to spin fluctuations
loose spatial coherence. We have shown that this is manifested
by an extinction of quasiparticle interference at the energies
where the effect of the coupling is strongest. We have also
discussed a new way to look at quasiparticles in real space,
which allows one to access quasiparticle properties that are
not directly visible in the LDOS, such as their nodal/antinodal
character and their mean free path.
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APPENDIX A: SYMMETRY PROPERTIES OF THE
GREEN’S FUNCTION

In the absence of coupling to spin fluctuations (�ij ≡ 0),
the Nambu-Gorkov equation (3) reads(

G −1
0 (z) −	

−	† −[
G −1

0 (−z)
]T

)(
G11(z) G12(z)
G21(z) G22(z)

)
=

(
1 0
0 1

)
,

with the explicit solution

G11(z) = {
G −1

0 (z) + 	G T
0 (−z)	†}−1

,

G12(z) = −{[
G0(z)	G T

0 (−z)
]−1 + 	†}−1

,

G21(z) = −{[
G T

0 (−z)	†G0(z)
]−1 + 	

}−1
,

G22(z) = −{[
G T

0 (−z)
]−1 + 	†G0(z)	

}−1
.

The property G0(z) = G †
0 (z∗), easily checked from the Fourier

representation of G0, implies that

G11(z) = G †
11(z∗), G12(z) = G †

21(z∗), G22(z) = G †
22(z∗).

Furthermore, the property 	 = 	T , which follows from the
symmetry of the pairing interaction, allows one to deduce two
additional relations:

G22(z) = −G ∗
11(−z∗), G12(z) = G ∗

21(−z∗).

APPENDIX B: CHEBYSHEV EXPANSION OF THE
GREEN’S FUNCTIONS

Consider a one-band quadratic Hamiltonian defined on a
lattice spanned by the discrete vectors r . In the superconduct-
ing state, there are two degrees of freedom at each lattice site,
namely the Bogoliubov–de Gennes amplitudes [u(r),v(r)].
The real-space retarded Green’s function at energy E is
G(r,r ′,E) = 〈r|[(E + i0+)1 − H ]−1|r ′〉. In this expression,
H is the matrix representing the Hamiltonian and the notation
|r〉 means a state describing an electron localized at point
r: the corresponding state vector has u(r) = 1 and all other
components equal to zero. For each pair (r,r ′), the Hamiltonian
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is the 2 × 2 block(−μδr r ′ + tr r ′ 	(r,r ′)

	∗(r ′,r) μδr r ′ − t∗r r ′

)
. (B1)

The expansion method of Ref. [51] consists in expand-
ing the matrix G(E) = [(E + i0+)1 − H ]−1 on Chebyshev
polynomials in H . The Chebyshev polynomials are Tn(x) =
cos(n arccos x), defined in the range −1 � x � 1. The expan-
sion of G(E) on these polynomials reads

G(E) = 1

a

∞∑
n=0

i(δn0 − 2)e−in arccos(Ẽ)√
1 − Ẽ2

Tn(H̃ ). (B2)

Tildes indicate rescaled dimensionless energies, which fall
within the range [−1,1] on which the Chebyshev polynomials
are defined: H̃ = (H − b)/a, Ẽ = (E − b)/a, with a and b

the width and center of the spectrum of H , respectively (exact
values are not required). The polynomials obey the recursion
relation Tn+1(x) = 2xTn(x) − Tn−1(x), such that the evalua-
tion of the matrix elements 〈r|Tn(H̃ )|r ′〉 can be performed
iteratively. This computational method is very appealing for
several reasons. First, the calculation of the matrix elements
only requires to evaluate matrix-vector products H |ψ〉, with
no need to store the Hamiltonian in memory; only three state
vectors need to be stored in the recursive scheme: |ψ0〉 = |r ′〉,
|ψ1〉 = H̃ |r ′〉, |ψn+1〉 = 2H̃ |ψn〉 − |ψn−1〉. Second, when the
matrix elements are known, the Green’s function can be
computed at any energy E in almost no time. Third, the
calculation is trivially parallel in the positions r . Lastly,
as the Hamiltonian propagates the initial state |r ′〉 on the
neighboring sites of r ′ and so on at each iteration, the linear
lattice size needed to calculate the matrix element 〈r|H̃ n|r ′〉 is
proportional to n. Nevertheless, manageable lattice sizes give
accurate results thanks to the good convergence properties of
the Chebyshev expansion.

When the n sum in Eq. (B2) is truncated to some maximal
value N , the linear lattice size M must ideally be such
that boundary effects do not affect the last matrix element
〈r|TN (H̃ )|r ′〉. For instance, if the propagation proceeds only
through hopping to the nearest neighbors, it takes N = 2M

iterations until the reflection from the boundary propagates
back to the site r and N = 4M iterations until interferences
between the reflections on the two opposite boundaries can
be felt at r (assuming that r is the central site of the
system, which can always be arranged). If the minimal size
requirements are met, there remain nevertheless oscillations
due to the truncation itself, known as Gibbs oscillations.
Those can be suppressed by well-known procedures [68]. We
use the Lorentz kernel, which amounts to multiplying each
term of the sum in Eq. (B2) by sinh(�̃N − �̃n)/ sinh(�̃N)
and is equivalent to introducing a phenomenological Dynes
scattering rate � = a�̃.

The BCS gap equation is 	(r,r ′) = −V (r,r ′)〈cr↑cr ′↓〉,
where V (r,r ′) is the pairing interaction and crσ annihilates a
spin-σ electron at position r . The average value 〈cr↑cr ′↓〉 can
be related to the retarded anomalous function F+(r,r ′,E) =
〈r̄|G(E)|r ′〉. |r̄〉 is the state vector describing one hole local-
ized at point r , i.e., with v(r) = 1 and all other components

equal to zero. We obtain

	(r,r ′) = V (r,r ′)
∫ ∞

−∞
dE f (E)

−i

2π

× [F+(r,r ′,E) − F+(r ′,r,−E)]∗, (B3)

where f (E) = (eE/kBT + 1)−1 is the Fermi function. Setting
the temperature to zero, inserting the Chebyshev expansion of
F+ into Eq. (B3) and performing analytically the integral, we
are led to the following expression:

	(r,r ′) = V (r,r ′)
i

π

∞∑
n=1

{
e−in arccos(−b/a)

n

× [〈r̄|Tn(H̃ )|r ′〉 + 〈r̄ ′|Tn(H̃ )|r〉]
}∗

. (B4)

The term of order n = 0 disappears because 〈r̄|T0(H̃ )|r ′〉 =
〈r̄|r ′〉 = 0. Equation (B4) must be solved self-consistently,
with H given by Eq. (B1).

APPENDIX C: DOUBLE-TIP TUNNELING

Consider the usual electron tunneling problem, with two
electrodes spanned by the vectors l (left) and r (right) and
characterized by the single-particle retarded Green’s functions
G(l,l ′,ε) and G(r,r ′,ε), respectively. The two electrodes are
coupled by a tunneling matrix element t(l,r) and a chemical
potential difference eV is applied. The single-particle current
at leading order in t(l,r) is [69]

I (V ) = 2πe

�

∫ ∞

−∞
dε [f (ε − eV ) − f (ε)]

∑
l l ′ r r ′

ρ(l,l ′,ε − eV )

× t∗(l ′,r)ρ(r,r ′,ε)t(l,r ′). (C1)

ρ(r,r ′,ε) is the spectral function, which is related to the
retarded Green’s functions in the same way as in Eq. (12).
Although this formula was initially derived for quadratic
Hamiltonians in the electrodes, it can be shown that the
insertion of the interacting spectral functions in Eq. (C1)
correctly accounts for all correlations present in the electrodes,
only neglecting correlations that are induced by the tunneling
term [70]. In the proposed setup (Fig. 10), the tunneling
matrix element vanishes unless l = l0 and r = r1 or r = r2.
We can write t(l,r) = t1δl l0δr r1 + t2δl l0δr r2 . We insert this
into Eq. (C1) and note that ρ(l0,l0,ε − eV ) is the LDOS

FIG. 10. (Color online) Principle of double-tip tunneling to a
common reservoir. The whole double-tip system (orange) is assumed
to have the same density of states.
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in the left electrode representing the tip. We adopt the
standard approximation and take it as a constant. Likewise,
ρ(r,r,ε) = (−1/π )Im G(r,r,ε) = N (r,ε) is the LDOS in the
right electrode. Since the bias V only appears in one of the
Fermi functions, we can differentiate and obtain the tunneling
conductance as

dI

dV
∝

∫ ∞

−∞
dε [−f ′(ε − eV )]

{
t2
1 N (r1,ε) + t2

2 N (r2,ε)

+ t1t2
(− 1

π

)
Im [G(r1,r2,ε) + G(r2,r1,ε)]

}
. (C2)

The first two terms in the curly braces give the parallel
conductances associated with the two tips, proportional to
the thermally broadened LDOS at the points r1 and r2. The
third term accounts for transport processes involving both
tips. The latter is sensitive to the quasiparticle phase change
between the points r1 and r2 and thus provides a correction
to the conductance which can be positive or negative. If the
amplitudes t1 and t2 are equal, it is seen that the relative change
of conductance induced by the two-tip processes is given at
zero temperature and for the energy ε = eV by Eq. (16).
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B. Lake, H. M. Rønnow, N. B. Christensen, G. Aeppli, K.
Lefmann, D. F. McMorrow, P. Vorderwisch, P. Smeibidl, N.
Mangkorntong, T. Sasagawa, M. Nohara, H. Takagi, and T. E.
Mason, Nature (London) 415, 299 (2002).

[42] K. Kakuyanagi, K. Kumagai, Y. Matsuda, and M. Hasegawa,
Phys. Rev. Lett. 90, 197003 (2003).

[43] A. M. Mounce, S. Oh, S. Mukhopadhyay, W. P. Halperin, A. P.
Reyes, P. L. Kuhns, K. Fujita, M. Ishikado, and S. Uchida, Phys.
Rev. Lett. 106, 057003 (2011).

[44] J.-X. Zhu, J. Sun, Q. Si, and A. V. Balatsky, Phys. Rev. Lett. 92,
017002 (2004).

214505-13

http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/PhysRevLett.105.186401
http://dx.doi.org/10.1103/PhysRevLett.105.186401
http://dx.doi.org/10.1103/PhysRevLett.105.186401
http://dx.doi.org/10.1103/PhysRevLett.105.186401
http://dx.doi.org/10.1103/PhysRevB.82.125402
http://dx.doi.org/10.1103/PhysRevB.82.125402
http://dx.doi.org/10.1103/PhysRevB.82.125402
http://dx.doi.org/10.1103/PhysRevB.82.125402
http://dx.doi.org/10.1016/0031-9163(64)90375-0
http://dx.doi.org/10.1016/0031-9163(64)90375-0
http://dx.doi.org/10.1016/0031-9163(64)90375-0
http://dx.doi.org/10.1016/0031-9163(64)90375-0
http://dx.doi.org/10.1103/PhysRevB.43.7609
http://dx.doi.org/10.1103/PhysRevB.43.7609
http://dx.doi.org/10.1103/PhysRevB.43.7609
http://dx.doi.org/10.1103/PhysRevB.43.7609
http://dx.doi.org/10.1103/PhysRevLett.62.214
http://dx.doi.org/10.1103/PhysRevLett.62.214
http://dx.doi.org/10.1103/PhysRevLett.62.214
http://dx.doi.org/10.1103/PhysRevLett.62.214
http://dx.doi.org/10.1103/PhysRevLett.101.166407
http://dx.doi.org/10.1103/PhysRevLett.101.166407
http://dx.doi.org/10.1103/PhysRevLett.101.166407
http://dx.doi.org/10.1103/PhysRevLett.101.166407
http://dx.doi.org/10.1103/PhysRevLett.75.2754
http://dx.doi.org/10.1103/PhysRevLett.75.2754
http://dx.doi.org/10.1103/PhysRevLett.75.2754
http://dx.doi.org/10.1103/PhysRevLett.75.2754
http://dx.doi.org/10.1103/PhysRevLett.80.3606
http://dx.doi.org/10.1103/PhysRevLett.80.3606
http://dx.doi.org/10.1103/PhysRevLett.80.3606
http://dx.doi.org/10.1103/PhysRevLett.80.3606
http://dx.doi.org/10.1016/S0921-4534(99)00720-0
http://dx.doi.org/10.1016/S0921-4534(99)00720-0
http://dx.doi.org/10.1016/S0921-4534(99)00720-0
http://dx.doi.org/10.1016/S0921-4534(99)00720-0
http://dx.doi.org/10.1103/PhysRevLett.85.1536
http://dx.doi.org/10.1103/PhysRevLett.85.1536
http://dx.doi.org/10.1103/PhysRevLett.85.1536
http://dx.doi.org/10.1103/PhysRevLett.85.1536
http://dx.doi.org/10.1143/JPSJ.72.2153
http://dx.doi.org/10.1143/JPSJ.72.2153
http://dx.doi.org/10.1143/JPSJ.72.2153
http://dx.doi.org/10.1143/JPSJ.72.2153
http://dx.doi.org/10.1143/JPSJ.76.063704
http://dx.doi.org/10.1143/JPSJ.76.063704
http://dx.doi.org/10.1143/JPSJ.76.063704
http://dx.doi.org/10.1143/JPSJ.76.063704
http://dx.doi.org/10.1016/S0921-4534(03)01056-6
http://dx.doi.org/10.1016/S0921-4534(03)01056-6
http://dx.doi.org/10.1016/S0921-4534(03)01056-6
http://dx.doi.org/10.1016/S0921-4534(03)01056-6
http://dx.doi.org/10.1088/0953-2048/23/8/085004
http://dx.doi.org/10.1088/0953-2048/23/8/085004
http://dx.doi.org/10.1088/0953-2048/23/8/085004
http://dx.doi.org/10.1088/0953-2048/23/8/085004
http://dx.doi.org/10.1103/PhysRevLett.95.257005
http://dx.doi.org/10.1103/PhysRevLett.95.257005
http://dx.doi.org/10.1103/PhysRevLett.95.257005
http://dx.doi.org/10.1103/PhysRevLett.95.257005
http://dx.doi.org/10.7566/JPSJ.82.083706
http://dx.doi.org/10.7566/JPSJ.82.083706
http://dx.doi.org/10.7566/JPSJ.82.083706
http://dx.doi.org/10.7566/JPSJ.82.083706
http://dx.doi.org/10.1103/PhysRevB.52.R3876
http://dx.doi.org/10.1103/PhysRevB.52.R3876
http://dx.doi.org/10.1103/PhysRevB.52.R3876
http://dx.doi.org/10.1103/PhysRevB.52.R3876
http://dx.doi.org/10.1103/PhysRevLett.80.4763
http://dx.doi.org/10.1103/PhysRevLett.80.4763
http://dx.doi.org/10.1103/PhysRevLett.80.4763
http://dx.doi.org/10.1103/PhysRevLett.80.4763
http://dx.doi.org/10.1103/PhysRevLett.83.4168
http://dx.doi.org/10.1103/PhysRevLett.83.4168
http://dx.doi.org/10.1103/PhysRevLett.83.4168
http://dx.doi.org/10.1103/PhysRevLett.83.4168
http://dx.doi.org/10.1103/PhysRevLett.79.2871
http://dx.doi.org/10.1103/PhysRevLett.79.2871
http://dx.doi.org/10.1103/PhysRevLett.79.2871
http://dx.doi.org/10.1103/PhysRevLett.79.2871
http://dx.doi.org/10.1143/JPSJ.66.3367
http://dx.doi.org/10.1143/JPSJ.66.3367
http://dx.doi.org/10.1143/JPSJ.66.3367
http://dx.doi.org/10.1143/JPSJ.66.3367
http://dx.doi.org/10.1103/PhysRevB.61.6298
http://dx.doi.org/10.1103/PhysRevB.61.6298
http://dx.doi.org/10.1103/PhysRevB.61.6298
http://dx.doi.org/10.1103/PhysRevB.61.6298
http://dx.doi.org/10.1103/PhysRevB.62.14427
http://dx.doi.org/10.1103/PhysRevB.62.14427
http://dx.doi.org/10.1103/PhysRevB.62.14427
http://dx.doi.org/10.1103/PhysRevB.62.14427
http://dx.doi.org/10.1103/PhysRevLett.86.5365
http://dx.doi.org/10.1103/PhysRevLett.86.5365
http://dx.doi.org/10.1103/PhysRevLett.86.5365
http://dx.doi.org/10.1103/PhysRevLett.86.5365
http://dx.doi.org/10.1103/PhysRevLett.87.277002
http://dx.doi.org/10.1103/PhysRevLett.87.277002
http://dx.doi.org/10.1103/PhysRevLett.87.277002
http://dx.doi.org/10.1103/PhysRevLett.87.277002
http://dx.doi.org/10.1103/PhysRevLett.87.147002
http://dx.doi.org/10.1103/PhysRevLett.87.147002
http://dx.doi.org/10.1103/PhysRevLett.87.147002
http://dx.doi.org/10.1103/PhysRevLett.87.147002
http://dx.doi.org/10.1103/PhysRevB.65.180513
http://dx.doi.org/10.1103/PhysRevB.65.180513
http://dx.doi.org/10.1103/PhysRevB.65.180513
http://dx.doi.org/10.1103/PhysRevB.65.180513
http://dx.doi.org/10.1103/PhysRevB.68.024513
http://dx.doi.org/10.1103/PhysRevB.68.024513
http://dx.doi.org/10.1103/PhysRevB.68.024513
http://dx.doi.org/10.1103/PhysRevB.68.024513
http://dx.doi.org/10.1103/PhysRevB.68.012509
http://dx.doi.org/10.1103/PhysRevB.68.012509
http://dx.doi.org/10.1103/PhysRevB.68.012509
http://dx.doi.org/10.1103/PhysRevB.68.012509
http://dx.doi.org/10.1103/PhysRevLett.90.047001
http://dx.doi.org/10.1103/PhysRevLett.90.047001
http://dx.doi.org/10.1103/PhysRevLett.90.047001
http://dx.doi.org/10.1103/PhysRevLett.90.047001
http://dx.doi.org/10.1143/JPSJ.73.450
http://dx.doi.org/10.1143/JPSJ.73.450
http://dx.doi.org/10.1143/JPSJ.73.450
http://dx.doi.org/10.1143/JPSJ.73.450
http://dx.doi.org/10.1103/PhysRevB.84.064530
http://dx.doi.org/10.1103/PhysRevB.84.064530
http://dx.doi.org/10.1103/PhysRevB.84.064530
http://dx.doi.org/10.1103/PhysRevB.84.064530
http://dx.doi.org/10.1126/science.1202226
http://dx.doi.org/10.1126/science.1202226
http://dx.doi.org/10.1126/science.1202226
http://dx.doi.org/10.1126/science.1202226
http://dx.doi.org/10.1038/nphys1908
http://dx.doi.org/10.1038/nphys1908
http://dx.doi.org/10.1038/nphys1908
http://dx.doi.org/10.1038/nphys1908
http://dx.doi.org/10.1103/PhysRevB.85.214505
http://dx.doi.org/10.1103/PhysRevB.85.214505
http://dx.doi.org/10.1103/PhysRevB.85.214505
http://dx.doi.org/10.1103/PhysRevB.85.214505
http://dx.doi.org/10.1103/PhysRevLett.102.097002
http://dx.doi.org/10.1103/PhysRevLett.102.097002
http://dx.doi.org/10.1103/PhysRevLett.102.097002
http://dx.doi.org/10.1103/PhysRevLett.102.097002
http://dx.doi.org/10.1103/PhysRevLett.67.1650
http://dx.doi.org/10.1103/PhysRevLett.67.1650
http://dx.doi.org/10.1103/PhysRevLett.67.1650
http://dx.doi.org/10.1103/PhysRevLett.67.1650
http://dx.doi.org/10.1103/PhysRevLett.89.187003
http://dx.doi.org/10.1103/PhysRevLett.89.187003
http://dx.doi.org/10.1103/PhysRevLett.89.187003
http://dx.doi.org/10.1103/PhysRevLett.89.187003
http://dx.doi.org/10.1103/RevModPhys.79.353
http://dx.doi.org/10.1103/RevModPhys.79.353
http://dx.doi.org/10.1103/RevModPhys.79.353
http://dx.doi.org/10.1103/RevModPhys.79.353
http://dx.doi.org/10.1103/PhysRevLett.85.3261
http://dx.doi.org/10.1103/PhysRevLett.85.3261
http://dx.doi.org/10.1103/PhysRevLett.85.3261
http://dx.doi.org/10.1103/PhysRevLett.85.3261
http://dx.doi.org/10.1103/PhysRevB.88.014528
http://dx.doi.org/10.1103/PhysRevB.88.014528
http://dx.doi.org/10.1103/PhysRevB.88.014528
http://dx.doi.org/10.1103/PhysRevB.88.014528
http://dx.doi.org/10.1016/S0921-4534(99)00558-4
http://dx.doi.org/10.1016/S0921-4534(99)00558-4
http://dx.doi.org/10.1016/S0921-4534(99)00558-4
http://dx.doi.org/10.1016/S0921-4534(99)00558-4
http://dx.doi.org/10.1126/science.1056986
http://dx.doi.org/10.1126/science.1056986
http://dx.doi.org/10.1126/science.1056986
http://dx.doi.org/10.1126/science.1056986
http://dx.doi.org/10.1038/415299a
http://dx.doi.org/10.1038/415299a
http://dx.doi.org/10.1038/415299a
http://dx.doi.org/10.1038/415299a
http://dx.doi.org/10.1103/PhysRevLett.90.197003
http://dx.doi.org/10.1103/PhysRevLett.90.197003
http://dx.doi.org/10.1103/PhysRevLett.90.197003
http://dx.doi.org/10.1103/PhysRevLett.90.197003
http://dx.doi.org/10.1103/PhysRevLett.106.057003
http://dx.doi.org/10.1103/PhysRevLett.106.057003
http://dx.doi.org/10.1103/PhysRevLett.106.057003
http://dx.doi.org/10.1103/PhysRevLett.106.057003
http://dx.doi.org/10.1103/PhysRevLett.92.017002
http://dx.doi.org/10.1103/PhysRevLett.92.017002
http://dx.doi.org/10.1103/PhysRevLett.92.017002
http://dx.doi.org/10.1103/PhysRevLett.92.017002


C. BERTHOD PHYSICAL REVIEW B 92, 214505 (2015)

[45] J. Bauer and S. Sachdev, Phys. Rev. B 92, 085134 (2015).
[46] N. Jenkins (private communication).
[47] M. Eschrig, Adv. Phys. 55, 47 (2006).
[48] G. Levy de Castro, C. Berthod, A. Piriou, E. Giannini, and Ø.

Fischer, Phys. Rev. Lett. 101, 267004 (2008).
[49] C. Berthod, Phys. Rev. B 82, 024504 (2010).
[50] We use the bare hopping amplitudes and neglect a correction

due to the magnetic field. This correction is negligible for
an isolated vortex in the region of the core when the penetration
depth is large compared to the core size.

[51] L. Covaci, F. M. Peeters, and M. Berciu, Phys. Rev. Lett. 105,
167006 (2010).

[52] P. I. Soininen, C. Kallin, and A. J. Berlinsky, Phys. Rev. B 50,
13883 (1994).

[53] In our model, the vortex center sits on a lattice site. We have
also considered a vortex centered in the middle of a plaquette as
in Ref. [52]. Both are stable self-consistent solutions and yield
nearly identical LDOS.

[54] C. Berthod, Phys. Rev. B 71, 134513 (2005).
[55] A coupling α = 0.7 in our notation corresponds, in the notation

of Ref. [38], to g = 0.77 eV if the energy-integrated suscepti-
bility at (π,π ) is 0.95μ2

B.
[56] In the discussion of the spectral-weight transfer, we consider

symmetric energy windows, thus ignoring subtleties associated
with the breaking of particle-hole symmetry.

[57] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.92.214505 for an animated version of Fig. 7
showing data between −200 and +200 meV with relative and
absolute color scales.

[58] G. E. Volovik, Pis’ma v ZhETF 58, 457 (1993) [JETP Lett. 58,
469 (1993)].
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