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Spin diffusion in disordered organic semiconductors
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An analytical theory for spin diffusion in disordered organic semiconductors is derived. It is based on percolation
theory and variable range hopping in a disordered energy landscape with a Gaussian density of states. It describes
universally the dependence of the spin diffusion on temperature, carrier density, material disorder, magnetic field,
and electric field at the arbitrary magnitude of the Hubbard energy of charge pairs. It is found that, compared
to the spin transport carried by carriers hopping, the spin exchange will hinder the spin diffusion process at
low carrier density, even under the condition of a weak electric field. Importantly, under the influence of a bias
voltage, anomalous spreading of the spin packet will lead to an abnormal temperature dependence of the spin
diffusion coefficient and diffusion length. This explains the recent experimental data for spin diffusion length
observed in Alq3.
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I. INTRODUCTION

Recently, considerable interests in spin transport in organic
materials have been generated due to possible applications
of organic spintronics [1–3]. Understanding spin transport is
of crucial importance in designing and synthesizing better
material and further improving device performances. One of
the most important parameters describing the spin transport
is the coefficient of spin diffusion. It is related to the Hanle
effect in organic spin-valve structure. Although spin diffusion
in organic semiconductors has been discussed in earlier
work [4,5], neither the role of disorder of the material, the
dependence of the charge carrier mobility on the concentration
of charge carriers, nor the influence of an electric field has been
explored. So, a unified theoretical description of spin diffusion
is still lacking. Moreover, recent measurements conducted over
a large range of temperature have established that in organic
semiconductors, the spin diffusion length exhibits an unusual
decrease with temperature [6]. Until now, no physical model
could explain this behavior.

In this paper, we present a general analytical theory to
describe the spin diffusion for organic semiconductors. It is
based on percolation and hopping concepts and includes the
spin exchange, bipolaron transport, and spin flip. The theory
maps the complex phenomena of spin transport onto a simple
problem of percolation contributed both by spin exchange and
polaron hopping. This percolation based theory allows us to
explain the measured temperature dependent spin diffusion
length, as well as to make predictions of spin diffusion in high
electric field and large carrier density. This approach is superior
to an earlier analysis of spin diffusion by exchange coupling
between localized states [4] because (1) it is universal in the
sense that it incorporates the influence of temperature, electric
field, magnetic field, disorder, charge carrier concentration,
and the Hubbard energy of the polarons can be described,
(2) it can identify the role of anomalous spreading of spin
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packet induced by electric field, and (3) it is based upon
percolation theory to determine the spin diffusion coefficient in
a disordered system rather than simply summing up the effects
of spin exchange and polaron hopping [4]. We demonstrate that
a decrease in the spin diffusion length with temperature arises
naturally from the anomalous spreading of spin packet.

II. THEORY

Organic material films are usually a disordered system in
which charge carriers (polarons) are localized. In polaron
hopping, both charge and spin motion are coupled, and
three processes should be considered simultaneously. The first
process is polaron hopping toward an empty site, which carries
both charge and spin currents. The second process is polaron
hopping toward a singly occupied site, producing a doubly
occupied state, i.e., bipolaron. For such double occupation,
it is assumed that only singlets are allowed at a given site,
with an energy penalty U, also called the Hubbard energy [5].
This process also carries both currents at the same time. The
last process is the spin exchange coupling, which exchanges
the spin state of two adjacent sites directly without phonon
assistance [4]. This process results in a net spin current
without charge motion. Considering these processes under
quasiequilibrium condition, we start with the master equation
for the conserved probability Pi ↑ that a particle is on site i

with up spin

0 = −
∑

j

wi→jPi ↑ (1 − Pj ↑ −Pj ↓)

+
∑

j

wj→iPj ↑ (1 − Pi ↑ −Pi ↓)

−
∑

j

w̃i→jPi ↑ (pPj ↑ +Pj ↓)

+
∑

j

w̃j→iPj ↑ (pPi ↑ +Pj ↓)

−
∑

j

ηi→jPi ↑ Pj ↓ +
∑

j

ηj→iPj ↑ Pi ↓ , (1a)
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wij =
{

v0exp
(−2α(1 + βcosθ )Rij − Ej −Ei

kBT

)
Ej > Ei − 2αβcosθ

v0exp(−2αRij )Ej < Ei − 2αβcosθ
, (1b)

p = 1

3
−

∫∞
0 exp(−t/τh)

(
1 − aeff

2t2

8

(
1 + 2sin2ω0t/2

(ω0t/2)2

)
)dt

3τh

, (1c)

where the first two terms correspond to conventional polaron hopping, the middle two to bipolaron formation, and the last two
to spin exchange, respectively. In the above equation, wi→j denotes the hopping rate from site i to an empty site j [7]; p is the

probability of spin flip [8,9], ηi→j = 0.821 q2α

ε�
(2αRij )5/2exp( − 2αRij ) denotes the probability for spin exchange [4]; v0 is the

attempt-to-jump frequency; α is the inverse localization radius; β = qF/2αkBT , with kB being the Boltzmann constant, q being
the elementary charge, and F being the electric field; ε is the dielectric constant; � is the Planck constant; Rij is the distance
between two sites; τh = wij

−1 is the hopping time; the hyperfine precession frequency is ω0 = γeB, with B being the applied
external magnetic field and γe being the gyromagnetic ratio; aeff

2 is the effective hyperfine coupling width due to all the nuclei at
a site; and t is the time. So far, we did not consider the effect of spin-orbit coupling. Based upon the work in Ref. [8], this effect
could, however, be incorporated via changing the value of aeff . w̃i→j denotes the hopping rate from site i to a singly occupied
site j with downward spin as

w̃ij =
{

v0exp
(−2α(1 + βcosθ )Rij − Ej −Ei+U−V

kBT

)
Ej > Ei − 2αβcosθ − U + V

v0exp(−2αRij ) Ej < Ei − 2αβcosθ − U + V
. (2)

Here U is the onsite Hubbard energy, which gives the energy cost of adding a second charge to a singly occupied site. Introducing
finite U implies a nonzero probability of bipolaron formation, compared to a large U in conventional hopping models. An effective
attractive interaction between polarons mediated by phonons can decrease U. In the case of strong interaction, U can become
negative and lead to formation of bipolarons. V = A/Rij is the Coulomb energy of the two polarons occupying site i and j

before they form a bipolaron. It should be subtracted from the Hubbard energy. The last two terms refer to spin transport due to
spin exchange.

It is well known that charge transport in a disordered organic system can be modeled in terms of percolation theory in the spirit
of Miller and Abrahams [10,11]. However, the spin transport itself can form a percolation path [12]. To simplify the problem of
Eq. (1a), we simulate the spin transport based on a connected percolation model. Spin transport, carried by polarons hopping or
spin exchange, can be seen as a network of random spin-resistors. For polaron hopping, the spin-resistors Rsij between two sites
i and j , can be considered as a network of random resistors, the respective resistors being Rsij = 1/Wi→j and Rsij = 1/ηi→j .
This model is schematically shown in Fig. 1.

If the initiated site is fixed, every target site can be characterized by parameter R, and the rate of spin transport can then be
written in terms of the parameter R, as follows in Eq. (3). The rate of spin transport vij = v0exp(−R) is a function of R and
decreases with increasing R. That is, the rate of spin transport decreases with increasing the distance between two sites Rij and
increases with increasing temperature.

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2α(1 + βcosθ )Rij + Ej −Ei

kBT
Ej > Ei − 2αβcosθ

2αRij Ej < Ei − 2αβcosθ

}
hopping to empty states

2α(1 + βcosθ )Rij + Ej −Ei+U−V
kBT

Ej > Ei − 2αβcosθ − U + V

2α(1 + βcosθ )Rij Ej < Ei − 2αβcosθ − U + V

}
bipolaron formation

2αRij − log
(

0.821 q2α

ε� (2αRij )
5
2

v0

)
spin exchange

. (3)

As R = Rnn, the infinite percolation cluster of interconnected bonds is approached, which is responsible for the spin transport
in a disordered system. Thus, the critical value Rnn will determine the temperature, electric field, and magnetic field dependence
of spin transport coefficients. According to the percolation theory, the infinite cluster is established when the average number of
bonds per site attains the critical value of Bc. For three dimensional amorphous systems, the value of Bc is given by 2.8 [13].
Based on our previous work [14,15], the percolation criterion Bc of spin transport can be written as

Bc = 1

8α3

[∫ π

0
sinθdθ

∫ Rnn

0
2πr2dr

∫ Rnn+εi−r(1+βcosθ )

−∞

g(ε)

1 + exp(ε − εF )
dε

+
∫ π

0
sinθdθ

∫ Rnn

0
2πr2dr

∫ Rnn+εi−r(1+βcosθ)−u+V

−∞

( 1
4g(ε)

1 + exp(ε − εF )
+

3p

4 g(ε)

1 + exp(ε − εF )

)
dε

+
∫ Rnn

0
2πr2dr

∫ ∞

−∞

( ηi→j

4 g(ε)

1 + exp(ε − εF )

)
dε

]
. (4)
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FIG. 1. (Color) Schematic picture of spin percolation transport
in organic semiconductors. Purple arrows: spin up; blue arrows: spin
down; cyan arrow lines: polaron hopping transport; mazarine arrow
lines: spin exchanged transport; red dotted lines: percolation path.

Note that we use normalized coordinates here (εi = Ei/kBT

and r = 2αRij ) and that εF denotes the Fermi level, where the
first part in the bracket refers to the spin carried by polaron
hopping and the second part to spin exchange. g(ε) is density
of states (DOS). In organic semiconductors, the variations
of site energies due to disorder are usually assumed to be
Gaussian type. This holds for spin transport in disordered
organic semiconductors as well [7]:

g(ε) = Nt√
2πσ

exp

(
− ε2

2σ 2

)
, (5)

where σ is the width of energy disorder and Nt is the total
localized states density. Using Gaussian DOS and Fermi-Dirac
distribution, the carrier concentration in the disordered system
can be evaluated as

n =
∫ ∞

−∞

g(ε)

1 + exp(ε − εF )
dε. (6)

Consider a simple case, that is, the magnetic field is
perpendicular to the electric field. Then, the spin flow due
to either polaron hopping or spin exchange occurs in the same
direction (for example, x). In organic semiconductors, the
localized states randomly distributed in energy and space to
form a discrete array of sites in the hopping space. The most
probable hop for a spin polarization on a site at a particular
energy εi is to the empty site or filled site with opposite spin
at closest range Rnn, which can be evaluated from Eq. (4). The
average transport distance along the electric field F is xf (the
detailed derivation of xf is based on our previous work [15]). If
one knows the average transport distance and considers that the
average rate of the spin transport is v0exp(−Rnn), the diffusion
coefficient of spin migrating at energy εi becomes

D(B,εi,U ) = x2
f − xf

2

6/(v0exp(−Rnn))
. (7)

After averaging over the normalized site energies, we end
up with

D(B,F,T ,εF ,U )

= ∫∞
−∞ g(εi)/[1 + exp(εi − εF )]D(B, εi,U )dεi

∫∞
−∞ g(εi)/[1 + exp(εi − εF )]dεi

. (8)

FIG. 2. (Color) (a) Carrier density dependence of spin diffusion
coefficient at high electric field (inset: U dependence of spin
diffusion coefficient); (b) carrier density dependence of spin diffusion
coefficient at low electric field.

III. RESULTS

In Fig. 2(a), we display the comparison between the
theoretical calculation for density dependence of D with and
without spin exchange. We find that in the regime of high
charge carrier density regime, both spin exchange and spin
carrier by polaron hopping will increase with carrier density,
being similar to the density dependence found by Ref. [4].
However, at variance with the prediction in the prediction from
Ref. [4] where D keeps the constant at low density, here D will
decrease with carrier density at the low carrier density regime.
The discrepancy between our calculation and Ref. [4] is due to
the fact that D itself is carrier density dependent [11,15]. This
has not been taken into account in Ref. [4]. Note, low carrier
density regime is more realistic for organic spin valve.

Another interesting property from Fig. 2 is that the spin
exchange will decrease the diffusion coefficient. The fact that
D decreases with carrier density at high field is associated
with deep tail states of the DOS. The reason is that deeply
trapped spins are more almost immobile. Therefore, they lag
behind the packet of moving spins. Eliminating those deep
states by increasing the carrier density must therefore reduce
field assisted diffusion [15]. In this situation, spin exchange
will hinder filling of the deep states and decreases the diffusion
coefficient. The parameters used for calculation here are
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FIG. 3. (Color) Temperature and magnetic field dependence of
diffusion coefficient.

Nt = 1 × 1028 m−3, a−1 = 8 Å, U = 0.5 eV, σ/kBT = 2.5,
B = 0.15 mT, A = 0.24, v0 = 1.76 × 1010 s−1, aeff/v0 = 1,
and γe = 0.176 ns−1mT−1. These values are characteristic for
organic semiconductors [7,8]. Furthermore, Fig. 2(a) shows
that the spin diffusion will increase with U. The reason for this
result might be as follows. For the positive U, the increase of
U will facilitate the deep trap filling and leads to the increase
of D. However, for the negative U, this effect will be weak,
and D will stay as constant.

The effect of deep states on spin diffusion is also diminished
by raising the temperature, as shown in Fig. 3. The parameters
used here are the same as those in Fig. 2. D approaches an
exponential dependence on (σ/kBT )2. This type of depen-
dence on the disorder parameter is a characteristic feature
of hopping transport within a Gaussian DOS. It can also be
seen that D will increase with the magnetic field. Physically,
spin precession is envisioned as percolation of spin transport
through the unblocked sites fub (empty states or filled states
with opposite spin). A magnetic field will increase the fraction
of the unblocked site, fub = 1 − fb, by spin flip and, thus,
increases spin diffusion in the regime of low carrier density.
This effect will disappear when B becomes comparable or
larger than the hyperfine field (see insert in Fig. 3) [8].

In what follows, we want to compare the calculation to
the experimental data. Until now, the direct experiment for
spin diffusion coefficient is still very scarce; however, the spin
diffusion length has been measured by some groups. To relate
the spin transport to the spin diffusion length, we follow the
definition in Ref. [16]. The spin diffusion length as a function
of site energy εi is given as

L(εi) =
√

D(εi)τ (εi) =
√

x2
f − xf

2

6
, (9)

where τ (εi) = 1/v0exp(−Rnn) is the carrier lifetime. To
determine the average spin diffusion length in the system,
we average L(εi) over energy as

L = ∫∞
−∞ g(εi)/[1 + exp(εi − εF )]L(εi)dεi

∫∞
−∞ g(εi)/[1 + exp(εi − εF )]dεi

. (10)

FIG. 4. Comparison between the theoretical calculation and
experimental data. Symbols: experimental data from Ref. [6]. Lines:
fits using the theoretical model given by Eq. (10). The parameters
used for calculation are v0 = 1.67 × 1010 s−1, aeff/v0 = 1, σ/kBT =
1.78, B = 0.29 mT, a−1 = 1.5 Å, and U = 0.5 eV, and the other
parameters are the same as those in Fig. 2.

Using Eq. (10), we calculate the temperature dependent
spin diffusion length and compare it to the experimental data
from Ref. [6], as shown in Fig. 4. In this experiment, a
new depth-resolved technique was used to measure the spin
polarization of current-injected electrons in an organic spin
valve. The temperature dependence of the spin diffusion length
was then obtained. It can be seen that the diffusion length
will decrease with the increase of temperature. Generally, for
regular hopping transport the diffusion length of carrier always
increases with the increase of temperature because the carrier
transport is thermally activated and the increasing temperature
will facilitate carrier hopping. However, when applying an
electrical bias field in an organic device, the spin packet will
be broadened by field assisted diffusion [15,17,18]. Since
this effect depends on state filling, the diffusion length will
decrease with increasing temperature, as discussed in relation
to Fig. 3. This explains the result of the experiment from Drew
et al. [6], where the diffusion length was measured under a
strong bias field. In this context, it is worth noting that Yu [16]
assumes that the hopping rate is determined by the Coulomb
gap and disregards energy fluctuations, implying a decrease
of the hopping rate with increasing temperature. This is in
disagreement with the current paper.

We note that the experiment in Ref. [6] was measured at a
higher voltage, which validates our assumption here. We also
note that Yu has explained this experimental data by assuming
that the hopping rate is determined by Coulomb gap [16]. We
are afraid that this assumption is inappropriate for organic
semiconductors.

IV. CONCLUSIONS

We developed a theoretical framework for spin transport
based upon percolation and hopping theories. It describes the
dependence of spin transport as a function of temperature and
both the electric and magnetic field parametric in the Hubbard
energy of charge carrier pairs. We find that, in disagreement
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with an earlier prediction [16], in an organic spin valve, spin
exchange will hinder spin transport.
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