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The ferrimagnetic insulator yttrium iron garnet (YIG) is an important material in the field of magnon spintronics,
mainly because of its low magnetic losses. YIG also has very low acoustic losses, and for this reason the conversion
of a state of magnetic excitation (magnons) into a state of lattice vibration (phonons), or vice versa, broadens
its possible applications in spintronics. Since the magnetic parameters can be varied by some external action,
the magnon-phonon interconversion can be tuned to perform a desired function. We present a quantum theory of
the interaction between magnons and phonons in a ferromagnetic material subject to a dynamic variation of the
applied magnetic field. It is shown that when the field gradient at the magnetoelastic crossover region is much
smaller than a critical value, an initial elastic excitation can be completely converted into a magnetic excitation,
or vice versa. This occurs with conservation of linear momentum and spin angular momentum, implying that
phonons created by the conversion of magnons have spin angular momentum and carry spin current. It is shown
further that if the system is initially in a quantum coherent state, its coherence properties are maintained regardless
of the time dependence of the field.
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I. INTRODUCTION

Phenomena involving spin waves, the collective excitations
of spins in magnetic materials, are becoming increasingly more
promising in device applications for signal processing in the
microwave gigahertz frequency range. This fact, together with
the continuing developments in magnetic hybrid structures
and observations of novel physical effects, has made magnon
spintronics an active and exciting field of research. The use
of magnons, which are the quanta of spin waves, to carry,
transport, and process information in devices made with
insulating ferrimagnetic materials is very attractive, among
other reasons, because it is free from energy dissipation due to
Ohmic losses [1,2].

A key material for magnon spintronics is the ferrimagnetic
insulator yttrium iron garnet (Y3Fe5O12–YIG), thanks to its
unique magnetic properties. For several decades YIG has been
the prototype material for investigating the physics of a variety
of spin-wave phenomena. In the 1960s and 1970s the main
interest was in the study of the excitation and propagation
properties of spin waves in bulk YIG crystals motivated by
their interesting physical properties and potential applications
in microwave signal processing devices [3–8]. In the 1980s and
1990s the interest turned to nonlinear dynamics, bifurcation,
and chaos in bulk YIG crystals and soliton phenomena in YIG
films [9–13]. In the 2000s parametrically pumped magnons in
YIG revealed unique Bose-Einstein condensation phenomena
at room temperature [14–18]. Recently there has been an
upsurge of interest in YIG motivated by the discovery of
spintronic effects in hybrid structures containing this material
[19], such as the spin pumping produced by ferromagnetic
resonance (FMR) and spin waves [20–26], the spin-Seebeck
effect [27–32], the control of spin-wave damping by thermal
gradients [33–35] or by the spin-Hall effect [36], the spin-Hall
magnetoresistance, and related effects [37–39].
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Owing to the magnetostrictive properties of materials,
elastic deformations in crystals change the energy of the
spins. Conversely, changes in the spin configuration modify
the elastic energy [40]. As a consequence, if a spin wave in
a crystal lattice has frequency and wave vector close to those
of an elastic wave, they can become strongly coupled and
form a magnetoelastic wave, or a hybridized magnon-phonon
excitation. Magnetoelastic waves with frequency of a few
gigahertz were extensively studied in bulk YIG crystals in the
1960s, motivated by scientific interest and potential application
in controllable delay lines [41–44]. Very recently, with the
development of novel material structures for spintronics,
there has been a revival of interest in the coupling between
spin excitations and elastic waves. Uchida et al. [45] have
used low-frequency elastic waves to generate spin currents
in YIG by means of the magnon-phonon interaction, which
are then detected by the voltage produced in attached Pt
strips, demonstrating an acoustic spin-pumping effect. The
magnon-phonon interaction has also been exploited by Weiler
et al. [46] to excite FMR in a cobalt film by surface acoustic
waves, by Rückriegel et al. to calculate the magnon-phonon
damping in YIG films [47], and by Kamra et al. [48] to study
theoretically the magnetization dynamics in a ferromagnet
excited by means of elastic waves.

In this paper we present a study of the magnon-phonon
conversion in a magnetic medium whose parameters vary in
time using a quantum formulation. We show that magnons
can be efficiently converted into phonons, or vice versa, by
an appropriate variation in time of the magnetic parameters,
such as the applied magnetic field or the magnetization.
This is of interest in the context of reconfigurable magnon
spintronics, whereby the function of a device can be tunable
by an external action during operation [1,49–51]. The theory
of magnetoelastic waves in a magnetic field that varies either
in space or in time was developed a long time ago only in
semiclassical terms [40,42]. The quantum theory presented
here reveals important aspects of the phenomena involved,
such as the spin angular momentum and the spin current
associated with phonons.
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The paper is organized as follows. Section II presents the
background material for the following sections, namely, the
quantization of the magnetic and elastic variables by means
of transformations that lead to magnon and phonon operators
for a static applied field and the magnetoelastic interaction
Hamiltonian in terms of these operators. In Sec. III, the total
magnon-phonon Hamiltonian is diagonalized and the possible
states of the system are discussed. In Sec. IV we consider
the coupled magnon-phonon equations of motion for a time-
dependent applied field and calculate the momentum magnon-
phonon conversion efficiencies. Finally, in Sec. V, we present
some additional remarks on the quantum states involved and
discuss the relations between the results of the quantum and
semiclassical treatments.

II. MAGNONS AND PHONONS IN A FERROMAGNETIC
MEDIUM

The analysis presented in this paper applies to a sim-
ple Heisenberg ferromagnetic cubic crystal, magnetized to
saturation by an external magnetic field that can vary in
time. Although YIG is ferrimagnetic and has several magnon
branches, the properties of its acoustic magnons can be well
described by the model. In this section the field is assumed to
be static and uniform. The total Hamiltonian of the system
can be expressed in terms of the spin operator and the
elastic displacement operator at each lattice site. In a first
approximation, the Hamiltonian can be written as the sum
of three parts: a magnetic component depending only on the
spins, a pure elastic part, and a magnetoelastic term depending
on both the spin and the elastic displacement.

A. Quantization of the spin excitations: Magnons

We consider a magnetic Hamiltonian consisting of the
interactions between individual spins with the magnetic field
(Zeeman interaction) and the exchange interactions between
neighboring spins. For simplicity we do not consider at
this point the dipolar interaction because it complicates the
treatment of the magnetic Hamiltonian. Later we will introduce
the effect of the dipolar interaction in the spin-wave frequency.
We also neglect the magnetic anisotropy interaction, which is
small in YIG. The magnetic Hamiltonian is then

Hm = −γ �

∑
i

�Si · �H −
∑
i �=j

Jij
�Si · �Sj , (1)

where γ = gμB/� is the gyromagnetic ratio, g is the spec-
troscopic splitting factor, μB the Bohr magneton, � the
reduced Plank constant, �Si is the spin (in units of �) at
the lattice site i with position vector �ri , Jij is the exchange
constant of the interaction between spins �Si and �Sj , and �H
is the magnetic field, considered to be uniform and lying in
the z direction of a Cartesian coordinate system. We treat
the quantized excitations of the magnetic system with the
approach of Holstein-Primakoff [3,4,52,53], which consists
of transformations that express the spin operators in terms
of boson operators that create or destroy magnons. In the
first transformation the components of the local spin operator
are related to the creation and annihilation operators of
spin deviation at site i, denoted respectively by a+

i and ai ,

which satisfy the boson commutation rules [ai,a
+
j ] = δij and

[ai,aj ] = 0. Using a coordinate system with ẑ along the
equilibrium direction of the spins, defining S+

i = Sx
i + iS

y

i

and S−
i = Sx

i − iS
y

i , it can be shown that the relations that
satisfy the commutation rules for the spin components and the
boson operators are [3,4,52,53]

S+
i = (2S)1/2 ( 1 − a+

i ai/2S )1/2 ai, (2a)

S−
i = (2S)1/2 a+

i ( 1 − a+
i ai/2S )1/2, (2b)

Sz
i = S − a+

i ai, (2c)

where S is the spin and a+
i ai ≡ ni is the operator for

the number of spin deviations at site i. Since we will
not consider here interactions between magnons, we use
the linear approximation, whereby only the first terms in
Eqs. (2) are kept, S+

i
∼= (2S)1/2 ai , S−

i
∼= (2S)1/2 a+

i , and
Sz

i
∼= S − a+

i ai . With these transformations one can express
the magnetic Hamiltonian in a quadratic form containing only
lattice sums of products of two boson operators:

Hm =
∑
i �=j

(γ � H + 2S Jij )a+
i aj . (3)

The next step consists in introducing a transformation from
the localized field operators to collective boson operators a+

k

and ak , which satisfy the boson commutation rules [ak,a
+
k′ ] =

δkk and [ak,ak′ ] = 0,

ai = N−1/2
∑

k

ei�k.�ri ak, (4)

where N is the number of spins in the system and �k is a wave
vector. Using Eq. (4) in Eq. (3) the magnetic Hamiltonian
becomes

Hm =
∑

k

� ωm(k) a+
k ak, (5)

where � ωm(k) is the energy of a magnon with frequency
ωk and wave vector �k, while ak and a+

k are, respectively,
destruction and creation operators for magnons. Considering
the exchange interaction only between nearest neighbors, from
Eq. (3) we obtain ωm(k) = γH + 2zJS (1 − γk)/�, where
z is the number of nearest-neighbor spins with exchange
interaction constant J, and γk = z−1 ∑

δ ei�k·�δ is a geometrical
factor, determined by the nearest-neighbors’ position vector
�δ = �rj − �ri . For a cubic crystal with coordinate axes along
the [100] directions, γk = (cos kxa + cos kya + cos kza)/3,
where a is the lattice parameter. For ka � 1, γk ≈ 1 − k2a/z2,
and the magnon frequency is given by the quadratic dispersion
relation

ωm(k) = γ (H + Dk2), (6)

where D = 2JS a2/γ � is the exchange stiffness parameter.
If the dipolar interaction between the spins is introduced
in the Hamiltonian (3), another transformation involving the
magnon operators is necessary [3,4,52,53] to diagonalize the
Hamiltonian and one obtains the magnon dispersion relation

ωm(k) = γ [(H + D k2) (H + Dk2 + 4πMsin2θk)]1/2, (7)
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where θk is the angle between the wave vector and the direction
of the magnetic field and M is the magnetization. Notice that
Eq. (7) is valid only for wave number k such that ka � 1
and kd 	 1, where d is a typical dimension of the sample. For
smaller k the magnetostatic boundary conditions in the sample
surfaces become important and the dispersion relation depends
on the sample geometry [5–7]. In experiments one excites
and detects spin excitations by means of the magnetization
dynamics, and thus we shall work with the magnetization
operator. Assuming a continuous description of the crystal, we
use the relation �M(�r) = gμB(N/V )

∑
i
�Si . Considering that

�M in equilibrium lies along ẑ, one can write �M = ẑ Mz + �m
and introduce the transverse circularly polarized components
m± = mx ± imy . With the transformations (2) and (4) one
can express the transverse components of the magnetization in
terms of the magnon operators,

m+ (�r) = [m− (�r)]+ = M

(2NS)1/2

∑
k

ei �k. �r ak. (8)

In the continuum approximation the magnetic Hamiltonian
can also be written as

Hm =
∫

d3r

(
Hmz + D

2γ � M

∂mi

∂xj

∂mi

∂xj

)

=
∑

k

�ωm(k) a+
k ak, (9)

where the repeated indices indicate summation. Note that
nk = a+

k ak is the operator for the magnon number, so that
the Hamiltonian (9) corresponds to the total magnon energy
operator. Another operator of interest in the continuum
approach of spin waves is the linear momentum density, for
which the i component is [53,54],

gi
m = 1

2γM

(
�m × ∂ �m

∂xi

)
· ẑ. (10)

Using Eq. (8) one can show that the total magnon linear
momentum given by the integration of Eq. (10) in the volume
is [53]

�pm =
∑

k

� �k a+
k ak, (11)

where � �k is the linear momentum of one magnon. Finally,
another operator of interest is the angular momentum flow
carried by spin waves. The magnon spin current density (per
unit area) with polarization ẑ is given by [20,55–57]

�J z
Sm = D

M
( �m × ∇ �m) · ẑ. (12)

Using Eqs. (8) and (12) one can show that the spin current
density carried by magnons is given by [20,57]

�J z
Sm = − �

V

∑
k

�vmk a+
k ak, (13)

where �vmk = 2γD �k is the k-magnon group velocity. Since
one magnon corresponds to one spin deviation, Eq. (13) is
consistent with the view that each magnon carries an angular
momentum −� ẑ. To conclude this section, we recall a few
properties of magnon states. The eigenstates |nk〉 of the

Hamiltonian in Eq. (5), which are also eigenstates of the
number operator nk = a+

k ak, can be obtained by applying
integral powers of the creation operator to the vacuum,

|nk〉 = [(a+
k )nk /(nk !)1/2 ] |0〉, (14)

where the vacuum state is defined by the condition ak |0〉 = 0.
These stationary states describe systems with a precisely
defined number of magnons nk and an uncertain phase. They
form a complete orthonormal set which can be used as a
basis for the expansion of any state of spin excitation. They
are used in nearly all quantum treatments of thermodynamic
properties, relaxation mechanisms, and other phenomena
involving magnons. However, since 〈nk|ak |nk〉 = 0, they
have zero expectation value for the small-signal transverse
magnetization operators mx and my and thus do not have a
macroscopic wave function. In order to establish a correspon-
dence between classical and quantum spin waves, one should
use the concept of coherent magnon states [53,58], defined in
analogy to the coherent photon states introduced by Glauber
[59]. A coherent magnon state is the eigenket of the circularly
polarized magnetization operator in Eq. (8). It can be written
as the direct product of single-mode coherent states, defined
as the eigenstates of the annihilation operator,

ak |αk〉 = αk|αk〉, (15)

where the eigenvalue αk is a complex number. Although
the coherent states are not eigenstates of the unperturbed
Hamiltonian and as such do not have a well-defined number
of magnons, they have nonzero expectation values for the
magnetization m+ with a well-defined phase. It can be shown
that the coherent states can be expanded in terms of the
eigenstates of the unperturbed Hamiltonian [58,59],

|αk〉 = e− |αk |2/2
∑
nk

(αk)nk /(nk !)1/2 |nk〉. (16)

The number of magnons in the coherent state |αk〉 obtained
directly from Eq. (16) is 〈αk|nk |αk〉 = |αk|2. Further, the
expectation values of the components of the magnetization
operators for a single coherent state with eigenvalue αk =
|αk| exp(iφk) can be obtained using the definition (15) in
Eq. (8). They are

〈mx(�r,t)〉 = M

(NS/2)1/2
|αk| cos(�k · �r − ωmt + φk), (17)

〈my(�r, t)〉= M

(NS/2)1/2
|αk| sin(�k · �r − ωmt + φk). (18)

The transverse components of the magnetization in
Eqs. (17) and (18), together with ẑ Mz, correspond to the
classical view of a spin wave, namely, the magnetization
precesses around the equilibrium direction with a phase that
varies along the direction of propagation.

B. Quantization of elastic waves: Phonons

Let us consider that the ferromagnetic crystal is a contin-
uous solid, elastically isotropic, with average mass density ρ.
We also assume that it is a cubic crystal so that, within the linear
approximation, the relation between the stress tensor and the
strain tensor involves only two different elastic constants, c12
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and c44. The elastic deformations of the solid are expressed
in terms of the vector displacement �u = �r − �r ′, where �r is the
initial position of an atom or of a volume element, and �r ′ is
the position after deformation. The contributions of the elastic
system to the Hamiltonian arise from the kinetic and potential
energies. Introducing the momentum density conjugate to the
displacement, ρ ∂ui/∂t , in the linear approximation, the elastic
Hamiltonian can be written as [60]

He =
∫

d3r

(
ρ

2

∂ui

∂t

∂ui

∂t
+ α

2

∂ui

∂xi

∂uj

∂xj

+ β

2

∂ui

∂xj

∂ui

∂xj

)
, (19)

where the elastic constants are written as α = c12 + c44, β =
c44, for the Cartesian coordinate system chosen with axes lying
along the [100] crystallographic directions. In order to obtain
the collective excitation operators for the elastic system, we
use the canonical transformation [60]

ui(�r,t) =
(

�

V

)1/2 ∑
k,μ

εiμ(�k) Q
μ

k (t)ei �k·�r , (20)

ρ u̇i(�r,t) =
(

�

V

)1/2 ∑
k,μ

εiμ(�k) P
μ

k (t)e−i �k·�r , (21)

where εiμ = x̂i · ε̂(�k,μ) and ε̂(�k,μ) are unitary polarization
vectors. We denote by μ = 1,2 the two polarizations transverse
to the wave vector �k and μ = 3 the longitudinal polarization.
Notice that from Hermiticity it follows that Qi

k = Qi +
−k and

P i
k = P i +

−k . The quantization of the elastic vibrations is made
through the commutation relations involving ui(�r) and its con-
jugate momentum density ρ ∂ �u/∂t . The only noncommuting
pair is such that

[ui(�r),ρ u̇j (�r ′)] = i� δij δ(�r − �r ′), (22)

which leads to [
Q

μ

k ,P ν
k′
] = i� δkk′δμν. (23)

In order to diagonalize the elastic Hamiltonian it is
necessary to introduce the canonical transformation

Q
μ

k =
[

�

2ρωpμ(k)

]1/2

(b+
μ−k + bμk), (24)

P
μ

k = i

[
ρ �ωpμ(k)

2

]1/2

(b+
μk − bμ−k), (25)

where

ωpμ(k) = k [(β + αδμ3)/ρ]1/2 (26)

is the phonon frequency. With this transformation, the Hamil-
tonian (19) becomes

He =
∑
k,μ

�ωpμ(k) (b+
μkbμk + 1/2). (27)

The new operators satisfy the boson commutation relations,

[bμk,bνk′ ] = 0, [bμk,b
+
νk′ ] = δμνδkk′ , (28)

and are interpreted as creation and annihilation operators of
lattice vibrations, whose quanta are called phonons. In terms of
these operators, the displacement and the momentum density

operators are

ui =
(

�

2ρV

)1/2 ∑
k,μ

εiμ(�k) ω−1/2
pμ

(
b+

μke
−i �k·�r + bμke

i �k·�r),
(29)

ρ u̇i =
(

ρ �

2 V

)1/2 ∑
k,μ

iεiμ(�k) ω1/2
pμ (b+

μke
i �k·�r − bμke

−i �k·�r ).

(30)

Note that ρ u̇i is the canonical momentum density associ-
ated with the elastic displacement. One can also introduce a
linear momentum density carried by the elastic waves, which
has been shown to be [54]

gi
p = ρ

2

(
∂2 �u

∂xi∂t
· �u − ∂ �u

∂t
· ∂ �u
∂xi

)
. (31)

Using the transformations to phonon operators given by
Eqs. (29) and (30), integration of Eq. (31) in the volume gives
the total phonon linear momentum

�pp =
∑
k,μ

��k b+
μkbμk, (32)

where � �k is the momentum of one phonon. Phonons may also
carry angular momentum, as recently discussed in Ref. [61].
The angular momentum of an elastic solid is the sum of
two components, an orbital angular momentum corresponding
to the macroscopic rotation and a spin angular momentum
corresponding to small-radius circular shear displacements.
For a rigid solid, only the elastic spin angular momentum
exists, which is given by [61]

�Sp =
∫

d3r ρ �u × ∂ �u
∂t

. (33)

Using the transformations (29) and (30) in Eq. (33), one
can write the elastic spin angular momentum in terms of the
two transverse phonon operators [61]

�Sp = i�
∑

k

�k
k

(b+
2kb1k − b+

1kb2k). (34)

In order to write Eq. (34) in a diagonal form, we introduce
creation and annihilation operators for transverse circularly
polarized phonons denoted by (+) and (−):

bk(+) = 2−1/2(b1k + ib2k), (35)

bk(−) = 2−1/2(b1k − ib2k). (36)

With the circular polarization operators (35) and (36), one
can show that the elastic Hamiltonian and the commutation re-
lations have the same form as Eqs. (27) and (28), respectively,
while Eq. (34) becomes [61]

�Sp = �

∑
k

�k
k

( − b+
k(+)bk(+) + b+

k(−)bk(−)). (37)

This result shows that a circularly polarized (+) or (−)
phonon carries an angular momentum parallel or antiparallel
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to its wave vector that can be interpreted as the spin of the
phonon [61]. As expected, a linearly polarized phonon carries
no angular momentum since it is a superposition of (+) and
(−) phonons. Multiplying Eq. (37) by the phonon velocity and
dividing by the volume, we obtain the phonon spin current
density

�Jp = �

V

∑
k

�vpk ( − b+
k(+)bk(+) + b+

k(−)bk(−)), (38)

which has the same form as the magnon spin current density
in Eq. (13). As we show in Sec. IV, the linear and the
angular momenta of magnons and phonons are important
time-invariant quantities for spatially uniform media.

III. INTERACTING MAGNONS AND PHONONS

Due to the spin-orbit interaction, the elastic displacement
in a magnetic medium is coupled to the spin excitation.
This is what ultimately relaxes the magnetization dynamics
in any material and also gives rise to the magnetostrictive
properties of ferromagnets. Thus, we expect that if a spin wave
has frequency and wave vector close to those of an elastic
wave, they become strongly coupled, giving rise to hybrid
excitations, called magnetoelastic waves, or magnon-phonon
excitations.

A. The magnetoelastic interaction

The magnetoelastic interaction can be expressed by a
phenomenological Hamiltonian, which is a function of �M and
�u. For a cubic crystal, with the static field applied along one of
the [100] directions, the lowest-order term of the interaction
Hamiltonian is given by [4,40]

Hme =
∫

d3r
b2

2M2
MiMj

(
∂ui

∂xj

+ ∂uj

∂xi

)
, (39)

where the repeated indices indicate summation with i �= j ,
and b2 is one of the magnetoelastic constants. Using the
transformations (8), (29), and (30), this Hamiltonian can be
written in terms of the boson operators. We will assume that
the wave vectors of interest lie on the x-z plane of the Cartesian
system, and take ε̂(�k,1) = x̂, ε̂(�k,2) = ŷ. The component of
the Eq. (39) quadratic in the boson operators is given by

Hme = i

(
b2

2γ �
2

4ρM

)1/2

×
∑

k

[
kω

−1/2
pt cos 2θ (ak + a+

−k) (b+
1k + b1−k)

− ikω
−1/2
pt cos θ (ak − a+

−k) (b+
2k + b2−k)

− kω
−1/2
pl sin 2θ (ak + a+

−k) (b+
3k + b3−k)

]
, (40)

where ωpt and ωpl are the shear and longitudinal phonon
frequencies. We shall now confine our attention only to waves
propagating along the magnetic field (θ = 0), because in this
case the equations for the field variables are simple to solve.
The physical aspects of the general case are essentially the
same inferred in this particular situation. Taking θ = 0 in

Eq. (40) we obtain

Hme = i

(
b2

2γ �
2

4ρM

)1/2 ∑
k

[
kω

−1/2
pt ak(b+

1k − ib+
2k

+ b1−k − b2−k) − H.c.
]
. (41)

Note that longitudinal phonons do not couple with magnons
propagating along the magnetic field. Using the transforma-
tions to circularly polarized phonons given by Eqs. (35) and
(36), the total Hamiltonian for the magnon-phonon system
becomes

Ht = Hm + He + Hme

=
∑

k

�ωm(k) a+
k ak +

∑
k,μ

�ωpμ(k) b+
kμbμk

+
∑

k

i �(σk/2)[a+
k (bk(+) + b+

−k(−))

− ak(b+
k(+) + b−k(−))], (42)

where

σk = b2

(
2 γ k

ρ vptM

)1/2

(43)

is a parameter that expresses the coupling between magnons
and phonons, and vpt is the velocity of the transverse phonon,
given by vpt = (c44/ρ)1/2 for a wave propagating along a [100]
axis in a cubic crystal, or vpt = (μt/ρ)1/2 in a more general
case, where μt is the shear modulus.

B. Eigenstates of the magnon-phonon system

In this section we study some properties of the normal-mode
collective excitations of a magnetoelastic crystal under a static
uniform magnetic field. We consider magnetoelastic waves
propagating along the z direction, so that spin waves are
coupled only to shear elastic waves. In order to simplify a little
further the total Hamiltonian of the system, let us consider the
equations of motion of the magnon and phonon operators in
the Heisenberg representation. Using the Heisenberg equation
dA/dt = ∂A/∂t + (1/i�)[A,Ht ], we obtain the following
equations of motion for the magnon and phonon operators:

da+
k

dt
= iωma+

k + σk

2
b+

k(+) + σk

2
b−k(−), (44)

db+
k(+)

dt
= iωpb+

k(+) − σk

2
a+

k , (45)

db+
k(−)

dt
= iωpb+

k(−) − σk

2
a−k. (46)

In the stationary state, all operators have a exp(iωt) variation,
so that the magnetoelastic dispersion relation resulting from
Eqs. (44)–(46) is(

ω2 − ω2
p

)
(ω − ωm) − 1

2ωpσ 2
k = 0, (47)

which is a well-known result [4,42,44]. If there is no
magnetoelastic coupling, σk = 0 and the three roots of
Eq. (47) are ωm and ±ωp, the two signs corresponding
to (+) and (−) circularly polarized phonons. Figure 1
shows the dispersion relation, frequency f = ω/2π versus

214437-5



SERGIO C. GUERREIRO AND SERGIO M. REZENDE PHYSICAL REVIEW B 92, 214437 (2015)

(b)(a)

m m 

p(+)

p(+)

p(-)

m 
p(+)

0 1 2 3
-20

-10

0

10

20

Fr
eq

ue
nc

y 
f=

 /2
 (G

H
z)

Wave number k (10  cm )
0.90 0.95 1.00

5.4

5.6

5.8

6.0

6.2

Fr
eq

ue
nc

y 
f=

 /2
 (G

H
z)

Wave number k (10  cm )

FIG. 1. (Color online) Magnetoelastic dispersion curves for z-
directed waves in YIG for an applied magnetic field H = 2.0 kOe.
(a) Full dispersion with three branches. The negative branch corre-
sponds to (−) circularly polarized phonons, p(−), that have negligible
coupling with magnons. In the positive branches m and p(+) denote
the regions where the excitation is essentially a pure magnon or (+)
phonon. (b) Blowup of the crossover region showing the splitting of
the magnetoelastic dispersions (thick lines) and the pure magnon and
phonon dispersions (thin lines).

wave number, calculated from the roots of Eq. (47), with
the magnon and phonon frequencies of Eqs. (6) and (26),
using the following parameters for YIG: H = 2.0 kOe,
4π M = 1.76 kG, γ = 2.8 × 2π × 106 s−1/Oe, D = 5.4 ×
10−9 Oe cm2, b2 = 7.0 × 106 erg/cm3, ρ = 5.2 g/cm3, and
vp = 3.84 × 105 cm/s. The dispersion has three branches be-
cause the magnetoelastic excitation involves one magnon and
two transverse phonon modes. The negative linear dispersion
corresponds to the (−) circularly polarized phonon that has
negligible coupling with magnons. The two positive branches
correspond to the hybridized magnon-(+) circularly polarized
phonon. As expected, the magnetoelastic coupling is strongest
in the region where the magnon and phonon curves cross,
called crossover region. The zoom of the crossover region in
Fig. 1(b) shows that for H = 2 kOe the magnon and phonon
dispersions cross at a frequency 5.73 GHz and wave number
kcross = 0.938 × 105 cm−1. It also shows that the frequency
splitting is 0.12 GHz, which is quite small compared to the
magnon and phonon frequencies.

The analysis of the equations of motion (44)–(46) shows
that an excitation with frequency and wave number far from
the crossover has an almost pure magnon or phonon character.
However, in the crossover region the normal modes are
mixtures of magnetic and elastic excitations. The phenomenon
that we investigate in this paper is the change of character of
an excitation, from magnetic to elastic or vice versa, caused
by the time variation of the applied field. From Eqs. (44)–(46)
we find that, in the stationary state, the expectation values of
the positive and negative circularly polarized phonon operators
are related by

〈b+
k(−)〉 =

(
ω − ωp

ω + ωp

)
〈b+

k(+)〉, (48)

which shows that in a large portion of the two upper branches of
the dispersion diagram, the influence of the negative circularly
polarized phonons is negligible. Therefore, we can neglect the
negative phonon operators in Eq. (42). Dropping the (+) index

in the phonon operators left, we can write the Hamiltonian as

Ht =
∑

k

[
�ωm(k)a+

k ak + �ωp(k) b+
k bk

+ i
1

2
�σk(a+

k bk − b+
k ak)

]
. (49)

This Hamiltonian can be diagonalized by a canonical
transformation to new operators obtained by the linear combi-
nations of the magnon and the phonon operators,

dk = ukbk − ivkak, (50a)

ck = ukak − ivkbk, (50b)

where

uk =
(

ωs + ωδ

2ωs

)1/2

, vk =
(

ωs − ωδ

2ωs

)1/2

,(51a)

u2
k + v2

k = 1, (51b)

and

ωδ = (ωp − ωm)/2, ωs = (
ω2

δ + σ 2
k

/
4
)1/2

. (52)

The transformation (50) is such that the new operators
satisfy the boson commutation relations

[ck,c
+
k′ ] = [dk,d

+
k′ ] = δkk′, (53)

[ck,dk′ ] = [ck,d
+
k′ ] = 0, (54)

[ck,ck′ ] = [dk,dk′] = 0, (55)

and the Hamiltonian has the diagonal form

H =
∑

k

[�ωc(k)c+
k ck + �ωd (k) d+

k dk], (56)

where

ωc(k) = (ωp + ωm)/2 + ωs, (57)

ωd (k) = (ωp + ωm)/2 − ωs, (58)

which are the normal-mode frequencies corresponding to the
two upper branches of Fig. 1.Notice that these frequencies can
also be obtained from Eq. (47) by elimination of the negative
root −ωp and solving the resulting second-degree equation.
Equations (53)–(56) lead to the interpretation that c+

k , ck , d+
k ,

and dk are the creation and annihilation operators of quanta
of collective magnetoelastic excitations, or magnon-phonon
hybrid excitations, with energies �ωc(k) and �ωd (k). Note that
far from the crossover region, where the difference between
the magnon and phonon frequencies is much larger than the
splitting of the two branches |ωp − ωm| 	 σk , we have the
following limits:

ωp > ωm ωc → ωp and ωd → ωm
(59)

(vk → 0) ck → bk dk → ak,

ωm > ωp ωc → ωm and ωd → ωp
(60)

(uk → 0) ck → −iak dk → −ibk.
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The stationary states of the Hamiltonian (56) may be
obtained by applying integral powers of the creation operators
to the vacuum state. The single-mode states can be written in
normalized form as

|nck〉 = [(c+
k )nk /(nck !)1/2 ] |0〉, (61)

|ndk〉 = [(d+
k )nk /(ndk !)1/2 ] |0〉. (62)

The mean occupation numbers of magnons and phonons in
these states are given by

〈nck|a+
k ak|nck〉 = 〈ndk|b+

k bk|ndk〉 = v2
knk, (63)

〈nck|b+
k bk|nck〉 = 〈ndk|a+

k ak|ndk〉 = u2
knk, (64)

which are in agreement with the limits (59) and (60). Note also
that, since u2

k + v2
k = 1, the mean number of magnons plus the

mean number of phonons in any state is the total number of
the magnetoelastic quanta in that state.

The stationary states (61) and (62) can also be expanded
in terms of pure magnon and pure phonon eigenstates. As
discussed in Sec. II A, these states have a well-defined number
of quanta and uncertain phase. Coherent magnetoelastic waves
should have a well-defined phase and involve a large and un-
certain number of magnons and phonons. In order to establish
a correspondence between classical and quantum magnetoe-
lastic waves, one must use the magnetoelastic coherent states,
defined as the eigenstates of the annihilation operators

ck|αck〉 = αck|αck〉, dk|αdk〉 = αdk|αdk〉. (65)

These can be expanded in terms of the eigenstates of the
Hamiltonian

|αck〉 = e− |αck |2/2
∑
nck

(αck)nck /(nck !)1/2 |nck〉, (66)

|αdk〉 = e− |αdk |2/2
∑
ndk

(αdk)ndk /(ndk !)1/2 |ndk〉, (67)

and they have magnetization and elastic displacement com-
ponents with a well-defined phase, as expected for a classical
wave.

IV. THE MAGNON-PHONON CONVERSION IN A
TIME-DEPENDENT MAGNETIC FIELD

In this section, we consider that the ferromagnetic medium
is subject to a dynamic variation in parameters, such as
a change in the magnetization produced by a pulsed laser
[49,51], or an applied magnetic field that varies in time. This
results in a change in the magnon frequency that may change
the character of the magnetoelastic excitation. For simplicity
we will consider that the only time-varying quantity is the
magnetic field. Let us assume, for example, that prior to an
instant of time t1 the applied field H1 is constant, between
t1 and t2 it increases monotonically in time, and after t2 it
remains constant at a larger value H2 > H1. We assume also
that, prior to t1, a magnetoelastic-wave pulse with essentially
pure elastic character generated by a piezoelectric transducer
is propagating in the material. If the transverse elastic wave is
linearly polarized, it can be seen as the superposition of (+)
and (−) circularly polarized waves. Figure 2(a) illustrates the
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FIG. 2. (Color online) Illustration of the conversion of an elastic
excitation (phonon) into a spin wave (magnon) in a time-varying
magnetic field. (a) At t < t1, a (+) elastic wave propagates in the
medium with frequency f1 and wave number k1. (b) At t > t2 the field
is at a higher value and the excitation is converted to an essentially
pure spin wave with frequency f2 and the same wave number k1.

magnetoelastic dispersion at t < t1, showing that the phonon
has frequency f1 and wave number k1 > kcross in the upper
branch. If the variation of the magnetic field is slow enough
so that the excitation stays in the same eigenmode, at t > t2
it should remain in the upper branch. As will be shown later,
the wave number of the excitation remains constant during the
process, because the field is spatially uniform. Thus, as the
field changes the frequency of the excitation changes and goes
through the crossover region, so that the final state is essentially
a spin wave with wave number k1 and frequency f2, as shown in
Fig. 2(b). Conversely, if the initial state is a magnon excitation
as in Fig. 2(b) and the field decreases in time, it is converted
into a phonon excitation. Similarly, if the initial phonon state
has wave number k1 < kcross in the lower branch, it can be
converted into a magnon by a step-down time variation in the
field. The conversion from coherent elastic waves produced by
a piezoelectric transducer in a YIG cylinder into a magnetic
excitation, detected by the current induced in a nearby fine
wire, was observed sometime ago [62]. As we show in the
following sections, the magnon-phonon conversion efficiency,
which will be defined later, depends on the time rate of change
of the field.

A. Equations of motion in a time-dependent magnetic field

If the magnetic field varies in time, the magnon and phonon
operators do not have the exp(iω t) time dependence. The
quantity ω does not have the meaning of angular frequency of
a periodic function, but its relation with the energy, ω = E/�,
is still valid. Furthermore, since the transformations used to de-
fine ak and bk do not involve time-dependent quantities, these
operators are not explicit functions of time. Thus, Eq. (42)
is valid and so is the Hamiltonian in Eq. (49), provided we
neglect the coupling between (−) phonons and magnons. For
a magnetic field H (t) with any time dependence, we can obtain
the time evolution of the magnon and phonon operators using
the Heisenberg equations, considering for the Hamiltonian

Ht =
∑

k

[
�ωm(t) a+

k ak + �ωp b+
k bk + i

1

2
�σk(a+

k bk−b+
k ak)

]

=
∑

k

[�ωc(t) c+
k ck + �ωd (t) d+

k dk], (68)
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where ωm(t) is a function of time. In the case of z-directed
waves, ωm(t) = γH (t) + γD k2, so that ωm(t) is proportional
to H (t). Therefore we have for the magnon and phonon
operators,

da+
k

dt
= iωm(t) a+

k + 1

2
σkb

+
k , (69)

db+
k

dt
= iωp b+

k − 1

2
σka

+
k . (70)

The equations of motion for the normal-mode magnetoe-
lastic operators can be obtained from Eqs. (50), (69), and (70),
or directly from the diagonal Hamiltonian (68). In this case,
one has to note that the partial derivatives of the operators with
respect to time are not zero. We can show that

dc+
k

dt
= iωck(t) c+

k + iβk(t)d+
k , (71)

dd+
k

dt
= iωdk(t) d+

k + i βk(t)c+
k , (72)

where βk(t) is a parameter approximately proportional to the
time rate of change of the magnetic field Ḣ ≡ dH/dt ,

β(t) = γ σk

8 ω2
s

Ḣ (t). (73)

Equations (69) and (70) have the same form as the
semiclassical equations [42] for the transformed magnetization
and elastic displacement variables, whereas Eqs. (71) and (72)
are the same as for the normal-mode magnetoelastic variables.
Notice that if Ḣ = 0, and β = 0 the equations for ck and
dk are not coupled to each other. In this case, the states
corresponding to the two positive branches of the dispersion
diagram of Fig. 1 are orthogonal to each other at any instant
of time. However, if β �= 0, one can couple the excitations
of the two branches and the situation illustrated in Fig. 2 is
plausible. The foregoing equations have been formulated in the
Heisenberg picture, which is characterized by time-dependent
operators and a time-independent wave vector. Therefore, if
the system is initially in a state for which the expectation
values of the magnon and the phonon operators are not zero,
the time evolution of the expectation values is governed by
Eqs. (69)–(73).

B. Explicit time-dependent invariants

The invariance properties of a system play an important role
in quantum as well as in classical physics. In the problem we
are considering, an invariant with respect to time is expected
to have two roles. First, for the situation illustrated in Fig. 2,
we have to define a magnon-phonon conversion efficiency in
terms of a quantity which is conserved in the process. As the
system is not conservative, the efficiency cannot be defined
as the ratio between the energies of the two states. Second,
it is possible to study the evolution of the state of a system
with a time-dependent Hamiltonian by means of a simple
theory [63] based on the expansion of the state in terms of the
eigenstates of invariant operators. In the semiclassical theory
of a magnetoelastic medium, in a time-varying magnetic field
it has been shown [44] that, due to the spatial uniformity of
the field, the total linear momentum density is conserved. Here
we consider the linear momentum density as the sum of the

magnon and phonon momenta given by Eqs. (11) and (32),

�Pt = �Pm + �Pp =
∑

k

(��k a+
k ak + ��k b+

k bk), (74)

where b+
k and bk denote the operators for the (+) circularly

polarized phonons, since it is the only polarization that matters
here. With Eqs. (50) and (51) one can see that c+

k ck + d+
k dk =

a+
k ak + b+

k bk , so that the total momentum of magnons and
phonons is equal to the total momentum of the hybrid magnon-
phonon excitations,

�Pt =
∑

k

(��k c+
k ck + ��k d+

k dk). (75)

The equation of motion for �Pt (t) is

d �Pt

dt
= ∂ �Pt

∂t
+ 1

i�
[ �Pt ,H]. (76)

The commutator in Eq. (76) is zero, a conclusion easily
drawn from the expressions of H and �Pt in terms of the
normal-mode magnetoelastic operators, Eqs. (68) and (76).
The partial derivative of �Pt with respect to time is also zero,
which can be seen from Eq. (74) because ak and bk are not
explicit functions of time. Therefore, d �Pt/dt = 0 and �Pt is an
explicit time-dependent invariant. Since the total number of
quanta is conserved, the wave vector �k is also invariant. This
is consistent with Eqs. (71) and (72), which show that modes
with different �k are not coupled by the time variation of the
magnetic field. Clearly, this property is true only because the
“reflected particles” represented by the operator a−k in (44)
and (46) were neglected. However, the conclusion for �Pt holds
true in general.

With Eq. (37) and the similar result for magnons, consid-
ering only (+) circularly polarized phonons, we can write the
total spin angular momentum of the magnon-phonon system as

�St = �Sm + �Sp = −�

∑
k

(k̂ a+
k ak + k̂ b+

k bk), (77)

where k̂ = �k/k. Based on the same arguments used to discuss
the properties of the linear momentum, the total spin angular
momentum of the hybrid magnon-phonon excitations can be
written as

�St = −�

∑
k

(k̂ c+
k ck + k̂ d+

k dk), (78)

which is also an invariant quantity for a spatially uniform
time-varying magnetic field.

C. Solutions of the Heisenberg equations: The magnon-phonon
conversion efficiency

In this section we present solutions of the Heisenberg
equations of motion for the operators in the coupled magnon-
phonon system in a time-varying field, introduced in Sec. IV A.
Although Eqs. (69) and (70) are operator equations, their linear
character means that they can be solved in terms of c-number
linear equations. We write their solutions in the form

a+
k (t) = q(t) a+

k (t0) + p(t) b+
k (t0), (79)

b+
k (t) = s(t) a+

k (t0) + r(t) b+
k (t0), (80)
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where we have omitted the index k in the c-number functions
to simplify the notation. The momentum invariance implies
that

|q|2 + |s|2 = 1, |p|2 + |r|2 = 1, q p∗ + s r∗ = 0. (81)

The initial conditions at t = t0 are

q(t0) = r(t0) = 1, p(t0) = s(t0) = 0. (82)

From Eqs. (69), (79), and (80) we obtain for two of the
functions

dq(t)

dt
= iωm(t) q(t) + 1

2
σk s(t), (83)

ds(t)

dt
= iωp s(t) − 1

2
σk q(t). (84)

Similarly, with Eq. (70) we obtain

c+
k (t) = x(t) c+

k (t0) + w(t) d+
k (t0), (85)

d+
k (t) = y(t) c+

k (t0) + z(t) d+
k (t0), (86)

where

|x|2 + |y|2 = 1, |w|2 + |z|2 = 1, x w∗ + y z∗ = 0, (87)

and

x(t0) = z(t0) = 1, w(t0) = y(t0) = 0. (88)

Analogously, we obtain

dx(t)

dt
= iωck(t) x(t) + i β(t)y(t), (89)

dy(t)

dt
= iωdk(t) y(t) + i β(t) x(t). (90)

With Eqs. (79)–(90) one can calculate the evolution of any
quantity of interest in the coupled magnon-phonon system for
a time-varying field with given initial conditions. For instance,
let us assume that at instant t0 we have in the system a pure
magnon excitation characterized by a state |ψ0〉. This is only
an approximation because it is not possible to have a magnon
excitation without some phonon admixture. However, if �k is
very far from the crossover region, this approximation may
be very good. If after t0 the applied field varies in time, there
will be a transfer of linear and angular momenta to phonon
excitations, as revealed by Eqs. (79) and (80). Since the sum of
the magnon and the phonon mean momenta is conserved, it is
convenient to define a conversion efficiency from the magnon
to the phonon state as the ratio between the mean momenta,
either linear or angular, in the two states. Using (76), (79), and
(80), and considering that 〈ψ0|bk|ψ0〉 = 〈ψ0|b+

k bk|ψ0〉 = 0,
we find for the magnon-phonon conversion efficiency

ηmp(t) = 〈Sp(t)〉
〈Sm(t0)〉 = |s(t)|2. (91)

Notice that this is valid for any magnon state |ψ0〉.
Analogously, we see that if the system is initially in a phonon
state, the phonon-magnon conversion efficiency is given by
|p(t)|2. Similarly, we can define a conversion factor for the two
magnetoelastic normal-mode excitations, which represents the
transfer of momenta between the two branches of Fig. 2. It can

fie
ld

 H
( t)

time (t)
FIG. 3. (Color online) Variation of the magnetic field with a

tanh(α t/2) time dependence.

be shown that

ηcd (t) = 〈Sd (t)〉/〈Sc(t0)〉 = |y(t)|2, (92)

ηdc(t) = 〈Sc(t)〉/〈Sd (t0)〉 = |w(t)|2, (93)

which are valid for conditions analogous to those used to derive
(91). To obtain (92) we assume that the system is initially in a
pure ck state, and for (93) it is initially in a pure dk state.

The systems of linear equations (83)–(84) and (89)–(90)
cannot be solved for a general time dependence of the applied
field. However, it is possible to find their solution for particular
cases of interest. In the case of a slowly varying field (the
slowness condition will be specified later), i.e., in an adiabatic
approximation, it is convenient to work with Eqs. (71)–(72)
and (89)–(90), because in this case the coupling between the
ck and dk modes is small. Consider, for instance, that in this
approximation we have the situation depicted in Fig. 3. The
system is initially in a phonon state in branch ck , and the field
increases so that the frequency goes through the crossover
region. The phonon-magnon conversion efficiency is therefore
given by 1 − |y(t)|2. The solution of (89) and (90), in the
limit where γ Ḣ � σ 2

k , is identical to the solution of the
semiclassical equations for a similar problem [44],

ηpm = 1 − |y(∞)|2 ≈ 1 − (π2/9) exp(−Ḣcrit/Ḣcross),

(94)

where Ḣcross is the absolute value of the field gradient at the
instant when the magnon and phonon frequencies cross each
other, and

Ḣcrit = π σ 2
k

2γ
(95)

is a critical field-gradient evaluated at the wave number of the
excitation. Another situation of interest is that of the sudden
change of the field, characterized by the condition γ Ḣ 	 σ 2

k .
In this case the coupling between modes ck and dk is strong
so that their character of quasinormal modes loses meaning.
In this case, however, the coupling between the magnon and
phonon operators is small, and Eqs. (69)–(70) and (83)–(84)
can be solved approximately. Again, considering the situation
of Fig. 2, we see that the phonon-magnon conversion efficiency

214437-9



SERGIO C. GUERREIRO AND SERGIO M. REZENDE PHYSICAL REVIEW B 92, 214437 (2015)

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0
C

on
v.

 e
ffi

ci
en

cy

1/(field gradient)

weak coupling

strong coupling

exact solution for

FIG. 4. (Color online) Calculated magnon-phonon conversion
efficiency as a function of the field time-gradient at the crossover.

is given by |p(t)|2, where p(t) is a solution of the equations
for p and r which are identical to (83) and (84). The analogy
with the semiclassical case gives immediately [44]

ηpm = |p(∞)|2 ≈ Ḣcrit/Ḣcross. (96)

Finally, we note that Eqs. (83) and (84) can be integrated
exactly for a magnetic field with a time variation H (t) =
H0 + δH tanh(α t), where t = 0 is the instant when the
magnon and phonon frequencies cross each other, so that
Ḣcross = α δH . Figure 3 shows a plot of this function, which is
a rounded steplike variation of the type necessary to produce
the conversion illustrated in Fig. 2. It has been shown [64]
that equations similar to (83) and (84) can be transformed
into a hypergeometric equation exactly soluble for the time
dependence tanh(α t). For the same situation previously con-
sidered, it can be shown that the phonon-magnon conversion
efficiency, defined as the ratio between the magnon momentum
at t → ∞ and the phonon momentum at t → −∞, is given
exactly by

ηpm = 1 − exp(−Ḣcrit/Ḣcross). (97)

From the symmetry of Eqs. (89) and (90) one can see
that if the system is initially in a magnon state and the
field varies so that it is converted into a phonon state,
the magnon-phonon conversion efficiency ηmp is given by the
same equations as ηpm. Figure 4 shows plots of the magnon-
phonon conversion efficiencies expressed by Eqs. (94), (96),
and (97) valid, respectively, for Ḣcross � Ḣcrit, Ḣcross 	 Ḣcrit,
and H ∝ tanh(α t). We call the condition Ḣcross � Ḣcrit the
strong magnon-phonon coupling regime, because in this
case there is little transfer of momenta between the two
magnetoelastic normal modes, and therefore as the frequency
passes the crossover there is a large conversion from elastic into
magnetic excitation. The opposite situation, where Ḣcross 	
Ḣcrit, represents a weak magnon-phonon coupling, because in
this case there is a large transfer of momenta between the two
normal modes. Figure 4 shows that a conversion efficiency of
at least 80% is achieved with a field gradient Ḣcross < Ḣcrit/2.
Using for YIG the same parameters employed to calculate
the curves of Fig. 1, we obtain with Eq. (95) Ḣcrit = 5.2 ×
1010 Oe/s. Thus, a large conversion efficiency can be attained

with steplike field variations with gradients smaller than 260
Oe/10 ns, a condition easily realized in experiments.

V. ADDITIONAL REMARKS ABOUT MAGNON-PHONON
CONVERSION AND CONCLUSION

To conclude the study of the quantum aspects of the
magnon-phonon conversion in a time-dependent magnetic
field, let us consider the situation where the system is initially
in a “pure” phonon state |ψ0〉. Due to a time variation of
the field, the system may end up in a magnon state with
a momentum conversion efficiency given by |p(t)|2. This
result is valid for any initial state which has a nonzero mean
momentum. It can be, for instance, a stationary state of the
Hamiltonian, or a coherent state. Assume that the system
is initially in a coherent phonon state, which is the type
expected to be generated by a piezoelectric transducer in
typical ultrasonics experiments. Thus, |ψ0〉 = |αk,k〉, where

bk|αk,k〉 = αk|αk,k〉. (98)

Before the field starts changing in time, the variance of
the operator b+

k + bk , which is related to the displacement
operator, is given by

�2(b+
k + bk) = 〈ψ0|(b+

k + bk)2|ψ0〉 − 〈ψ0|b+
k +bk|ψ0〉2 = 1.

(99)

From this result, it is possible to show that the product of the
variances of b+

k + bk and of its canonical conjugate is given by
�

2/4, which is the minimum value allowed by the uncertainty
principle. This is a well-known property of coherent states
[59]. An indication of the time evolution of the coherence of the
system, and consequently of the precision of measurements, is
given by the time dependence of the variances of observables.
Using the Heisenberg equations of motion and the commuting
properties of the magnon and phonon operators, we find that
for an initial coherent phonon state we have

�2(b+
k + bk) = 1, �2(a+

k + ak) = 1. (100)

Therefore, a system described by the Hamiltonian in
Eq. (68) that is initially in a coherent state maintains its
coherence properties regardless of the time dependence of the
field.

In conclusion, we have presented a quantum theory of the
interaction between magnons and phonons in a ferromagnetic
material with magnetic parameters that can be varied dynam-
ically. We have shown that if a parameter variation produces
changes in the magnon frequency, one can convert magnons
into phonons, or vice versa. In the case of a spatially uniform
time-varying magnetic field, if the field time-gradient at the
magnetoelastic crossover region is much smaller than a critical
value, an initial magnon state can be completely converted
into a circularly polarized phonon with conservation of linear
momentum and spin angular momentum, or vice versa. This
means that phonons created by the conversion of magnons
have spin angular momentum and carry spin current. We have
also shown that if the system is initially in a quantum coherent
state, its coherence properties are maintained regardless of the
time dependence of the field.
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