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The quantum scattering of magnon bound states in the anisotropic Heisenberg spin chain is shown to display
features similar to the scattering of solitons in classical exactly solvable models. Localized colliding Gaussian
wave packets of bound magnons are constructed from string solutions of the Bethe equations and subsequently
evolved in time, relying on an algebraic Bethe ansatz based framework for the computation of local expectation
values in real space-time. The local magnetization profile shows the trajectories of colliding wave packets of
bound magnons, which obtain a spatial displacement upon scattering. Analytic predictions on the displacements
for various values of anisotropy and string lengths are derived from scattering theory and Bethe ansatz phase
shifts, matching time-evolution fits on the displacements. The time-evolved block decimation algorithm allows
for the study of scattering displacements from spin-block states, showing similar scattering displacement features.
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I. INTRODUCTION

The study of classical dynamics in nonlinear media has
proven to be a source of astonishing surprises over the last
century. Two observations, both based on numerical simula-
tions, have challenged prejudices and fundamentally altered
traditional ways of thinking. First, the famous observation of
Fermi, Pasta, Ulam, and Tsingou [1] of a simple nonlinearly
coupled set of oscillators showing nontrivial recurrences has
shattered the long-held assumption that all nonlinear dynami-
cal systems ergodically explore their full phase space. Second,
the pioneering numerical analysis of Zabusky and Kruskal
[2] on the Korteweg–de Vries equation [3] demonstrated
that this equation supports excitations, which they coined
“solitons,” displaying a number of surprising fundamental
features. The solitons are localized in space, with a form
remaining stable under time evolution which sees them moving
uniformly at a speed linearly proportional to their amplitude.
Additionally, the astounding characteristic was observed of
solitons emerging intact from mutual scattering processes,
during which they simply “pass through” one another without
losing their identity [2], the only effect of the collision being
a relative spatial displacement as compared to their free
propagation. The proper understanding of solitons in nonlinear
media ultimately led to the development of the classical inverse
scattering method [4,5], which is the overarching framework
for classical integrable models.

Nonlinear classical systems find their quantum mechanical
analog in the shape of interacting many-body systems. In
parallel to the classical case, some quantum models have
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been shown to be special, in the sense of being exactly
solvable using the quantum version of the inverse scattering
method [6] (one might also say integrable, although the
quantum notion of integrability is not as well defined as
its classical counterpart [7]). Fundamental representatives of
this family are the Heisenberg spin chain, solved by Bethe
using what is now known as the Bethe ansatz [8], along
with the Lieb-Liniger model of δ-interacting bosons on a
line [9]. For the latter, particlelike excitations called Lieb
type I modes [10] exist due to the interparticle repulsion,
along with type II holelike excitations visualized as holes
in an effective Fermi sea. It is possible to distinguish the
presence of type I and II modes in correlated bosonic gases
in optical lattices using Bragg spectroscopy [11,12]. Quantum
magnets such as the Heisenberg spin chain similarly carry
particlelike magnon modes when the magnetization is close
to saturation. In the limit of small magnetization, holelike
modes again appear, which in zero field are known as spinons
[13]. Their dynamics can be experimentally observed using
inelastic neutron scattering [14,15]. The Heisenberg chain
supports distinct bound states of magnons, whose dynamics
has been investigated theoretically [16] and has recently been
observed experimentally [17].

One could view such excitations as the quantum equivalents
of classical solitons. This equivalence is, however, only partial:
on the one hand, these quantum mechanical modes represent
exact eigenstates and are stable under time evolution; on
the other hand, being exact eigenstates of translationally
invariant systems, they are not spatially localized. That said,
as is usually the case in quantum mechanics, it is possible
to adopt a “complementary” picture and create spatially
localized excitations by forming wave packets of fundamental
excitations by linearly combining states over a range of
differing momenta. Locality, however, comes at a price: the
wave packet, mixing together states at different energies, will
disperse and is thus not stable over long time scales, unlike its
classical counterpart. We use the term quasi-soliton for such a
wave-packet construction, an example of which was recently
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studied in the context of the Lieb-Liniger model [18], while
their mutual scattering has been studied in quantum spin chains
[19,20].

The spectroscopic methods traditionally employed to ex-
perimentally study condensed-matter systems typically pro-
vide momentum- and energy-resolved measurements. How-
ever, current experimental developments provide motivation
to obtain a better theoretical understanding of spatially
localized dynamics. Time-resolved experiments are now able
to track quantum many-body systems at time scales smaller
than relaxation time scales, particularly in experiments with
ultracold atoms [17,21,22], but also in NMR setups [23] and
potentially in pump-probe spectroscopy experiments [24]. As
a result, nondissipative dynamics of many-body systems out
of equilibrium is now a rapidly growing field of experimental
as well as theoretical investigation [25]. Novel cold-atom ex-
perimental techniques for spatially resolved manipulation and
observation at the single-site level [17,22,26] have opened the
door to explicit high-resolution tracking of spatial propagation
phenomena. Moreover, an experiment with interacting bosonic
atoms has highlighted the interaction-induced longevity of
repulsive pairs [27]. This has motivated increased theoretical
attention to the (anti)binding of localized excitations and
interactions of these bound clusters, both in itinerant systems
[19,28] and in spin chains [16,19,20,29]. Very recently, the
spatial dynamics of itinerant clusters has been studied in
experiment [30]. Propagation of quantum solitons in Bose-
Hubbard chains has also been studied numerically [31].

In Ref. [19], the scattering of a magnon wave packet on
approximate bound eigenstates of n particles was studied
numerically in the Heisenberg chain. In this work, we present
an algebraic framework and exact calculations based on Bethe
ansatz. We therefore consider quantum scattering of localized
excitations over a ferromagnetic background in the Bethe
ansatz solvable anisotropic spin- 1

2 Heisenberg chain (XXZ
model) [8,32,33]

H = J

N∑
j=1

[
Sx

j Sx
j+1 + S

y

j S
y

j+1 + �

(
Sz

jS
z
j+1 − 1

4

)]
. (1)

The XXZ model is experimentally realizable, for example, in
the setups of Refs. [17,22], which use two hyperfine states of
bosonic atoms in the Mott phase to experimentally realize the
spin-up and spin-down states. The effective model is a nearly
isotropic (� ≈ 1) Heisenberg chain, while an experimental
setup with variable anisotropy � is under development [34]. In
addition, the XXZ model has been shown to describe Joseph-
son junction arrays of the flux qubit type [35], and may also be
realizable in optical lattices [36] or with polaritons in coupled
arrays of cavities [37]. It is conceivable that these or similar
experimental setups may provide time-resolved observations
of propagating and interacting localized excitations.

The parameter J in Hamiltonian (1) is given by the
exchange interaction of two neighboring electrons or, in
the aforementioned experimental setup, by the exchange
interaction between two neighboring bosons in an optical
lattice at unit filling. Its sign does not matter for our purposes
here [19,38,39]; for definiteness, we set it to J > 0. We
distinguish two regions for the anisotropy parameter �,
namely, the planar xy (|�| < 1) or axial z (|�| > 1) cases.

Due to the interaction term (∝ �), the XXZ chain displays
a whole zoology of fundamental excitations: isolated down
spins can form spatially bound states (as was understood by
Bethe already in his original publication [8]), whose bond size
decreases as � increases. These excitations are often referred
to as “string states,” as the rapidities describing Bethe states
containing such bound multimagnons appear as approximately
equally spaced vertical strings in the complex plane (the
precise set of available bound states depends on the value
of �; at the isotropic point � = 1 and in the axial regime, all
string lengths are allowed).

We construct spatially localized wave packets of n bound
magnons using linear combinations of these string states of
length n with Gaussian-distributed momenta. We call them
“n-string wave packets.” We further demonstrate that exact
methods based on the algebraic Bethe ansatz [6] provide a
framework to evaluate the time-dependent expectation value
of the local magnetization 〈Sz

j (t)〉 algebraically, which can be
used to track those localized magnonlike wave packets. We
investigate their stability and mutual scattering using a com-
bination of scattering theory, Bethe ansatz, and numerically
exact calculations.

At large anisotropy � � 1, magnon bound states resemble
having downturned spins on neighboring sites. An n-string
wave packet is thus closely approximated by a consecutive
block of n downturned spins. While this correspondence
breaks down at smaller �, this provides motivation to study
the evolution of states with downturned spins on a consecutive
block of sites. In addition, this is exactly the type of initial state
prepared in experiments [17,22]. Scattering of such blocks has
been explored in Ref. [19], where a spatial displacement of two
sites was observed for the block at several �, and explained
at large � in terms of energy conservation. In this work, we
connect scattering phase shifts with trajectory displacements
in order to provide a Bethe ansatz derivation of the observed
displacements.

The paper is organized as follows. In Sec. II, we will
introduce the concepts of string solutions and the scattering
phase shifts associated with n-strings, along with details
on the algebraic Bethe ansatz [6] based evaluation of the
time-dependent expectation value of the local magnetization
〈Sz

j (t)〉, which can be used to track localized magnonlike
excitations of the spin chain. In Sec. III, we elaborate on
the construction, stability and time evolution of scattering of
n-string wave packets. We also compare with the stability
of consecutive-site spin blocks. In Sec. IV, we consider the
scattering trajectory displacements, derive analytical results
for them, and compare with numerical measurements. The
� → ∞ limit is treated analytically, comparing with numer-
ical data for spin-block initial states. The appendixes provide
details involving scattering theory and details on obtaining the
phase shift directly from the phase of the time-evolving wave
function.

II. TIME EVOLUTION FROM BETHE ANSATZ

In this section, we present the basic formulas of the Bethe
ansatz for the spin- 1

2 XXZ model and explain the concept of
string solutions and the scattering phase shift associated with
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n-strings. In Sec. II C, expressions are given for the time-
evolved expectation value of the local magnetization by using
results from algebraic Bethe ansatz. The method used here
relies on the availability of determinant expressions for matrix
elements between Bethe states [40–42]. This last subsection is
relatively technical and could be skipped on first reading.

A. Coordinate Bethe ansatz for the XXZ model

The eigenstates of the XXZ spin chain (1) can be con-
structed via the Bethe ansatz [8,33] and have the form

|{λ}〉 =
∑

j1<...<jM

∑
Q

AQ({λ})
M∏

a=1

eijap(λQa )S−
ja

|↑↑ . . . ↑〉, (2)

where M denotes the number of downturned spins and
therefore fixes the magnetization. The sum over Q is a sum
over all permutations of M objects and the amplitudes AQ

are related to the scattering phases. The set of M complex
rapidities {λ} ≡ {λj }Mj=1 completely determines the Bethe state
and is simply related to the physical energy and momentum.
By imposing periodic boundary conditions, i.e., Sα

N+1 = Sα
1

for α = x,y,z in the Hamiltonian (1), each set of rapidities {λ}
corresponding to an M-magnon eigenstate must obey Bethe
equations (

φ1(λj )

φ−1(λj )

)N

=
M∏

k = 1
k �= j

φ2(λj − λk)

φ−2(λj − λk)
. (3)

The different definitions of φn(λ), θn(λ), and ζ for various
regions in anisotropy � are given in Table I, while the
relation φ−n(λ)/φn(λ) = −eiθn(λ) holds as well. Within the
Bethe ansatz, the momenta of single downturned spins can
be parametrized in terms of rapidities

p(λ) = −i ln

[
φ1(λ)

φ−1(λ)

]
= π − θ1(λ). (4)

By invoking Schrödinger’s equation H |{λ}〉 = E|{λ}〉 for a
Bethe state consisting of a single downturned spin, the magnon
dispersion relation

E(p) = J [cos(p) − �] (5)

is easily derived. In the case of just two single magnons, their
scattering phase shift χ (1,1)(p1,p2) can be obtained from the
permutation of two magnons in the Schrödinger equation

AQ′

AQ

= −1 + ei(p1+p2) − 2�eip2

1 + ei(p1+p2) − 2�eip1
= −eiχ (1,1)

, (6)

TABLE I. Definitions of functions appearing in Bethe ansatz for
different regions in anisotropy �.

ζ φn(λ) θn(λ)

|�| < 1 acos (�) sinh
(
λ + inζ

2

)
2 atan

( tanh(λ)

tan( nζ
2 )

)
� = 1 λ + in

2 2 atan
(

2λ

n

)
� > 1 acosh (�) sin

(
λ + inζ

2

)
2 atan

( tan(λ)

tanh( nζ
2 )

)

where Q is the identity and Q′ interchanges the two in-
dices 1 and 2. Furthermore, the magnon momenta p1 =
p(λ1) and p2 = p(λ2) as well as the scattering phase
shift χ (1,1) = θ2(λ1 − λ2) = π − i ln[φ−2(λ1 − λ2)/φ2(λ1 −
λ2)] are parametrized by the two rapidities λ1 and λ2.

Note that in the general context of two-particle scattering
(see Appendixes A and B) the scattering phase shift is denoted
by χ , while it is denoted by χ (m,n) (see, e.g., Sec. IV A) when
scattering of m- and n-magnon bound states is considered.

B. Strings and magnons

The sets of rapidities solving Bethe equations (3) are
self-conjugate and arrange themselves in patterns of string
solutions

λ
(n)
j,a = λ

(n)
j + iζ

2
(n + 1 − 2a) + i

π

4
(1 − νj ) + iδ

(n)
j,a , (7)

where the string center λ
(n)
j ∈ R and a = 1, . . . ,n is the internal

label of a rapidity within a string of length n and parity νj .
In the planar regime |�| < 1, periodicity of the trigonometric
functions also allows for string centers to be located on the
line iπ/2, resulting in negative parity strings (νj = −1). A
potential analysis of negative parity strings would only start
from 5-strings onwards, as negative parity strings of lengths 2,
3, and 4 do not exist [43] for 0 < � < 1. The case of negative �

does contain this type of strings, but can be considered from a
similarity transformation of the model at positive �. Therefore,
negative parity strings will be left out of consideration for
the analysis of scattering magnons, restricting to νj = 1 and
positive �.

At finite size, solutions are not exactly given by strings,
but rather contain string deformations δ

(n)
j,a ∈ C, under the

constraint that the full set of rapidities {λ} remains self-
conjugate. In the cases considered here, the deviations are
exponentially small in system size and it is therefore sufficient
to take the limit of vanishing deviations. In this limit, the
product of the Bethe equations of all rapidities within a string
reduces to the Bethe-Gaudin-Takahashi equations [44], which
are similar to the Bethe equations but given in terms of the
n-string centers λ

(n)
j . In logarithmic form, they read as

θn

(
λ

(n)
j

) − 1

N

∑
m

Mm∑
k=1

�nm

(
λ

(n)
j − λ

(m)
k

) = 2π

N
I

(n)
j ,

(8)
j = 1, . . . ,Mn

where Mn denotes the number of n-strings present, satisfying∑
n nMn = M . The logarithmic scattering kernels θn(λ) are

defined in Table I and the scattering phase shift between two
individual strings of arbitrary length is given by (for |�| < 1
we consider only strings with positive parity)

�nm(λ) = (1 − δnm)θ|n−m|(λ) + 2θ|n−m|+2(λ) + · · ·
+ 2θn+m−2(λ) + θn+m(λ). (9)

The logarithmic form of the Bethe-Gaudin-Takahashi equa-
tions allows for the introduction of string quantum numbers
I

(n)
j , obeying an exclusion principle for all Bethe states,

meaning that every Bethe state is characterized by a unique
set of string quantum numbers. By considering the limit of
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sending a string center to infinity, the maximum allowed string
quantum number can be derived. These limiting quantum
numbers define the dimensions of subsectors of the Hilbert
space containing a specific string content.

Moreover, in the planar case |�| < 1, the existence of
strings with a specific length n in the spectrum is determined by
the anisotropy [44]. Therefore, restrictions on the availability
of n-string wave packets as well as on their momenta [45] are
present in the planar case |�| < 1, depending on the value of
�.

We get all Bethe states with the desired string content
by solving the Bethe-Gaudin-Takahashi equations (8) using
an iterative algorithm for all combinations of allowed string
quantum numbers. After obtaining the rapidities, the energy
of a Bethe state containing strings is easily computed as

E{λ} = −J

2
|φ2(0)|

∑
n

Mn∑
j=1

θ ′
n

(
λ

(n)
j

)
, (10)

where θ ′
n is the derivative of θn. The energy contribution

E(n)(p) of a string of length n to the energy E{λ} is

E(n)(p) = J
φ2(0)

φ2n(0)
[cos(p) − εn], (11)

where εn = cos(nζ ),1, cosh(nζ ) for |�| < 1, � = 1, and � >

1, respectively. The momentum p = p(n)(λ) of an n-string with
string center λ is given by

p(n)(λ) = π − θn(λ). (12)

In the following, we use the convention −π < p(n) � π .
Equations (11) and (12) are only the correct formulas for
energy and momentum of a string if the thermodynamic limit
is taken while keeping the number M of rapidities finite (i.e.,
zero density). The dressing of energies and momenta can then
be neglected. For the finite-size calculations performed later
in Secs. IV and III, we use Eq. (10) for the energy valid for
any finite size, including the dressing of energies. Note further
that for a single n-string the minimum of the energy dispersion
is always at λ(n) = 0, i.e., at momentum p(n) = π . The total
momentum of a Bethe state can be extracted from its string
quantum numbers

P{λ} =
∑

n

Mnπ − 2π

N

∑
n,j

I
(n)
j mod 2π . (13)

In the thermodynamic limit and for a finite number M of
rapidities, each separate bound magnon represented by a string
quantum number I

(n)
j can be associated to a single-particle

momentum p
(n)
j :

p
(n)
j = p(n)

(
λ

(n)
j

) = π − 2π

N
I

(n)
j . (14)

In the construction of the initial states in the finite-size
calculations of the following sections, we use Eq. (14) to
identify the asymptotic momenta, i.e., the momenta of the
wave packets when they are well separated in space. This
identification is exact if the wave packets are infinitely distant.
For a finite but large distance, small dressing effects do play a
role, but we can neglect them in our analysis.

To summarize, the rapidities belonging to each eigen-
state are obtained by iteratively solving the Bethe-Gaudin-
Takahashi equations (8). They can be used to evaluate
the determinant expressions (18) for the normalized matrix
elements of the following section.

C. Magnetization expectation value

Time evolution of the expectation value of the local
magnetization 〈Sz

j (t)〉 is performed by making use of the
algebraic Bethe ansatz [6]. The time-dependent wave function
is computed using unitary time evolution in a basis of Bethe
states |{λ}〉,

|�(t)〉 = e−iH t |�(0)〉 =
∑
{λ}

e−iE{λ}tC{λ}|{λ}〉 , (15)

where the coefficients C{λ} = 〈{λ}|�(0)〉 are determined by
the initial state |�(0)〉, which is given in Sec. III, Eq. (23), for
the construction of n-string wave packets.

The expectation value of the local magnetization at site j

is given by〈
Sz

j (t)
〉 = ∑

{λ},{μ}
e−i(E{λ}−E{μ})tC{λ}C∗

{μ}〈{μ}|Sz
j |{λ}〉. (16)

As the states |{λ}〉, |{μ}〉 are Bethe states determined, respec-
tively, by sets of rapidities {λj }Mj=1, {μj }Mj=1 that obey Bethe
equations (3) (here we have M rapidities in both sets since
the operator Sz

j does not change the magnetization), the matrix
elements are given by the normalized expressions obtained
from algebraic Bethe ansatz

〈{μ}|Sz
j |{λ}〉 = Fz

j ({μ},{λ})√
N ({μ})N ({λ}) . (17)

Here, we make use of the determinant expressions obtained in
Ref. [42]:

Fz
j ({μ},{λ}) = ϕj−1({μ})

ϕj−1({λ})
M∏

k=1

φ1(μk)

φ1(λk)

× det [H ({μ},{λ}) − 2P ({μ},{λ})]∏M
k,l = 1
k < l

φ0(μk − μl)φ0(λl − λk)
, (18)

with ϕj ({λ}) = e−iP{λ}j and φn(λ) defined in Table I. The
entries of the matrices H ({μ},{λ}) and P ({μ},{λ}) are given by

Hab({μ},{λ}) = φ2(0)

φ0(μa − λb)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M∏
k = 1
k �= a

φ2(μk − λb)

−
[
φ−1(λb)

φ1(λb)

]N M∏
k = 1
k �= a

φ−2(μk − λb)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (19)

Pab({μ},{λ}) = φ2(0)

φ−1(μa)φ1(μa)

M∏
k=1

φ2(λk − λb). (20)
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The normalization N ({λ}) is computed from the Gaudin
determinant [46,47]

N ({λ}) = [φ2(0)]M
M∏

k,l = 1
k �= l

φ2(λk − λl)

φ0(λk − λl)
det �({λ}), (21)

where the Gaudin matrix is given by the Jacobian of the Bethe
equations

�ab({λ}) = δab

[
Nθ ′

1(λa) −
M∑

k=1

θ ′
2(λa − λk)

]

+ θ ′
2(λa − λb). (22)

The time-dependent expectation value of the local magne-
tization is then obtained by evaluating the double sum over
matrix elements in Eq. (16). By construction, the double sum
only includes eigenstates with the same particle content, which
is not large for the few-magnon states we will consider. As a
result, the double summation is still tractable at lattice sites
N ∼ O(102). In the case of dealing with string solutions for
the magnon bound states, reduced determinants for strings
described in Ref. [48] must be used.

III. BOUND MAGNON WAVE PACKETS

The strings described in the previous section do not
correspond one to one to localized bound states of downturned
spins, but rather are translationally invariant constituents of
Bethe eigenstates. In order to create states of n bound magnons
with localized magnetization features, we construct Gaussian
wave packets by summing over single n-string states (labeled
by the string center λ(n)) with momenta distributed around p,

|�(0)〉 = N0

∑
p

e−ipx− α2

4 (p−p)2 |λ(n)(p)〉, (23)

where N0 is a normalization constant. Unitary time evolution
under Hamiltonian (1) implies an expression of the velocities
of the wave packets by expanding the dispersion relation (11)
around p = p to first order (see Appendix B):

v = ∂E(n)(p)

∂p

∣∣∣∣
p=p

= −J
φ2(0)

φ2n(0)
sin(p). (24)

The prefactor can be expanded for large anisotropy,

φ2(0)

φ2n(0)
� (2�)−n+1 , (25)

implying that wave packets constructed from higher strings
have a lower velocity in real space.

In the remainder of this section, we will analyze the stability
of n-string wave packets, along with the stability of another
form of a localized multimagnon, a consecutive-site spin
block. The two constructions are closely related to each other
for large �. Subsequently, scattering processes of n-string
wave packets are visualized by computing the time evolution
of the local magnetization. Furthermore, we describe a method
for direct observation of the phase accumulated by the wave
function of a finite spin chain during a scattering process.

A. Stability of n-string wave packets

The center of the wave packet x(t) and its width �x(t) are,
respectively, given by the expectation value and the variance
of the position operator

x̂ =
N∑

j=1

j

(
1

2
− Sz

j

)
. (26)

In the continuum limit, the sum over all possible n-string
momenta p = p(n) can be approximated by an integral. For
the width of the Gaussian wave packet in real space we obtain

�x(t = 0) :=
√

〈�(0)|[x̂ − x(0)]2|�(0)〉 ≈ α

2
. (27)

String solutions, being associated with bound states of
magnons with exponentially decaying wave functions, will
add exponential terms to the shape of the n-string wave
packets in real space. By inserting the complex momenta
of the individual constituents of the string solutions to the
Bethe wave function, it can be shown that, for example, a
2-string state with momentum π/2 contains exponentials in
the Bethe wave function reading e−(x2−x1)/ξ , with an effective
binding length ξ = 2/ ln(2�2). This average distance between
the constituent particles in the string states provides a lower
bound to how localized the wave packets constructed out of
such string states can be.

For α < ξ (�), the wave packet will start to lose its Gaussian
shape in real space in favor of a simple exponential decay
around the wave-packet center. This issue can be circumvented
by choosing large enough Gaussian widths, but will require
much higher system sizes. The effective binding length
becomes smaller at higher anisotropy, making the problem
of the extra exponentially decaying shape to the Gaussian
wave-packet construction relevant only at |�| � 1.

Induced by the nonlinear dispersion relation of the
magnons, the width of a wave packet in real space will
furthermore increase in the course of time [see Eq. (A2)]:

�x(t) =
√

α2

4
+ δ2

nt
2

α2
, (28)

obtained by expanding the dispersion relation [Eq. (11)]
to second order around the average momentum, yielding
δn = ∂2E(n)(p)

∂p2 |p=p. The broadening of n-string wave packets
in real space is therefore described by the initial width α and

δ2
n = J 2

(
φ2(0)

φ2n(0)

)2

cos2(p). (29)

To first order, all strings of arbitrary length are stable at
momenta p = ±π/2, but possess a nontrivial dependence on
the anisotropy for other momenta. Moreover, the broadening
of 1-string wave packets is not influenced by the anisotropy.
The anisotropy-dependent factor can again be approximated
in the large anisotropy limit given by Eq. (25), showing that
the stability of the wave packets increases with increasing
anisotropy and string length.

In Fig. 1, the magnetization profile of a diffusing 2-string
wave packet with zero group velocity computed from algebraic
Bethe ansatz is shown. We used as average momentum p = π

since the energy dispersion relation has its minimum there.
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FIG. 1. (Color online) Left: decaying 2-string wave packet with
zero group velocity (bound state of two magnons with Gaussian
momentum distribution centered with α = 4 around p = π , where
the energy dispersion has its minimum), in a chain of N = 100
sites, calculated from algebraic Bethe ansatz matrix elements.
Right: prefactor δ2 of the t2 dependence of the wave-packet width.
Theoretical curve [Eq. (29)] with p = π and J = 1, as a function of
�. The data points are retrieved by fitting δ2 from the decaying wave
packets from the Bethe ansatz time evolutions.

Furthermore, fitted parameters on the time-dependent wave-
packet width are compared to the theoretical values of δ2

n for
2- and 3-strings.

The diverging behavior at low anisotropy of both δ2
n and the

effective binding length of strings constrain the applicability
of scattering theory results for the planar regime |�| < 1.

B. Stability of spin blocks

A similar or even more drastic dispersing behavior can be
observed for blocks of n adjacent sites. Figure 2 shows the time
evolution of a block of 20 upturned spins in a ferromagnetic
chain of downturned spins for different anisotropy parameters
�. The results shown in Figs. 2 and 6 were obtained using the
time-evolving block decimation (TEBD) algorithm [16,19,49].

In the axial regime � > 1, the initial state mostly projects
onto many-magnon bound states, namely n-strings with n �
20, which for such anisotropy values are tightly bound and
thus have a large overlap with the initial spin block. A
quantitative analysis of the overlap between the initial spin
block and large strings is provided by Refs. [50,51] for
a comparable situation involving a prepared domain-wall
state containing M consecutive down spins on a polarized
background. The overlaps between the M-spin block state
and a few string configurations are considered, where the
normalization saturation becomes entirely dominated by the
M-string states with increasing anisotropy.

Since the spin blocks mostly contain large strings for
large anisotropy, they display slow dispersion [see Eq. (11)],
meaning that the initial spin block remains more or less intact in
time over long time scales. However, as the isotropic point � =
1 is approached, the nature of the overlaps drastically changes.
Eigenstates with combinations of smaller strings start carrying
a larger fraction of the total overlap with the initial state. Under
time evolution, one thus sees space-time propagation lines
corresponding to shorter strings, which disperse more rapidly.
By the time one has entered the planar regime 0 < � < 1, the
initial spin block decomposes into all available string lengths
including the most rapidly dispersing 1-string states, leading

FIG. 2. (Color online) Decay of a block of 20 upturned spins in a
chain of N = 1000 sites for different values of anisotropy, computed
using TEBD. Around the isotropic point � = 1, the behavior of the
spin block changes drastically, as the spin block becomes less tightly
bound and will start to decay into smaller strings.

to a rapid dispersion of the magnetization throughout the “light
cone” defined by the maximal group velocity of the 1-strings.

A comparison of Figs. 1 and 2 (both at p = π ) shows that
spin blocks decay faster than n-string wave packets of the
previous subsection, which has a twofold explanation. First,
an n-string wave packet is a superposition of n-string Bethe
states which have no decay channel into strings of smaller
lengths. In contrast, in the superposition of the initial spin
block state, all smaller string lengths are allowed and actually
present. Second, in the momentum distribution of the spin
block, momenta belonging to high velocities are not Gaussian-
type suppressed. Therefore, states with high velocities (p ≈
π/2) are more dominant in the spin-block state than in the
n-string wave packet, both with p = π . However, the spin-
block state and the n-string wave packets become similar
at higher �, such that the analytic predictions on scattering
displacement become applicable to both cases.

C. Scattering n-string wave packets

The prescattering bound magnon initial states |�(0)〉 are
composed of two Gaussian wave packets, where the construc-
tion relies on allocation of individual momenta to distinct
strings within a single Bethe state according to Eq. (14). We
localize two Gaussian wave packets labeled by j = 1,2 with
average momenta pj around two well-separated lattice sites

|�(0)〉 = N0

∑
p1,p2

cp1,p2 |λ(n)(p1),λ(m)(p2)〉, (30)
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FIG. 3. (Color online) Time evolution of 〈Sz
j (t)〉 illustrating scat-

tering n-string wave packets, computed using algebraic Bethe ansatz,
for N = 100, � = 2, p1 = −p2 = −π/2, and α = 4. Left: scattering
of 1-string wave packets (single magnons). Right: scattering of
2-string wave packets (bound magnons).

where

cp1,p2 = e−i(p1x1+p2x2)− α2

4 (p1−p1)2− α2

4 (p2−p2)2
. (31)

For simplicity, we label Bethe states here only by the
two string centers λ(n) and λ(m) instead of the whole set
{λ} ≡ {λj }n+m

j=1 = {λ(n)
1,a}na=1 ∪ {λ(m)

2,b }mb=1. The two centers are,
respectively, uniquely determined by the momenta p1 and
p2 via Eq. (12). Due to the energy dispersion (11) of the
bound magnons, the relative velocity of the wave packets is
maximized at p1 = −p2 = −π/2.

Figure 3 shows time-dependent magnetization profiles
for scattering of 1- and 2-string wave packets, respectively,
computed from the algebraic Bethe ansatz matrix elements
described in Sec. II C. A close examination of the profiles
shows distinctive features akin to soliton scattering, namely,
that the wave packets emerge out of a collision intact, but
spatially displaced. This displacement will be quantified in the
next section.

D. Direct phase shift measurements

The real-time scattering trajectories in this work are
analyzed using the idea that the scattering between two
localized wave packets is well described by the scattering
phase shift corresponding to the average momenta of the two
wave packets. This idea can also be verified through direct
observation of the phase accumulated by the wave function
of a finite chain during a scattering process. We therefore
compare the evolution of an interacting chain (� �= 0) with the
evolution of a noninteracting chain (� = 0), each containing
two localized 1-string wave packets. The overlap between the
two wave functions

��(t) = 〈�[0](t)|�[�](t)〉 (32)

gives the phase acquired due to the interaction between the
magnons. The value of � is here indicated in the superscript.

In Appendix C, we show how the phase of the quantity
�� after a single scattering event, calculated using numerical
exact diagonalization, matches the Bethe ansatz phase shift
of Eq. (6), even for wave packets that are spatially well
localized. Such overlaps between time-evolved wave functions
are currently not directly accessible by Bethe ansatz.

IV. SCATTERING DISPLACEMENT

The initial state constructed from Bethe states is prepared as
two wave packets of bound states of an arbitrary finite number
of magnons with initial average positions and momenta
(xj , pj ). The n- and m-string wave packets are constructed
separately at large separation, such that their motion before and
after scattering can be considered to be free. In particular, the
motion of the center of each wave packet is (see Appendix A)

xj (t) =
{

xj + vj t before scattering,

xj + vj t − χj (p1,p2) after scattering,
(33)

given in units of lattice distance, where the velocity vj was
defined in Eq. (24). Note that, in the case of single magnon
scattering for example, a negative average momentum pj

yields a positive velocity vj and vice versa [see Eq. (5) with J

positive].
The displacement χj (p1,p2) can be obtained by expanding

the scattering phase shift around the average momenta [see
also Eq. (B11)] and is therefore given as

χj (p1,p2) = ∂pj
χ (p1,p2)

∣∣
p1=p1,p2=p2

, (34)

where we introduced the notation with subscript j to refer
to the momentum derivative χj = ∂χ

∂pj
of the scattering phase

shift χ .
Equation (33) assumes that all scatterings occur without

particle production, which is the case for the integrable model
we are dealing with.

A. Displacements from Bethe ansatz

An analytic expression for the displacement as a function of
anisotropy and incoming momenta can be extracted from the
Bethe ansatz scattering phase. The phase shift of two bound
magnons of arbitrary length is obtained from the scattering
kernel �nm of the Bethe-Gaudin-Takahashi equations (8),
which consists of a sum over the functions θs , s = |n −
m|, . . . ,n + m, defined in Table I [see also Eq. (9)].

For the scattering of an n-string wave packet labeled by 1
with an m-string wave packet labeled by 2, the displacements
on the trajectories of the n- and m-string wave packets (j =
1,2, respectively) are given as a function of momenta as

χ
(n,m)
j (p1,p2) = ∂�nm[λ(n)(p1) − λ(m)(p2)]

∂pj

∣∣∣∣p1 = p1
p2 = p2

. (35)

The n- and m-strings with centers λ(n) and λ(m) carry momenta
p1 and p2, respectively. The wave packets are located such
that x1 � x2 and v1 > v2.

We first discuss the planar case |�| = | cos(ζ )| < 1. By
inverting Eq. (12), we express the string center of an n-string
in terms of its momentum as

λ(n)(p) = atanh

(
tan

nζ

2
tan

π − p

2

)
. (36)

Due to Eq. (9), expression (35) for the displacement consists
of a sum of the momentum derivative of the functions θs of
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which the individual terms are computed as

∂θs[λ(n)(p1) − λ(m)(p2)]

∂p1

= ∂θs(λ(n) − λ(m))

∂λ(n)

∂λ(n)(p1)

∂p1

= sin(sζ )

cos(sζ ) − ch
(
2λ

(n)
1 − 2λ

(m)
2

) sin(nζ )

cos(nζ ) − cos(p1)
. (37)

For the scattering phase shift of two 1-string wave packets
with p1 = −p2 = −π/2, the displacement is given as a
function of anisotropy as

χ
(1,1)
1

(
−π

2
,
π

2

)
= sin(2ζ ) tan(ζ )

cos(2ζ ) − ch
[
4 atanh

(
tan ζ

2

)]
= 1

1 + �2
− 1. (38)

The latter result could have been also obtained directly by
taking the derivative of Eq. (6).

Similarly, the scattering displacement of two 2-string wave
packets becomes

χ
(2,2)
1

(
−π

2
,
π

2

)
= 2 sin(2ζ ) tan(2ζ )

cos(2ζ ) − ch[4 atanh(tan ζ )]

+ sin(4ζ ) tan(2ζ )

cos(4ζ ) − ch[4 atanh(tan ζ )]

= 16�6 − 4�4 + 5

(4�4 + 1)[1 + (2�2 − 1)2]
− 3. (39)

The validity of the latter equation only extends to the region
where � > 1/

√
2, as 2-strings with momentum p = ±π/2 do

not exist for lower anisotropy [16,45], which can be shown
from the anisotropy-dependent maximum string quantum
numbers. Negative parity 2-strings do not exist for 0 < � < 1,
therefore, these states are not suitable for the construction of 2-
bound magnons with p = ±π/2 below � = 1/

√
2, implying

that Eq. (39) has no physical meaning for � < 1/
√

2.
For the regime � > 1, Eqs. (38) and (39) hold as well

since the θs(λ) for both regimes are just rotated in the complex
rapidity plane with respect to each other. Starting from θs(λ)
for � > 1 with ζ = acosh(�) therefore yields identical results
for the scattering displacements.

The displacements for the scattering of a 1-string wave
packet at a 3-string wave packet is given by

χ
(1,3)
1

(
−π

2
,
π

2

)
= − (4�2 − 1)2(4�2 − 3)

2(4�2 + 1)(4�4 − 3�2 + 1)
, (40)

χ
(1,3)
2

(
−π

2
,
π

2

)
= (4�2 − 1)3

2(4�2 + 1)(4�4 − 3�2 + 1)
, (41)

χ
(1,3)
1

(
−π

2
,π
)

= − 2�(2� + 1)3(2�2 + � − 1)

(2�2 + 2� + 1)(8�4 + 8�3 + 1)
,

(42)

χ
(1,3)
2

(
−π

2
,π
)

= 2�2(2� + 1)4

(2�2 + 2� + 1)(8�4 + 8�3 + 1)
.

(43)

FIG. 4. (Color online) Left: measurement of the scattering dis-
placement from Bethe ansatz time evolution of bound magnons
at � = 2, by computing the average location of the wave packets
according to Eq. (44) and taking the horizontal difference of the
linear fits. Right: scattering displacement (in units of lattice distance)
for single and bound magnons as function of anisotropy. Measured
data from algebraic Bethe ansatz time evolution of magnetization (see
left panel) compared to the derivative of scattering phase shifts [see
Eqs. (38) and (39)].

B. Comparison of scattering theory and time evolution

The displacement in the trajectories induced by scattering
effects is easily deduced from the time-evolution data of
Fig. 3. For symmetric cases with identical particles, the average
position of the magnetization of a single wave packet can be
computed on one-half of the system as a function of time:

〈j 〉left
av (t) =

∑N/2
j=1 j

(
1
2 − 〈

Sz
j (t)

〉)
∑N/2

j=1

(
1
2 − 〈

Sz
j (t)

〉)
= 2

M

N/2∑
j=1

j

(
1

2
− 〈

Sz
j (t)

〉)
. (44)

The result for the scattering between two 2-string wave packets
is plotted in Fig. 4. Note that the plotted average location of the
wave packet in Fig. 4 by means of Eq. (44) does not resemble
the actual trajectories when the wave packets spatially overlap
with each other, as the trajectories are not properly defined
during the scattering event. A linear fit with the same slope
is applied to the propagation of the average position of
the wave packet before and after scattering. The horizontal
difference between the two straight lines is the displacement
of the wave packet due to scattering effects. The procedure
of measuring the displacements by means of Eq. (44) was
performed for multiple values of anisotropy �. Moreover,
these results can be compared with Eq. (35), where the
displacements for the situations of Fig. 4 are specifically given
by Eqs. (38) and (39) as function of anisotropy. The results
are plotted in Fig. 4 as well, showing agreement between both
approaches. The explicit time evolution relying on algebraic
Bethe ansatz matrix elements provides confirmation of the
analytical predictions for the displacements.

Aside from symmetric scattering situations, colliding dis-
tinct n-string and m-string wave packets can be constructed
and traced in the time-evolved magnetization profile. Figure 5
shows the scattering between a 1- and a 3-string wave packet.
Two situations are distinguished, the former with both wave
packets at maximal velocity at p1 = −p2 = −π/2, where the
larger string moves much slower because of its effective mass
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FIG. 5. (Color online) Left: time evolution from algebraic Bethe
ansatz of 〈Sz

j (t)〉 for a single magnon wave packet with momentum
p1 = −π/2 scattering against a 3-string wave packet with momentum
p2 = π/2 (top) and p2 = π (bottom), respectively, with N = 100,
� = 2, and α = 4. Right: corresponding scattering displacements (in
units of lattice distance) as function of anisotropy [see Eqs. (40)–
(43)], where the points are measured displacements obtained from
the time-evolution data.

[see Eq. (25)]. The latter situation consists of an incoming
1-string wave packet scattering on a stationary wall of a
3-string wave packet at p2 = π . The corresponding analytic
scattering displacements (40)–(43) are shown adjacent to the
time evolution plots in Fig. 5. The scattering displacements
are measured from the time evolution by imposing a Gaussian
fit on the wave packet after scattering and comparing the
average location to the time evolution of a single wave packet
without scattering. In the lower right panel (p2 = π ), the fitting
procedure of the average location of the 3-string wave packet
becomes less accurate for decreasing �.

In the planar regime where |�| < 1, we encounter sub-
stantial limitations (as described in Sec. III B) on both the
construction of the scattering wave packets, as well as on the
comparison to results of scattering theory. Due to the effective
binding length of the individual constituents of the string states,
the tails of the magnetization profile of the wave packets
start overlapping with each other significantly at low �,
invalidating important assumptions of scattering theory which
include asymptotic separation of the wave packets before and
after scattering. Comparison of the measured displacements to
scattering theory is therefore not meaningful for higher strings
in the planar regime. Only going to much larger system sizes
would resolve the aforementioned issue.

C. Displacements from TEBD calculations for scattering
of spin blocks compared to the Ising limit

The scattering displacement turns out to have a particularly
simple form at large anisotropy. In particular, it was found in
Ref. [19] that when a propagating n-particle cluster is incident
on a larger block, the block is displaced by 2n sites. This

can be explained from the Bethe ansatz results presented in
previous sections by taking the Ising limit � → ∞ of Eq. (35)
for the displacement of an n-string wave packet scattering at
an m-string wave packet.

First, we obtain for all s

lim
�→∞

∂θs[λ(n)(p1) − λ(m)(p2)]

∂p1
= −1 , (45)

which is independent of n, m, p1, and p2. Using Eq. (9) for
the phase shift between an n-string and an m-string eventually
yields

lim
�→∞

χ
(n,m)
1 (p1,p2) = −2 min(n,m) + δnm. (46)

Thus, the scattering displacement for unequal wave packets
(n �= m) is equal to twice the number of particles in the smaller
wave packet.

The leading-order term of the Ising limit in Eq. (46) can be
given for the case where cos(p1 − p2) �= 0 as

χ
(n,m)
1,LO = −δnm

(
(2 − δn1)

cos(p1 − p2)

2
− δn1

2

)
�−2

− (1 − δnm)
cos(p1 − p2)

2|n−m|−1
�−|n−m|

− [2 min(n,m) − δnm]
cos(p1)

2n−1
�−n , (47)

yielding an error estimate for Eq. (46). A systematic expansion
for all momenta becomes cumbersome due to the summation
in Eq. (9) and is left out of consideration. If cos(p1 − p2) = 0,
the leading contribution is given by the third line of (47). If
further cos(p1) = 0, the leading-order terms will be formed
by higher powers like �−2n for n = m or �−2|n−m| for m �= n.

Figure 6 shows TEBD results of the scattering of a two-spin
block excitation with a block consisting of 10 adjacent spins
at � = 5.0. The initial 2-spin block was created by upturning
two neighboring spins at lattice sites 2 and 3. The first site
(with open boundary conditions) is energetically inaccessible
for large �; hence, the 2-spin block travels to the right and is
incident on the 10-spin block. The displacement is clearly by
4 sites, as predicted by Eq. (46). A similar displacement by 2
sites in the case of a single incident particle was highlighted
in Ref. [19].

FIG. 6. (Color online) TEBD time evolution of scattering of a
two-spin block state with a block of 10 upturned spins at � = 5. The
block of 10 upturned spins is shifted by four lattice sites upon impact
of the 2-string-like bound magnon. This is in correspondence with
Eq. (46), yielding a shift of four caused by a 2-string on a larger
string.

214427-9



R. VLIJM et al. PHYSICAL REVIEW B 92, 214427 (2015)

Although the 2-spin block and the 10-spin block are not
explicitly prepared as wave packets in this case, at large �,
string states are tightly bound, and therefore these blocks may
be understood intuitively to be close to 2-string wave packets
and 10-string wave packets. The Ising limit Eq. (46) thus
provides a satisfactory explanation to the shift observed in
these numerical experiments.

Even more, it was observed [19] that the behavior of the
scattering displacement of a large spin-block state close to
the isotropic point at � = 1.1 still resembles the scattering
behavior of the large-� limit by shifting the spin block by two
lattice sites upon scattering. In order to explain this from Bethe
ansatz, we take the limit of Eq. (35) for the scattering of a large
string (m � 1) with center λ(m)(p2) and a 1-string with center
λ(1)(p1) at all values of � > 1,

∂θs(λ(1)(p1) − λ(m)(p2))

∂p2

∣∣∣∣
m�1

= (1 + O(e−sζ ))(1 + O(e−mζ )), (48)

where s can only take on the values s = m − 1 or m + 1, due
to Eq. (9). The latter equation finally gives for the displacement
of the large m string at � > 1,

χ
(1,m)
2 (p1,p2)

∣∣
m�1 = 2 + O(e−(m−1)ζ ), (49)

implying that already at � = 1.1 (ζ = 0.4436), the scattering
displacement of a large spin block should still be close to two
sites, as is in agreement with the aforementioned observation.

V. CONCLUSIONS

In this work, we have studied the quantum analog of
solitonlike scattering phenomena in the anisotropic spin- 1

2
Heisenberg chain by utilizing the algebraic Bethe ansatz. We
considered quantum scattering of localized excitations, created
from linear combinations of Bethe states with Gaussian-
distributed momenta, constructing wave packets of n bound
magnons. This construction allows to study scattering phe-
nomena of wave packets containing an arbitrary number of
bound magnons.

Exact methods based on the algebraic Bethe ansatz provide
a framework to evaluate the time-dependent expectation value
of the local magnetization profile, which allows for a spatial
tracking of the localized excitations. This explicit unitary
time evolution of the initial state relies on the availability
of determinant expressions for matrix elements of local spin
operators.

The algebraic Bethe ansatz time evolution of colliding wave
packets of bound magnons displays a spatial displacement
in the trajectories of the wave packets under scattering,
consistent with scattering theory results. For different values
of anisotropy, fits on the displacements of the time-evolved
trajectories are in agreement with analytical results on the
displacement from the derivative of the Bethe ansatz scattering
phase shifts, for several combinations of string lengths.

The scattering phase shift can also be measured directly as
well for the scattering between two localized single-magnon
wave packets, again matching phase shift expressions provided
by Bethe ansatz. Using TEBD, scattering displacements from
spin-block states have been studied, showing similar scattering

features and validating the analytic predictions of the Ising
limit for the scattering displacement.

The experimental realizability of real-time tracking of
localized excitations in the Heisenberg spin chain [17,22]
might provide an opportunity to study dynamical scattering
phenomena of (bound) magnons. A possible manifestation
of such phenomena might be provided by the solitonlike
scattering effects analyzed in this work.

The results on the scattering displacements can be extended
to other Bethe ansatz solvable models. Finally, the time-
evolution method relying on matrix element expressions from
algebraic Bethe ansatz can be used to construct other initial
states in spin chains as well and to study their respective
relaxation phenomena.
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APPENDIX A: GENERAL RESULTS FROM
SCATTERING THEORY

In this appendix, we review some general results from
quantum scattering theory, emphasizing the direct connection
between physically observable quantities and (derivatives of)
the scattering phase shift [52,53]. We consider an initial
state with two well-separated quasiparticles (e.g., magnons
and magnon bound states) with almost well-defined positions
(x1, x2) and momenta (p1, p2). In the asymptotic region, i.e.,
when the distance between the two wave packets is much larger
than the radius of the interaction, the time evolution is free.
Hence, the centers of the wave packets xj (t) = 〈x̂j (t)〉 translate
rigidly. The scattering between the two particles, however,
introduces a displacement proportional to the derivative of the
scattering phase χ (p1,p2). More precisely, in the asymptotic
regions, the motion of the center of each wave packet is

xj (t) =
{
xj + vj t before scattering,
xj + vj t − χj (p1,p2) after scattering,

(A1)
where χj = ∂χ

∂pj
is the displacement, while the group velocity

vj is given by the derivative of the dispersion relation, i.e.,
vj = ∂Ej

∂pj
|pj =pj

.
Similarly, the scattering has an effect on the width of each

wave packet �x2
j (t) = 〈[x̂j (t) − xj (t)]2〉. For Gaussian wave
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packets we have to first order

�x2
1 (t) =

⎧⎨
⎩

α2
1

4 + t2δ2

α2
1

before scattering,
α2

1
4 + χ2

12

α2
2

+ (χ11−tδ1)2

α2
1

after scattering,
(A2)

where αj =
√

�x2
j (t)|

t=0
, while δj = ∂E2

j

∂p2
j

|pj =pj
and χij =

∂2χ

∂pi∂pj
|pi=pi , pj =pj

. An analogous formula holds for �x2
2 (t) as

well.
Scattering also builds up correlations between the (ini-

tially uncorrelated) Gaussian wave packets, as can be seen
from the time evolution of the correlator �x1�x2(t) =
〈[x̂1(t) − x1(t)] [x̂2(t) − x2(t)]〉,

�x1�x2(t) =
{

0 before scattering,
χ12

[
χ11−tδ1

a2
1

+ χ22−tδ2

a2
2

]
after scattering.

(A3)
All the aforementioned quantities carry information about the
derivatives of the scattering phase and can be in principle
measured in a scattering experiment. These results hold for
any one-dimensional theory with stable particles. For the XXZ
spin chain, the stability of magnon bound states above the
binding-energy threshold is preserved by the integrability of
the theory.

APPENDIX B: SCATTERING OF TWO
PARTICLES IN ONE DIMENSION

In this appendix, we review some general results for the
scattering of two particles (magnons, magnon bound states,
etc.) [52,53] and derive Eqs. (A1)–(A3). For simplicity, we
consider the scattering of two distinguishable particles in a
continuum integrable model. The same results can be obtained
for identical particles.

So, let us consider two particles with asymptotic momenta
p1 and p2 and different dispersion relations Ei(pi), i =
1,2, in an infinite volume (zero density). The statement of
the coordinate Bethe ansatz [see Eq. (2)] is that in the
asymptotic region where the two particles are very far apart
the eigenfunctions of the system are plane waves,

ϕp1,p2 (x1,x2) =
{
ei(p1x1+p2 x2), x1 � x2

S(p1,p2) ei(p1x1+p2x2), x1 � x2
(B1)

where S(p1,p2) = −eiχ(p1,p2) is the scattering matrix and
χ (p1,p2) the scattering phase shift. At zero density, the energy
is simply

E(p1,p2) = E1(p1) + E2(p2). (B2)

Let us briefly comment on the structure of the wave function
(B1). First of all, as we discussed in the main text for the XXZ
model, bound states are characterized by complex-conjugate
rapidities, which leads to exponentially decaying terms in the
Bethe wave function (2) with respect to the relative coordinate.
This is a feature of bound states that are characterized by a
center-of-mass coordinate. In what follows, we do not denote
these exponentially decaying terms and label the bound states
only with the position of the center of mass. For elementary
particles, Eq. (B1) is a consequence of the conservation of
energy and momentum in one dimension, and as such it is valid

for any model with a sufficiently short-range potential. Instead,
if one of these particles is not elementary but it is a bound state,
then for a general theory the previous simple form of the wave
function is not true anymore. The bound state can decay and
scattering be diffractive. However, there exist models (such
as the XXZ spin chain) for which the scattering is always
nondiffractive. Hence, the coordinate Bethe ansatz describes
a complete set of asymptotic eigenfunctions, as thoughtfully
discussed in Sutherland’s book [45]. For such theories, bound
states cannot decay, but are protected by integrability.

Let us consider the scattering problem. At time t = 0 the
two particles are far apart and have (almost) well-defined
positions xj and momenta pj , j = 1,2. Without loss of
generality, we may assume that x1 � x2 and v1 > v2, where
vj is the group velocity

vj = ∂Ej

∂pj

∣∣∣∣
pj =pj

. (B3)

When they are far apart, the two wave packets move with
velocities vj . If v1 < v2, the evolution is always free, while for
v1 > v2 at some time the two particles become close and the
interaction plays a role.

The time evolution of a two-body wave function is given
by

ψ(x1,x2,t) =
∫

dp1

2π

dp2

2π

[
C(p1,p2)

× e−it[E1(p1)+E2(p2)]ϕp1,p2 (x1,x2)
]
, (B4)

where

C(p1,p2) =
∫

dx1 dx2 ϕ∗
p1,p2

(x1,x2) ψ(x1,x2), (B5)

ϕp1,p2 is a complete set of eigenfunctions, and ψ(x1,x2) is the
initial wave function. Now, we consider an initial state which
is factorized

ψ(x1,x2) = ψ1(x1) ψ2(x2), (B6)

where

ψj (xj ) =
∫

dpj

2π
ψ̂j (pj ) eipj xj , j = 1,2. (B7)

Since we are interested in computing also the spreading in
time of the wave packet, we assume that the functions ψj (xj )
are Gaussian wave packets with minimal indetermination

ψj (xj ) =
(

2

π α2
j

) 1
4

eipj xj e
− (xj −xj )2

α2
j , (B8)

where �x2
j = ∫

dxj (xj − xj )2|ψj (xj )|2 = α2
j /4. This as-

sumption may be dropped if we are interested only in the
displacement, Eq. (A1).

Up to now, everything is exact. However, we can make the
following approximations:

(i) Since the initial state ψ(x1,x2) is sharply peaked around
x1 and x2 with x1 � x2, the only relevant contributions to
(B5) come from the regions around these two points. We can
then use the asymptotic formula (B1) for ϕp1,p2 (x1,x2) with
x1 � x2. Inserting Eq. (B1) into (B5), and using definition
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(B7) yields

C(p1,p2) ≈ ψ̂1(p1)ψ̂2(p2). (B9)

(ii) Since the functions ψ̂j (pj ), j = 1,2, in (B9) are peaked
around pj ≈ pj , we can expand the dispersion relations
Ej (pj ) around these momenta in the integrand of Eq. (B4).
Moreover, for x1 � x2 we may substitute the asymptotic
expression (B1) for ϕp1,p2 into (B4) and similarly expand the
scattering phase shift χ (p1,p2). Up to second order, these
expansions read as

Ej (pj ) = Ej (pj ) + vj (pj − pj ) + δj

2
(pj − pj )2

with δj = ∂2Ej

∂p2
j

∣∣∣∣
pj =pj

, and (B10)

χ (p1,p2) = χ (p1,p2) + χi(p1,p2)(pi − pi)

+ 1

2
(pi − pi)χij (p1,p2)(pj − pj ) (B11)

with χi = ∂χ

∂pi
and χij = ∂2χ

∂pi∂pj
, and we sum over repeated

indices. These expansions up to the second order are physically
meaningful only if we can ignore the distortion of the wave
packet, and so they are no more valid for times long enough.

Taking advantage of these approximations, we are now in
the position to derive Eqs. (A1)–(A3). Before scattering, the
two wave packets propagate freely. Since they start around
x1 and x2 with x1 � x2, they are centered around xj (t) with
x1(t) � x2(t) for small times. Thus, we can use the asymptotic
formula of ϕp1,p2 (x1,x2) valid for x1 � x2 in Eq. (B1), and
hence perform the Gaussian integrations, thus obtaining the
prescattering results (A1)–(A3). Similarly, long after the
scattering, we have x1(t) � x2(t). Thus, taking advantage of
the proper asymptotic formula (B1) for the eigenfunctions and
the expansion (B11) of the scattering phase shift, we also
obtain the post-scattering formulas (A1)–(A3).

APPENDIX C: OBTAINING THE PHASE SHIFT FROM
THE PHASE OF THE WAVE FUNCTION OF

THE FULL CHAIN

A prominent theme of this work is that real-time scattering
between two localized wave packets is well described by the
phase shift corresponding to the average momenta of the two
wave packets. In this appendix, we connect real-time scattering
data for two single-magnon (1-string) wave packets in a finite
chain directly to the definition of the scattering phase shift,
namely, that the scattering phase shift is the phase picked up
by the system wave function during the scattering process. To
demonstrate the robustness of this idea, we show results from
a stringent situation of rather small wave packets (width of a
few sites) in a rather small chain (≈25 sites), far from the usual
idealized limit of infinitely extended excitations.

Here, the Hamiltonian of the XXZ model is used in the
following form:

H� = J

L−1∑
j=1

[
Sx

j Sx
j+1 + S

y

j S
y

j+1 + �

(
Sz

j − 1

2

)(
Sz

j+1 − 1

2

)]
.

(C1)

The extra terms compared to Eq. (1) are convenient for
considering the phase of the time-evolving wave function in
the two-magnon sector. When evolving with the Hamiltonian
(1), there is a constant accumulation of �-dependent phase
in the time evolution even when the magnons are spatially
separated; this is avoided with the above form. With this form,
the interaction affects the phase of the chain wave function
only when the magnons meet each other.

In the initial state, each magnon wave packet is prepared
as a Gaussian, localized approximately around L/4 and 3L/4,
respectively, with opposite momenta ±k. The initial state is
thus

|ψ(0)〉 =N0

∑
x

S−
x exp

[
− (x − x0)2

α2

]
e−ikx

×
∑

y

S−
y exp

[
− (y − y0)2

α2

]
e+iky |↑↑ . . . ↑〉

(C2)

with x0 and y0 near the center of the left half and right half of
the chain. Here, x and y are used as discrete site indices, and
N0 is a normalization constant. The definition of the width α

is chosen to be consistent with α in the main text. To avoid
excessive dispersion, we use k near π/2. This preparation
ensures that the two wave packets will move toward each
other, collide, and continue on after the scattering, as shown in
the left panel of Fig. 7. The effect of the interaction J� should
be felt only when the particles are crossing each other. This
interaction gives a phase shift to the wave function during the
scattering.

The wave function at time t is

|ψ [�](t)〉 = e−iH�t |ψ [�](0)〉 = e−iH�t |ψ(0)〉 (C3)

(same initial state for every �). We consider the overlap

��(T ) = 〈ψ [0](T )|ψ [�](T )〉 (C4)

FIG. 7. (Color online) Left: time evolution of 〈Sz
j (t)〉, performed

using numerical exact diagonalization for L = 26 sites. Two single-
magnon wave packets are prepared with initial width α = 5/

√
2 ≈

3.5355 and opposite momenta ±k; here k = 0.5π and � = 2.5.
Right: the Bethe ansatz phase shift (lines) are compared with the
phase of � (symbols, shifted by π ), obtained from the wave function
of the time-evolved L = 26 chain. The comparison is shown for three
k values.
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at some appropriately chosen “final” time t = T . Evolution
with the � = 0 (noninteracting) Hamiltonian gives a “refer-
ence” state. We are interested in the phase accumulated in the
evolution with the � �= 0 Hamiltonian in comparison with the
reference state, namely, the phase of ��. The final time T is
chosen such that the particles have completed their scattering,
but have not reached the boundaries of the chain. So, there
are no edge effects. For example, in the process shown in
Fig. 7 (left), it would be reasonable to compare overlaps at
T ∼13J−1.

The phase of �� should approximate the scattering phase
shift

lim
L→∞,α→∞

arg (��) = χ − π. (C5)

The shift π is in accordance with the convention used in this
paper, e.g., in Eq. (6). For k = k2 = −k1, the Bethe ansatz
phase shift is obtained from Eq. (6) to be

χ = π − 2 atan

(
� sin(k)

1 − � cos(k)

)
. (C6)

Figure 7 (right) compares the phases obtained from the
time-evolving wave function of a finite chain containing
two relatively narrow wave packets, with the Bethe ansatz
phase shift expressions which are strictly valid for delocalized
excitations. Even with wave packets as narrow as α ≈ 3.5,
the Bethe ansatz expressions match extremely well the phase
acquired in real-time evolution.
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Phys. Rev. B 84, 174438 (2011); V. Alba, K. Saha, and M.
Haque, J. Stat. Mech. (2013) P10018; C. Karrasch, J. E. Moore,
and F. Heidrich-Meisner, Phys. Rev. B 89, 075139 (2014); A.
Sharma and M. Haque, Phys. Rev. A 89, 043608 (2014); W. Liu
and N. Andrei, Phys. Rev. Lett. 112, 257204 (2014).

[30] L. Xia, L. A. Zundel, J. Carrasquilla, A. Reinhard, J. M. Wilson,
M. Rigol, and D. S. Weiss, Nat. Phys. 11, 316 (2015).

[31] R. V. Mishmash and L. D. Carr, Phys. Rev. Lett. 103, 140403
(2009); C. P. Rubbo, I. I. Satija, W. P. Reinhardt, R. Balakrishnan,
A. M. Rey, and S. R. Manmana, Phys. Rev. A 85, 053617 (2012).

[32] W. Heisenberg, Z. Phys. 49, 619 (1928).
[33] R. Orbach, Phys. Rev. 112, 309 (1958).
[34] C. Gross and I. Bloch (private communication).
[35] A. Lyakhov and C. Bruder, New J. Phys. 7, 181 (2005); R. Heule,

C. Bruder, D. Burgarth, and V. M. Stojanovic, Eur. Phys. J. D
63, 41 (2011).

[36] L.-M. Duan, E. Demler, and M. D. Lukin, Phys. Rev. Lett. 91,
090402 (2003).

[37] A. Kay and D. G. Angelakis, Europhys. Lett. 84, 20001 (2008).
[38] U. Schneider, L. Hackermüller, J. P. Ronzheimer, S. Will, S.

Braun, T. Best, I. Bloch, E. Demler, S. Mandt, D. Rasch, and A.
Rosch, Nat. Phys. 8, 213 (2012).

[39] A. S. Sørensen, E. Altman, M. Gullans, J. V. Porto, M. D. Lukin,
and E. Demler, Phys. Rev. A 81, 061603(R) (2010).

[40] N. A. Slavnov, Theor. Math. Phys. 79, 502 (1989).
[41] N. A. Slavnov, Theor. Math. Phys. 82, 273 (1990).
[42] N. Kitanine, J. M. Maillet, and V. Terras, Nucl. Phys. B 554,

647 (1999).
[43] M. Takahashi, Thermodynamics of One-Dimensional Solvable

Models (Cambridge University Press, Cambridge, UK, 1999).
[44] M. Takahashi and M. Suzuki, Prog. Theor. Phys. 48, 2187

(1972).
[45] B. Sutherland, Beautiful Models (World Scientific, Singapore,

2004).
[46] V. E. Korepin, Commun. Math. Phys. 86, 391 (1982).
[47] M. Gaudin, B. M. McCoy, and T. T. Wu, Phys. Rev. D 23, 417

(1981).
[48] J.-S. Caux, R. Hagemans, and J. M. Maillet, J. Stat. Mech.:

Theory Exper. (2005) P09003.
[49] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003); 93, 040502 (2004).
[50] J. Mossel, G. Palacios, and J.-S. Caux, J. Stat. Mech.: Theory

Exper. (2010) L09001.
[51] J. Mossel and J.-S. Caux, New J. Phys. 12, 055028 (2010).
[52] A. Zamolodchikov and A. Zamolodchikov, Ann. Phys. (NY)

120, 253 (1979).
[53] J. Taylor, Scattering Theory: The Quantum Theory On Nonrel-

ativistic Collisions (Wiley, New York, 1972).

214427-14

http://dx.doi.org/10.1103/PhysRevA.79.052118
http://dx.doi.org/10.1103/PhysRevA.81.011601
http://dx.doi.org/10.1103/PhysRevA.81.011601
http://dx.doi.org/10.1103/PhysRevA.81.011601
http://dx.doi.org/10.1103/PhysRevA.81.011601
http://dx.doi.org/10.1103/PhysRevA.81.065601
http://dx.doi.org/10.1103/PhysRevA.81.065601
http://dx.doi.org/10.1103/PhysRevA.81.065601
http://dx.doi.org/10.1103/PhysRevA.81.065601
http://dx.doi.org/10.1103/PhysRevA.86.013618
http://dx.doi.org/10.1103/PhysRevA.86.013618
http://dx.doi.org/10.1103/PhysRevA.86.013618
http://dx.doi.org/10.1103/PhysRevA.86.013618
http://dx.doi.org/10.1088/1367-2630/14/9/095019
http://dx.doi.org/10.1088/1367-2630/14/9/095019
http://dx.doi.org/10.1088/1367-2630/14/9/095019
http://dx.doi.org/10.1088/1367-2630/14/9/095019
http://dx.doi.org/10.1209/0295-5075/98/66002
http://dx.doi.org/10.1209/0295-5075/98/66002
http://dx.doi.org/10.1209/0295-5075/98/66002
http://dx.doi.org/10.1209/0295-5075/98/66002
http://dx.doi.org/10.1103/PhysRevLett.110.205301
http://dx.doi.org/10.1103/PhysRevLett.110.205301
http://dx.doi.org/10.1103/PhysRevLett.110.205301
http://dx.doi.org/10.1103/PhysRevLett.110.205301
http://dx.doi.org/10.1103/PhysRevB.88.235117
http://dx.doi.org/10.1103/PhysRevB.88.235117
http://dx.doi.org/10.1103/PhysRevB.88.235117
http://dx.doi.org/10.1103/PhysRevB.88.235117
http://dx.doi.org/10.1103/PhysRevB.79.214409
http://dx.doi.org/10.1103/PhysRevB.79.214409
http://dx.doi.org/10.1103/PhysRevB.79.214409
http://dx.doi.org/10.1103/PhysRevB.79.214409
http://dx.doi.org/10.1103/PhysRevA.82.012108
http://dx.doi.org/10.1103/PhysRevA.82.012108
http://dx.doi.org/10.1103/PhysRevA.82.012108
http://dx.doi.org/10.1103/PhysRevA.82.012108
http://dx.doi.org/10.1103/PhysRevB.84.174438
http://dx.doi.org/10.1103/PhysRevB.84.174438
http://dx.doi.org/10.1103/PhysRevB.84.174438
http://dx.doi.org/10.1103/PhysRevB.84.174438
http://dx.doi.org/10.1088/1742-5468/2013/10/P10018
http://dx.doi.org/10.1088/1742-5468/2013/10/P10018
http://dx.doi.org/10.1088/1742-5468/2013/10/P10018
http://dx.doi.org/10.1103/PhysRevB.89.075139
http://dx.doi.org/10.1103/PhysRevB.89.075139
http://dx.doi.org/10.1103/PhysRevB.89.075139
http://dx.doi.org/10.1103/PhysRevB.89.075139
http://dx.doi.org/10.1103/PhysRevA.89.043608
http://dx.doi.org/10.1103/PhysRevA.89.043608
http://dx.doi.org/10.1103/PhysRevA.89.043608
http://dx.doi.org/10.1103/PhysRevA.89.043608
http://dx.doi.org/10.1103/PhysRevLett.112.257204
http://dx.doi.org/10.1103/PhysRevLett.112.257204
http://dx.doi.org/10.1103/PhysRevLett.112.257204
http://dx.doi.org/10.1103/PhysRevLett.112.257204
http://dx.doi.org/10.1038/nphys3244
http://dx.doi.org/10.1038/nphys3244
http://dx.doi.org/10.1038/nphys3244
http://dx.doi.org/10.1038/nphys3244
http://dx.doi.org/10.1103/PhysRevLett.103.140403
http://dx.doi.org/10.1103/PhysRevLett.103.140403
http://dx.doi.org/10.1103/PhysRevLett.103.140403
http://dx.doi.org/10.1103/PhysRevLett.103.140403
http://dx.doi.org/10.1103/PhysRevLett.103.140403
http://dx.doi.org/10.1103/PhysRevLett.103.140403
http://dx.doi.org/10.1103/PhysRevLett.103.140403
http://dx.doi.org/10.1103/PhysRevLett.103.140403
http://dx.doi.org/10.1007/BF01328601
http://dx.doi.org/10.1007/BF01328601
http://dx.doi.org/10.1007/BF01328601
http://dx.doi.org/10.1007/BF01328601
http://dx.doi.org/10.1103/PhysRev.112.309
http://dx.doi.org/10.1103/PhysRev.112.309
http://dx.doi.org/10.1103/PhysRev.112.309
http://dx.doi.org/10.1103/PhysRev.112.309
http://dx.doi.org/10.1088/1367-2630/7/1/181
http://dx.doi.org/10.1088/1367-2630/7/1/181
http://dx.doi.org/10.1088/1367-2630/7/1/181
http://dx.doi.org/10.1088/1367-2630/7/1/181
http://dx.doi.org/10.1140/epjd/e2010-10623-y
http://dx.doi.org/10.1140/epjd/e2010-10623-y
http://dx.doi.org/10.1140/epjd/e2010-10623-y
http://dx.doi.org/10.1140/epjd/e2010-10623-y
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1103/PhysRevLett.91.090402
http://dx.doi.org/10.1209/0295-5075/84/20001
http://dx.doi.org/10.1209/0295-5075/84/20001
http://dx.doi.org/10.1209/0295-5075/84/20001
http://dx.doi.org/10.1209/0295-5075/84/20001
http://dx.doi.org/10.1038/nphys2205
http://dx.doi.org/10.1038/nphys2205
http://dx.doi.org/10.1038/nphys2205
http://dx.doi.org/10.1038/nphys2205
http://dx.doi.org/10.1103/PhysRevA.81.061603
http://dx.doi.org/10.1103/PhysRevA.81.061603
http://dx.doi.org/10.1103/PhysRevA.81.061603
http://dx.doi.org/10.1103/PhysRevA.81.061603
http://dx.doi.org/10.1007/BF01016531
http://dx.doi.org/10.1007/BF01016531
http://dx.doi.org/10.1007/BF01016531
http://dx.doi.org/10.1007/BF01016531
http://dx.doi.org/10.1007/BF01029221
http://dx.doi.org/10.1007/BF01029221
http://dx.doi.org/10.1007/BF01029221
http://dx.doi.org/10.1007/BF01029221
http://dx.doi.org/10.1016/S0550-3213(99)00295-3
http://dx.doi.org/10.1016/S0550-3213(99)00295-3
http://dx.doi.org/10.1016/S0550-3213(99)00295-3
http://dx.doi.org/10.1016/S0550-3213(99)00295-3
http://dx.doi.org/10.1143/PTP.48.2187
http://dx.doi.org/10.1143/PTP.48.2187
http://dx.doi.org/10.1143/PTP.48.2187
http://dx.doi.org/10.1143/PTP.48.2187
http://dx.doi.org/10.1007/BF01212176
http://dx.doi.org/10.1007/BF01212176
http://dx.doi.org/10.1007/BF01212176
http://dx.doi.org/10.1007/BF01212176
http://dx.doi.org/10.1103/PhysRevD.23.417
http://dx.doi.org/10.1103/PhysRevD.23.417
http://dx.doi.org/10.1103/PhysRevD.23.417
http://dx.doi.org/10.1103/PhysRevD.23.417
http://dx.doi.org/10.1088/1742-5468/2005/09/P09003
http://dx.doi.org/10.1088/1742-5468/2005/09/P09003
http://dx.doi.org/10.1088/1742-5468/2005/09/P09003
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1088/1742-5468/2010/09/L09001
http://dx.doi.org/10.1088/1742-5468/2010/09/L09001
http://dx.doi.org/10.1088/1742-5468/2010/09/L09001
http://dx.doi.org/10.1088/1367-2630/12/5/055028
http://dx.doi.org/10.1088/1367-2630/12/5/055028
http://dx.doi.org/10.1088/1367-2630/12/5/055028
http://dx.doi.org/10.1088/1367-2630/12/5/055028
http://dx.doi.org/10.1016/0003-4916(79)90391-9
http://dx.doi.org/10.1016/0003-4916(79)90391-9
http://dx.doi.org/10.1016/0003-4916(79)90391-9
http://dx.doi.org/10.1016/0003-4916(79)90391-9



