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We examine the general features of the noncommutativity of the magnetization operator and Hamiltonian for
small quantum spin clusters. The source of this noncommutativity can be a difference in the Landé g factors for
different spins in the cluster, XY anisotropy in the exchange interaction, and the presence of the Dzyaloshinskii-
Moriya term in a direction different from the direction of the magnetic field. As a result, zero-temperature
magnetization curves for small spin clusters mimic those for the macroscopic systems with the band(s) of
magnetic excitations, i.e., for the given eigenstate of the spin cluster the corresponding magnetic moment
can be an explicit function of the external magnetic field yielding the nonconstant (nonplateau) form of the
magnetization curve within the given eigenstate. In addition, the XY anisotropy makes the saturated magnetization
(the eigenstate when all spins in cluster are aligned along the magnetic field) inaccessible for finite magnetic
field magnitude (asymptotical saturation). We demonstrate all these features on three examples: a spin-1/2 dimer,
mixed spin-(1/2,1) dimer, and a spin-1/2 ring trimer. We consider also the simplest Ising-Heisenberg chain, the
Ising-XYZ diamond chain, with four different g factors. In the chain model the magnetization curve has a more
complicated and nontrivial structure than that for clusters.
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I. INTRODUCTION

Magnetization curves of low-dimensional quantum anti-
ferromagnets are topical issues of current research interest,
because they often involve intriguing features such as mag-
netization plateaus, jumps, ramps, and/or kinks. The spin-1/2
quantum Heisenberg chain, the spin-1/2 quantum Ising chain
in a transverse field, and the spin-1/2 quantum XX chain in
a transverse field are a few paradigmatic examples of exactly
solved quantum spin chains for which zero-temperature mag-
netization varies smoothly with rising magnetic field until the
saturation magnetization is reached [1–3]. Contrary to this, the
integer-value quantum Heisenberg chains (and also many other
low-dimensional quantum antiferromagnets) contain in a zero-
temperature magnetization process remarkable magnetization
plateau(s) at rational value(s) of the saturation magnetization
[4,5]. The intermediate plateaus of Heisenberg spin chains
reflect quantum states of matter with exotic topological order
such as the Haldane phase [6,7], whereas their presence is
restricted by the quantization condition known as Oshikawa-
Yamanaka-Affleck rule [8,9].

On the other hand, it could be generally expected that the an-
tiferromagnetic Heisenberg spin clusters should always exhibit
leastwise one intermediate plateau before the magnetization
jumps to its saturation value [10–13]. This naive expectation
follows from the energy spectrum of the quantum Heisenberg
spin clusters, which are composed of a few discrete energy
levels that cannot naturally form a continuous energy band
needed for a smooth variation of the magnetization at zero
temperature. At first sight, this argumentation is consistent
with the existence of at least one plateau and magnetization
jump, which bears a close relation to level crossing caused

by the external magnetic field. From this perspective, the
quite natural question arises as to whether or not intermediate
magnetization plateau(s) can be partially or completely lifted
from zero-temperature magnetization curves of the Heisenberg
spin clusters.

Other spin systems which should be noted in the context
of the small quantum spin clusters are the Ising-Heisenberg
chains. They are the one-dimensional spin systems where
the small quantum spin clusters are assembled to the chain
by alternating with the Ising spins in such a way that the
Hamiltonian for the whole system is a sum of mutually
commuting block Hamiltonians. These systems have much
in common with the “classical” chains of the Ising spins, as
they can be solved by the same technique and the eigenstates
are just the direct product of the eigenstates of the single
block, though, for the more complicated structure doubling
of the unit cell is possible. Thus the magnetization curves for
the Ising-Heisenberg spin systems share almost all features
with the magnetization curves of the small spin clusters but
can contain much more intermediate magnetization plateaus.
Various variants of the Ising-Heisenberg chains have been
examined: diamond chain [14–28], sawtooth chain [29,30],
orthogonal-dimer chain [31–33], tetrahedral chain [34–38],
and some special examples relevant to real magnetic materials
[39–42].

In the present work, we will rigorously examine a magneti-
zation process of a few quantum Heisenberg spin clusters and
the Ising-Heisenberg diamond chain, which will not display
strict magnetization plateaus on the assumption that some
constituent spins have different Landé g factors and may
be an XY anisotropy of the exchange interaction. Also, the
Dzyaloshinskii-Moriya (DM) term in a direction different from

1098-0121/2015/92(21)/214423(13) 214423-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.214423
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that of the magnetic field can lead to the same effect. All those
features of the spin Hamiltonian make the magnetization non-
conserved, i.e., noncommutating with the Hamiltonian. This
specific requirement naturally leads to a nonlinear dependence
of the energy levels on a magnetic field, which consequently
causes a smooth change of the magnetization with the magnetic
field within one and the same eigenstate. Although the
smooth change of magnetization due to a difference in Landé
g factors or/and XY anisotropy and the noncollinear DM term
may be quite reminiscent of that of quantum spin chains with
continuous energy bands, it is, of course, of a completely
different mechanism with a much simpler origin.

The single-chain magnet, [{(CuL)2Dy}{Mo(CN)8}] ·
2CH3CN · H2O [40–42], is a remarkable example of both
an Ising-Heisenberg one-dimensional spin system and a spin
model with different Landé g factors, leading to a nonplateau
form of the region of the magnetization curve corresponding
to the same eigenstate. However, as the exact analysis shows
[42], the effect is just barely visible in the magnetization
curve plot by virtue of the very small difference in Landé g

factors of the magnetic ions, although the exact expression for
the magnetization has explicit dependence on the magnetic
field. Almost the same effect but even quantitatively less
pronounced has been observed in the approximate model
of the one-dimensional magnet, the F-F-AF-AF spin chain
compound Cu(3-chloropyridine)2(N3)2 [39].

The organization of this paper is as follows. In the next sec-
tion, we clarify a few general statements closely related to the
absence of actual plateaus in zero-temperature magnetization
curves of quantum spin clusters and chains. These arguments
of general validity will be subsequently illustrated on a
few specific examples of the spin-1/2 quantum Heisenberg
dimer, the mixed spin-(1/2,1) Heisenberg dimer, the spin-
1/2 Heisenberg trimer, and the spin-1/2 Ising-Heisenberg
diamond chain in the following four sections. A summary
of the most important findings along with the implications for
experimental systems will be presented in the concluding part.

II. GENERAL STATEMENTS

Let us first start with a few very general statements
elucidating the issue of the nonconstant magnetization within
one physical state or the explicit magnetic field dependence
of the magnetization corresponding to a certain eigenstate
of the small spin clusters. Obviously, the aforementioned
phenomenon arises when the magnetization is not a good
quantum number,

[H, Mz] �= 0. (1)

Here, H stands for the Hamiltonian of a spin cluster. One
can distinguish two cases, when the z projection of the total
spin Sz

tot does not commute with the Hamiltonian and the
magnetization operator is proportional to it,[

H, Sz
tot

] �= 0, Mz = gμBSz
tot, (2)

or when the z projection of the total spin Sz
tot is a good quantum

number, but the magnetization operator is not proportional to
it and does not commute with the Hamiltonian,[

H, Sz
tot

] = 0, Mz �= gμBSz
tot. (3)

Of course, another possibility is to have the magnetization
which is nonproportional to Sz

tot and the z projection of the
total spin Sz

tot nonconserved. The spin Hamiltonians, which do
not commute with Sz

tot, usually contain XY anisotropy or/and
a DM vector with a nonzero X or Y part. The magnetization
is nonproportional to the total spin Sz

tot when the spins possess
different Landé g factors.

III. SPIN-1/2 HEISENBERG DIMER

In this section we consider the spin-1/2 Heisenberg dimer
as the simplest system of two interacting quantum spins
described by the most general Hamiltonian

Hdim = J
{
(1 + γ )Sx

1 Sx
2 + (1 − γ )Sy

1 S
y

2 + �Sz
1S

z
2

}
+ D · (S1 × S2) − B · (g1 S1 + g2 S2). (4)

Here, Sα
1,2, (α = x,y,z) are the spatial components of the spin-

1/2 operators for two spins in the dimer. We assume the fully
anisotropic XYZ Heisenberg coupling with two anisotropy
constants γ , � and two different but isotropic Landé g factors.
The spatial direction of the magnetic field B and the DM-
vector D are arbitrary so far. Without loss of generality, one
may, however, choose a direction of the magnetic field along
the z axis and the DM vector to lie in xz plane:

Hdim = J
{
(1 + γ )Sx

1 Sx
2 + (1 − γ )Sy

1 S
y

2 + �Sz
1S

z
2

}
+Dx

(
S

y

1 Sz
2 − Sz

1S
y

2

)+ Dz

(
Sx

1 S
y

2 − S
y

1 Sx
2

)
−B

(
g1S

z
1 + g2S

z
2

)
. (5)

Let us calculate the commutators of the Hamiltonian (5) with
the z projections of the operators corresponding to the total
spin and magnetization:

Sz
tot = Sz

1 + Sz
2, Mz = g1S

z
1 + g2S

z
2, (6)

[Hdim,Sz] = −2iγ
(
Sx

1 S
y

2 + S
y

1 Sx
2

)+ iDx

(
Sx

1 Sz
2 − Sz

1S
x
2

)
,

[Hdim,Mz] = −ig−Dz

(
Sx

1 Sx
2 + S

y

1 S
y

2

)
+ ig−J

(
Sx

1 S
y

2 − S
y

1 Sx
2

)− iγg+
(
Sx

1 S
y

2 + S
y

1 Sx
2

)
+ iDx

(
g1S

x
1 Sz

2 − g2S
z
1S

x
2

)
, (7)

where g± = g1 ± g2. As one can see, the XY anisotropy
γ and the DM vector x projection Dx make the Sz

tot and
Mz nonconserved, but even if we set them to zero, the
magnetization may still be a nonconserved quantity because
of the difference in Landé g factors. Thus, the spin-1/2
Heisenberg dimer may exhibit the nonconstant magnetization
within one ground state if at least one of the parameters,
g2 − g1, γ , or Dx(Dy) is nonzero. Let us put Dx = 0 as
it makes the analytic calculations quite cumbersome (the
eigenvalue problem leads to a quartic equation), and start with
the exact diagonalization of the Hamiltonian for the anisotropic
spin-1/2 Heisenberg dimer with different Landé g factors. The
eigenvalues are

ε1,2 = −J�

4
± 1

2

√
B2g2− + J 2 + D2

z ,

(8)

ε3,4 = J�

4
± 1

2

√
B2g2+ + J 2γ 2.
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The corresponding eigenvectors are

|�1,2〉 = 1√
1 + |A±|2

(|↑↓〉 + A±|↓↑〉),

A± = ρ±eiφ, φ = arctan
Dz

J
,

ρ± =
Bg− ±

√
B2g2− + J 2 + D2

z√
J 2 + D2

z

, (9)

|�3,4〉 = 1√
1 + B2±

(|↑↑〉 + B±|↓↓〉),

B± =
Bg+ ±

√
B2g2+ + J 2γ 2

Jγ
.

Under the conditions g1 = g2 (and Dz = 0) the first two eigen-
states become conventional singlet and a Sz

tot = 0 component
of the triplet, respectively. However, there is no continuous
transition to the Sz

tot = 1 and Sz
tot = −1 components of the

triplet in |�3,4〉 at γ → 0. In order to obtain |↑↑〉 and |↓↓〉, one
has to put γ = 0 in the Hamiltonian before diagonalization.
Let us calculate the magnetization eigenvalues for all those
eigenstates:

〈�1,2|
(
g1S

z
1 + g2S

z
2

)|�1,2〉 = 1

2
g−

1 − ρ2
±

1 + ρ2±

= ∓ Bg2
−

2
√

B2g2− + J 2 + D2
z

(10)

At g1 = g2 this expression becomes 0. However, at g1 �= g2

we have explicit dependence of the eigenvalue, corresponding
to the certain eigenstate on the magnetic field. This leads to a
nonconstant magnetization for the given eigenstate. Thus, we
have here Sz

tot = 0 and Mz �= 0.
For the other two eigenstates we have

〈�3,4|
(
g1S

z
1 + g2S

z
2

)|�3,4〉 = 1

2
g+

1 − B2
±

1 + B2±

= ∓ Bg2
+

2
√

B2g2+ + J 2γ 2
. (11)

At γ = 0 the expression transforms to

〈�3,4|
(
g1S

z
1 + g2S

z
2

)|�3,4〉 = ∓ 1
2g+, (12)

which corresponds to |↑↑〉 and |↓↓〉 eigenstates. Equation
(11) has another important feature. The transverse quantum
fluctuations enhanced by the XY anisotropy γ reduce the
magnetization in z direction in such a way that it never
reaches its saturated values ± 1

2 (g1 + g2) at any nonzero γ

and finite magnetic field B. It is also important that even at the
equal g factors, g2 = g1 = g, the magnetization expectation
values for the eigenstates |�3,4〉 exhibit explicit magnetic field
dependence and do not reach their saturated values at nonzero
γ . Another case of interest is the g2 = −g1 = g, when the
magnetization expectation value for the |�1,2〉 is nonzero and
exhibits explicit dependence on the magnetic field and the
eigenstates |�3,4〉 demonstrate zero magnetization. Moreover,
the corresponding expectation values become singular at γ =
0, because, as was mentioned above, there is no continuous
limit γ → 0 in terms of eigenvalues and eigenvectors. The
magnetic susceptibility for the aforementioned states can be
obtained in a straightforward way by taking a derivative of
Eqs. (10) and (11) with respect to ∓B:

∓ ∂

∂B
〈�1,2|

(
g1S

z
1 + g2S

z
2

)|�1,2〉 = J 2g2
−

2
√(

B2g2− + J 2
)3

,

(13)

∓ ∂

∂B
〈�3,4|

(
g1S

z
1 + g2S

z
2

)|�3,4〉 = J 2γ 2g2
+

2
√

(B2g2+ + J 2γ 2)3
.

The deviation from the horizontal line for the zero-
temperature magnetization curve of the dimer under consid-
eration is thus governed by three factors. The difference of
Landé g factors, g2 − g1, is responsible for the nonplateau
behavior for the initial part of the magnetization curve, and
as B � Bc, the larger the absolute value of the difference
the more pronounced the deviation is. At the same time,
the overall Landé g factor, g1 + g2, and the XY anisotropy
γ make another part of the magnetization curve, which in
the limit γ = 0 corresponds to the saturation |↑↑〉, nonflat.
The critical field Bc is found from the level crossing. As
for the zero temperature where only |�2〉 and |�4〉 are realized,
we can find the corresponding value of the magnetic field from
the equation ε2 = ε4, which leads to

Bc =

√
2g1g2
− + J�

{(
g2

1 + g2
2

)
J� +

√
4g2

1g
2
2

[(
g2

1 + g2
2

)

− + 2g1g2
+

]+ (
g2

1 − g2
2

)2
J 2�2

}
2
√

2g1g2

, (14)

with


± = [
D2

z + J 2(1 ± γ 2)
]
. (15)

The typical picture of the level crossing curve one can see
in Fig. 1. However, the B = 0 ground state is also affected by
the value of the XY anisotropy γ . The ground state becomes
|�4〉 for a sufficiently large γ above a certain critical value γc.

The critical value is given by the equation

γc = � +
√

1 + (Dz/J )2. (16)

The nonlinear behavior with respect to the magnetic field is the
main reason for the nonplateau magnetization. As the DM term
in z direction does not bring any qualitatively new physics, we
can hereafter put Dz = 0. The expression for the critical field
(14) does not lead to a proper γ = 0 limit. The case of isotropic
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FIG. 1. (Color online) The energy spectrum of the isolated S =
1/2 dimer with g1 = 2, g2 = 3, J = 1, Dz = 1, γ = 2, and � = 3
displaying level crossing. The two bottom curves correspond to ε2

and ε4. The nonlinearity in B on the energy levels is the main reason
for the nonplateau magnetization.

Heisenberg interaction must be considered separately. In the
case of isotropic Heisenberg interaction the difference is only
in the saturated states presented here, which transforms to
|�3,4〉 at nonzero γ , while the |�1,2〉 eigenstates remain the
same. The value of critical field in this case is

Bc = J
g+� +

√
g2−�2 + 4g1g2

4g1g2
. (17)

Thus, the jump to the saturated magnetization takes place for
γ = 0 at this value of the magnetic field. The magnitude of
the jump depends on the difference of the Landé g factors and
is given by

�M = g+
2

⎧⎪⎪⎨
⎪⎪⎩1 −

g2
−
[
� +

√
g2−�2+4g1g2

g+

]
4g1g2

√
1 + g2−[g+�+

√
g2−�2+4g1g2]

16g2
1g2

2

⎫⎪⎪⎬
⎪⎪⎭. (18)

The corresponding plots of the zero-temperature magnetiza-
tion one can find in Figs. 2 and 3. In Fig. 2 the evolution
of the T = 0 ground state for different values of γ are
presented for J = 1, Dz = 1, � = 2, g1 = 2, and g2 = 6.
The critical value of γ at which the B = 0 ground state of
the spin-1/2 spin dimer changes from |�2〉 to |�4〉 for these
values of J,Dz and � is γc = 2 + √

2 
 3.41. Therefore,
for γ = 0 and γ = 2 one can see magnetization curves
with two eigenstates separated by the jump. The nonplateau
behavior of the magnetization for |�2〉 at B < Bc is well
visible. Also, the nonplateau character of the magnetization
curve corresponding to |�4〉 is obvious for γ = 2, while for
γ = 0 we see an ideal plateau at M = 1

2 (g1 + g2) = 4. This
nonplateau behavior and inaccessibility of the saturation are
more pronounced for γ = 2 and γ = 4 when the system for all
values of the magnetic field (B > 0) is in the |�4〉 eigenstate,
and its T = 0 magnetization curve demonstrates a form very
similar to that of a system with a band of magnetic excitations
or/and to the high-temperature magnetization curve given by
the Brillouin function. The effect of the difference between
the Landé g factor is summarized in Fig. 3. To demonstrate

FIG. 2. (Color online) The zero-temperature magnetization
curves for the S = 1/2 dimer with g1 = 2, g2 = 6, J = 1, Dz = 1,
� = 2, and γ = 0 (red, solid); γ = 1 (black, dotted); γ = 2 (blue,
dashed); and γ = 4 (orange, dot-dashed). Msat = 1

2 (g1 + g2) = 4.

the evolution of the ground state |�2〉 under the change of the
difference of Landé g factors, we have chosen γ = 0 and J =
1,Dz = 0,� = 1 and plotted the normalized magnetization
M/Msat, as the saturation magnetization, Msat = 1

2 (g1 + g2),
is different for each curve. For the g1 = g2 curve there are
just two ideal plateaus at M = 0 (singlet state) and M = 1.
The magnetization jumps from 0 to 1 at Bc = J 1+�

2g
(here

g1 = g2 = g). However, the essential changes appear when the
difference between g factors is growing. For g2 − g1 nonequal
to zero the part of the magnetization curve corresponding to
Sz

1 + Sz
2 = 0 deviates from the horizontal line and becomes

almost linear (for small g−), and then grows more and more
rapidly with the shift of the transition point between |�2〉 and
|�4〉 in the lower B region.

Of course, the effects of the DM terms in molecular magnets
and other low-dimensional many-body spin systems have been

FIG. 3. (Color online) The normalized zero-temperature magne-
tization curves M/Msat of the S = 1/2 dimer with two different
g factors in case of isotropic exchange interaction, γ = 0 and � = 1.
Here, for the sake of simplicity, we put J = 1,Dz = 0,g1 = 2 and
present the curves for the different values of g2. From the bottom to
top g2 = 2 (red); 4 (green); 6 (blue); 8 (magenta); 10 (orange); and
20 (black). Msat = 1

2 (g1 + g2).
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intensively studied in various contexts during the last decade
[43–47]. In Ref. [44] the isolated spin dimer with DM terms
has been considered with general mutual orientation of the
DM vector and magnetic field,

H = J S1 · S2 + D · (S1 × S2) − gB
(
Sz

1 + Sz
2

)
, (19)

where D = (0,D sin θ,D cos θ ). Though, as was shown above,
in this case the eigenvalue problem leads to the solution of a
quartic equation, the authors found an approximate ground
state in the limit D/J � 1 and below the critical field B =
J/g. They explicitly found out the magnetization of the ground
state which turned out to be linear in B:

M = g

4J 3
(D × B) × D. (20)

This is the approximate form of the nonlinear behavior of the
magnetization we have obtained exactly above in the case of
D = (0,0,Dz). Despite all of these results, the issue of the
nonconserving magnetization and its consequences has not
been systematically investigated so far.

It is also straightforward to construct the thermodynamics
of the isolated dimer. The partition function is calculated
directly from the spectrum:

Zdim = 2

{
eβ J�

4 ch

[
β

2

√
B2g2− + J 2 + D2

Z

]

+ e−β J�
4 ch

[
β

2

√
B2g2+ + J 2γ 2

]}
. (21)

The magnetization is found in a standard way, as Mdim =
1
β

( ∂ log Zdim

∂B
)
β
, yielding

Mdim = B

Zdim

⎧⎨
⎩ g2

+e−β J�
4√

B2g2− + J 2γ 2
sh

⎡
⎣β

√
B2g2+ + J 2γ 2

2

⎤
⎦

+ g2
−eβ J�

4√
B2g2− + J 2 + D2

Z

sh

⎡
⎣β

√
B2g2− + J 2 + D2

Z

2

⎤
⎦
⎫⎬
⎭.

(22)

The plots of the finite-temperature magnetization for the S =
1/2 spin dimer are presented in Fig. 4. It is worth mentioning
that thermal fluctuations eliminate from magnetization curves
all typical structures (such as plateaus or quasiplateaus),
quite similarly to the way large XY anisotropy does for
zero-temperature magnetization curves.

IV. MIXED-SPIN HEISENBERG DIMER

Another interesting example of a simple quantum spin
system, which may possibly show a striking dependence of
the total magnetization on a magnetic field, is the mixed
spin-(1/2,1) Heisenberg dimer defined by the Hamiltonian

Hmixed = J
(
Sx

1 μx
2 + S

y

1 μ
y

2 + �Sz
1μ

z
2

)
+D

(
μz

2

)2 − B
(
g1S

z
1 + g2μ

z
2

)
. (23)

Here, Sα
1 and μα

2 (α = x,y,z) represent spatial components of
the spin-1/2 and spin-1 operators, respectively, the exchange
constant J denotes the XXZ Heisenberg coupling between

FIG. 4. (Color online) The normalized finite-temperature mag-
netization curves M/Msat for the S = 1/2 spin dimer with two
different g factors in the case of isotropic exchange interaction,
γ = 0 and � = 1 at different temperatures for g1 = 2, g2 = 6,
J = 1, Dz = 0. T/J = 1.7 (red, solid); T/J = 0.1 (black, dashed);
T/J = 0.03 (blue, dot-dashed); and T/J = 0.001 (orange, dashed).
Msat = 1

2 (g1 + g2) = 4.

the spin-1/2 and spin-1 magnetic ions, � is an exchange
anisotropy in this interaction, D is a uniaxial single-ion
anisotropy acting on a spin-1 magnetic ion, and g1 and g2 are
Landé g factors of the spin-1/2 and spin-1 magnetic ions in an
external magnetic field B. As the effect of the XY anisotropy
was described in detail in the previous section, here to put it
simply, we assume γ = 0. A straightforward diagonalization
of the Hamiltonian (23) gives a full spectrum of eigenstates,
which can be characterized by the following set of eigenvalues:

ε1,2 = 1

2
J� + D ∓ B

2
(g1 + 2g2),

ε3,4 = −1

4
(J� − 2D + 2g2B)

∓1

4

√
(J� − 2D − 2g−B)2 + 8J 2, (24)

ε5,6 = −1

4
(J� − 2D − 2g2B)

∓1

4

√
(J� − 2D + 2g−B)2 + 8J 2,

and the corresponding eigenvectors

|�1,2〉 = ∣∣∓ 1
2 ,∓1

〉
,

|�3,4〉 = c±
1

∣∣− 1
2 ,1

〉∓ c∓
1

∣∣ 1
2 ,0

〉
, (25)

|�5,6〉 = c±
2

∣∣ 1
2 ,−1

〉∓ c∓
2

∣∣− 1
2 ,0

〉
,

where the respective probability amplitudes are given by

c±
1 =

√√√√1

2

[
1 ± J� − 2D − 2g−B√

(J� − 2D − 2g−B)2 + 8J 2

]
,

(26)

c±
2 =

√√√√1

2

[
1 ± J� − 2D + 2g−B√

(J� − 2D + 2g−B)2 + 8J 2

]
.
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FIG. 5. (Color online) Zero-temperature normalized magnetiza-
tion curves of the mixed spin-(1/2,1) dimer by assuming the isotropic
Heisenberg coupling � = 1, several values of the uniaxial single-ion
anisotropy, and two different sets of the Landé g factors: (a) g1 = 2,
g2 = 4; (b) g1 = 4, g2 = 2. Msat = 1

2 (g1 + 2g2).

It should be mentioned that the mixed spin-(1/2,1) Heisenberg
dimer exhibits a strict intermediate plateau at one-third of
the saturation magnetization, regardless of uniaxial single-ion
anisotropy, on the assumption that the Landé g factors of both
constituent magnetic ions are equal, g1 = g2. If the Landé
g factors are different, g1 �= g2, then the mixed spin-(1/2,1)
Heisenberg dimer displays more intriguing zero-temperature
magnetization curves basically affected by a relative strength
of the uniaxial single-ion anisotropy. To illustrate the case,
the total normalized magnetization of the mixed spin-(1/2,1)
dimer is plotted in Fig. 5 against the magnetic field for
the isotropic Heisenberg coupling � = 1, several values of
the uniaxial single-ion anisotropy, and two particular sets of
Landé g factors. A smooth variation of the total magnetization
observed below a saturation field relates to a gradual change of
probability amplitudes of two entangled microstates |−1/2,1〉
and |1/2,0〉 within the eigenstate |�3〉. In a low-field region
with continuously varying magnetization, mean values of two
constituent spins and the total magnetization can therefore be

calculated with the help of the corresponding lowest-energy
eigenvector |�3〉 given by Eq. (25):

〈�3|Sz
1|�3〉 = −1

2

J� − 2D − 2g−B√
(J� − 2D − 2g−B)2 + 8J 2

,

〈�3|μz
2|�3〉 = 1

2

[
1 + J� − 2D − 2g−B√

(J� − 2D − 2g−B)2 + 8J 2

]
,

M = 〈�3|
(
g1S

z
1 + g2μ

z
2

)|�3〉

= g2

2
− g−

2

J�− 2D − 2g−B√
(J�− 2D − 2g−B)2 + 8J 2

. (27)

At g− = 0 we have here M = g

2 (g1 = g2 = g). It can be seen
from Fig. 5 that the respective field variations of the total
magnetization [normalized by the saturation magnetization
Msat = 1

2 (g1 + 2g2)] depend basically on whether the Landé
g factor of the spin-1 magnetic ion is greater or smaller
than the g factor of the spin-1/2 magnetic ion. The total
magnetization is gradually suppressed by an increase in the
single-ion anisotropy in the former case g1 < g2 [see Fig. 5(a)],
while the total magnetization is conversely enhanced by an
increase in the single-ion anisotropy in the latter case g1 > g2

[see Fig. 5(b)]. In general, the total magnetization displays
a considerable dependence on a magnetic field for small
enough single-ion anisotropies D/J ≈ 0, while one recovers
a quasiplateau dependence with only a subtle variation of
the total magnetization in two limiting cases D/J → ±∞
at which the following asymptotic values are reached:

lim
D/J→∞

M/Msat = g1

2g2 + g1
,

(28)
lim

D/J→−∞
M/Msat = 2g2 − g1

2g2 + g1
.

However, the most surprising zero-temperature dependence
of the total magnetization can be found when the g factor of
the spin-1/2 magnetic ion is much greater than the g factor of
the spin-1 magnetic ion (g1 � g2) and the uniaxial single-ion
anisotropy is of easy-axis type D < 0. It turns out that the
eigenvector |�5〉, characterized by a quantum entanglement
of two microstates |1/2,−1〉 and |−1/2,0〉, may eventually
become the lowest-energy eigenstate with a positive value
of the total magnetization, in spite of negative value of the
total spin Sz

tot = −1/2. It is quite evident that a strong enough
easy-axis single-ion anisotropy suppresses the occurrence
probability of the microstate |−1/2,0〉, whereas the other
microstate |1/2,−1〉 may lead to a positive magnetization due
to the much greater Landé g factor of the spin-1/2 magnetic
ion g1 � g2 than that of the spin-1 magnetic ion. Mean values
of two constituent spins and the total magnetization follow
from the corresponding lowest-energy eigenvector |�5〉 given
by Eq. (25):

〈�5|Sz
1|�5〉 = 1

2

J� − 2D + 2g−B√
(J� − 2D + 2g−B)2 + 8J 2

,

〈�5|μz
2|�5〉 = −1

2

[
1 + J� − 2D + 2g−B√

(J� − 2D + 2g−B)2 + 8J 2

]
,

(29)
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FIG. 6. (Color online) Zero-temperature normalized magnetiza-
tion curves of the mixed spin-(1/2,1) dimer by assuming the isotropic
Heisenberg coupling � = 1, several values of the uniaxial single-ion
anisotropy, and the Landé g factors g1 = 6 and g2 = 2. Msat =
1
2 (g1 + 2g2).

M = 〈�5|
(
g1S

z
1 + g2μ

z
2

)|�5〉

= −g2

2
+ g−

2

J� − 2D − 2g−B√
(J� − 2D − 2g−B)2 + 8J 2

. (30)

In analogy with the |�3〉 case, here we get M = − g

2 at g1 =
g2 = g. The zero-temperature magnetization curves displayed
in Fig. 6 afford a convincing proof that the total magnetization
may vary continuously in a low-field region, and then it
may show an abrupt jump to an intermediate-field region
with another continuously varying magnetization terminating
just at the saturation field. (See the magnetization curves for
D/J = −0.4 and −0.5.) In accordance with the previous
argumentation, the total magnetization follows the formula
(30) in the low-field region attributable to the eigenstate |�5〉,
while it varies according to Eq. (27) in the intermediate-field
region attributable to the eigenstate |�3〉. The magnetization
part corresponding to the eigenstate |�3〉 gradually diminishes
as the easy-axis single-ion anisotropy strengthens (i.e., it
becomes more negative), and hence, the total magnetization
shows, below a saturation field, only a single region with
continuously varying magnetization due to the striking lowest-
energy eigenstate |�5〉 with a negative total spin but a
positive total magnetization. (See the magnetization curves
for D/J = −0.6 and −1.0.) It is straightforward to calculate
the susceptibility for the eigenstates |�3〉 and |�5〉:

± ∂

∂B
〈�3,5|

(
g1S

z
1 + g2μ

z
2

)|�3,5〉

= 2g2
−

(J� − 2D − 2g−B)2 + 4J 2

[(J� − 2D − 2g−B)2 + 8J 2]3/2
, (31)

which becomes zero only when g1 = g2 or D/J → ∞ or
� → ∞. It has been demonstrated that a smooth variation
of the total magnetization at zero temperature within one and

the same eigenstate requires a difference between the Landé
g factors. From this perspective, our theoretical predictions
could be more easily experimentally tested for the mixed spin-
(1/2,1) Heisenberg dimer, which represents a plausible model
for heterobimetallic dinuclear complexes naturally having two
unequal Landé g factors due to two different constituting
magnetic ions. While the quasiplateau phenomenon should
still remain a rather subtle effect in heterodinuclear complexes
composed of Cu2+ (spin-1/2) and Ni2+ (spin-1) magnetic ions
due to a relatively small difference between the g factors not
exceeding a few percent [48,49], it should become much more
pronounced in heterodinuclear complexes composed of Co3+

(spin-1/2) and Ni2+ (spin-1) magnetic ions having a much
greater difference between g factors (typically gCo ≈ 5.9 and
gNi ≈ 2.3) [50–52].

V. SPIN-1/2 HEISENBERG TRIMER

By complicity the next spin system with the different
g factors is the triangle with uniform coupling and with only
two g factors given by the Hamiltonian:

Htrim = J
(
Sx

1 Sx
2 + S

y

1 S
y

2 + �Sz
1S

z
2 + Sx

1 Sx
3 + S

y

1 S
y

3 + �Sz
1S

z
3

+ Sx
2 Sx

3 + S
y

2 S
y

3 + �Sz
2S

z
3

)− g1BSz
1 − g2B

(
Sz

2 + Sz
3

)
.

(32)

The Hamiltonian can be diagonalized in a straightforward way.
The eigenvalues are

ε1,2 = 3J

4
∓ 1

2
(g1 + 2g2)B,

ε3,4 = −J

4
(2 + �) ∓ 1

2
g1B,

(33)

ε5,6 = J

4
(1 − �) ± Q+ + 1

2
g2B,

ε7,8 = J

4
(1 − �) ± Q− − 1

2
g2B,

where

Q± = 1
2

√
2J 2 + (J ± g−B)2. (34)

The eigenvectors are

|�1〉 = |↑↑↑〉, |�2〉 = |↓↓↓〉,
|�3〉 = |↑〉1|S〉23, |�4〉 = |↓〉1|S〉23,

(35)

|�5,6〉 = 1√
2 + c2±

(
√

2|↑〉1|T0〉23 + c±|↓〉1|T+〉23),

|�7,8〉 = 1√
2 + c̄2±

(
√

2|↓〉1|T0〉23 + c̄±|↑〉1|T−〉23),

where the number in the lower-right angle of the symbol |〉
corresponds to the certain spin in the triangle, and |S〉, |T±〉,
and |T0〉 are spin singlet and components of the spin triplet:

|S〉 = 1√
2

(|↑↓〉 − |↓↑〉), |T+〉 = |↑↑〉,

|T−〉 = |↓↓〉, |T0〉 = 1√
2

(|↑↓〉 + |↓↑〉). (36)
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And the coefficients are

c± = −J� + 2g−B ± Q+
J�

,

(37)
c̄± = −J� − 2g−B ± Q−

J�
.

For our purposes the eigenvectors from |�5〉 to |�8〉 are of
special interest, as they demonstrate the monotonous explicit
dependence of the magnetization on the magnetic field under
constant value of the projection of the total spin, which is ± 1

2
in our case. The expectation value of the magnetic moment for
the eigenstate with the lowest energy among the others (|�8〉
for positive B) is

〈�8|
{
g1S

z
1 + g2

(
Sz

2 + Sz
3

)}|�8〉 = 1

2

2g1 − (g1 − 2g2)c̄2
−

2 + c̄2−
.

(38)

It is easy to see that for the case of the uniform g factors,
g1 = g2 = g, the magnetic moment expectation value be-
comes a constant equal to g/2. Although, for the eigenvalues

of the magnetization operator the limit g− = 0 gives the
correct result, this is not the case for the eigenvectors of the
Hamiltonian. Thus, one cannot obtain the standard basis for the
spin trimer by putting g1 = g2 in Eqs. (35). The susceptibility
for the continuous magnetization (38) is given by

∂

∂B
〈�8|

{
g1S

z
1 + g2

(
Sz

2 + Sz
3

)}|�8〉 = − 4g−c̄−
(2 + c̄2−)2

dc̄2
−

d B
.

(39)

The susceptibility becomes zero at g1 = g2. The partition
function for the spin trimer under consideration can be
obtained in a straightforward way:

Ztrim = 2eβ J
4

{
e−βJ ch

(
β

(g1 + 2g2)B

2

)
+ eβ J�

2 ch

(
β

g1B

2

)

+ e−β J�
4
[
e−β

g2B

2 ch(βQ+) + eβ
g2B

2 ch(βQ−)
]}

(40)

The finite-temperature magnetization reads

Mtrim = eβ J
4

Ztrim

{
(g1 + 2g2)e−βJ sh

(
β

(g1 + 2g2)B

2

)
+ g1e

β J�
2 sh

(
β

g1B

2

)

+ e−β J�
4

[
eβ

g2B

2

(
g2 ch (βQ−) − g−(J − 2g−B)

Q−
sh (βQ−)

)

− e−β
g2B

2

(
g2 ch (βQ+) − g−(J + 2g−B)

Q+
sh (βQ+)

)]}
. (41)

The plots of the normalized zero-temperature magnetization
are presented in Fig. 7. Here the development of the nonplateau
part of the magnetization curve with the increase in the

FIG. 7. (Color online) The zero-temperature normalized magne-
tization curves for the Heisenberg spin trimer with two different Landé
g factors for J = 1, � = 2, g1 = 2, and g2 = 2 (red, solid); g2 = 4
(black, dashed); g2 = 6 (blue, dot-dashed); and g2 = 10 (orange,
dashed). Msat = 1

2 (g1 + 2g2).

difference g2 − g1 is clearly visible. For comparison, the
ordinary curve for g1 = g2 is also presented with a plateau
at M/Msat = 1/3, which corresponds to the ground state with
S2

tot = 3/4,Sz
tot = 1/2:

1√
3

(|↑↑↓〉 + |↑↓↑〉 + |↓↑↑〉), (42)

which transforms into the |�8〉 at g2 �= g1. Let us mention also
that the B = 0 ground state for g1 = g2 is fourfold degenerate
and the magnetic field lifts this degeneracy just partly, because
the 1/3 plateau state is still twofold degenerate. The deviation
from the horizontal line becomes more pronounced with the
growing difference between g factors of the spins. Thus,
the zero-temperature magnetization curve for the simple
system with a finite discrete spectrum mimics the magnetic
behavior of magnets with the band of magnetic excitations.
The value of the critical field at which the level crossing
between |�8〉 and the fully polarized state |�1〉 takes place
is

Bc = J
2g+� − g1 +

√
(2g−� − g1)2 + 8g1g2

4g1g2
. (43)

In the limit g1 = g2 = g, the value of critical field is J 1+2�
2g

.
The interplay between thermal fluctuations and the nonplateau
behavior can be seen in Fig. 8, where one can see a gradual
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FIG. 8. (Color online) Finite-temperature normalized magneti-
zation curve for the Heisenberg spin trimer with two different
Landé g factors for J = 1, � = 2, g1 = 2, g2 = 4, and T = 1.4J

(red, solid); T = 0.5J (black, dashed); T = 0.1J (blue, dot-dashed);
and T = 0.000 01J (orange, dashed). Msat = 1

2 (g1 + 2g2) = 5.

smearing out of the magnetization curve with the rise of the
temperature.

VI. ISING-HEISENBERG (ISING-XY Z) DIAMOND CHAIN
WITH DIFFERENT LANDÉ g FACTORS

To illustrate the features of having the spin cluster with
nonconserving magnetization as a constituent of the Ising-
Heisenberg one-dimensional systems, let us now consider the
simplest Ising-Heisenberg spin chain with the XYZ dimers
and different g factors, the diamond chain [14–28]. However,
we are not going to describe the entire problem in detail; this
can be a topic of a forthcoming and separate investigation.
We just want to illustrate how rich the structure of the
magnetization curve can be, if we include the spin cluster with
nonconserved magnetization into the more involved structures.
The interest toward the diamond chain is large not only
because of the simplicity of the system, especially in case
of Ising-Heisenberg one-dimensional systems, but also as the
diamond chain is believed to be the real magnetic structure of
the mineral azurite [53–56]. The lattice is depicted in Fig. 9,
where the quantum spin dimer is the vertical bonds (solid
lines) while the dashed lines correspond to Ising couplings.
The Hamiltonian for the whole chain is the sum over the block
Hamiltonians:

Hdc =
N∑

j=1

{
Hj − B

2
(gjσj + gj+1σj+1)

}
,

Hj = J
{
(1 + γ )Sx

j,1S
x
j,2 + (1 − γ )Sy

j,1S
y

j,2 + �Sz
j,1S

z
j,2

}
+ (K(σj + σj+1) − g1B)Sz

j,1

+ (K(σj + σj+1) − g2B)Sz
j,2, (44)

σ n 1σ n

Sn,1

Sn,2

FIG. 9. The Ising-Heisenberg diamond chain. Solid lines repre-
sent the quantum interactions, while the dotted ones stand for the
interaction involving only z components of the spins. Here we also
consider the g factors of the quantum spins Sj,1 and Sj,2 to be g1 and
g2, respectively.

where the g factors of the Ising intermediate spins alternating
with the spin dimer are also taken alternating

gj =
{
g3, j is odd
g4, j is even.

(45)

A. Exact solution

One can apply the standard technique of the generalized
classical transfer matrix to calculate the free energy of the
model under consideration exactly [16,18,22,29–31,35,36,42].
However, as here we deal with the alternation of two kind of
blocks, one has to compose a two-block transfer matrix just by
multiplying transfer matrices for odd and even blocks. In other
words, the partition function of the model can be factorized
in the following form (the cyclic boundary conditions are
assumed):

Zdc =
∑

σ1,...σN

N∏
j=1

eβ B
2 (gj σj +gj+1σj+1) Trj e−βHj (σj ,σj+1)

=
∑

σ1,...σN

Vσ1,σ2 V T
σ2,σ3

....V T
σN ,σ1

, (46)

where with the aid of the block Hamiltonian eigenvalues from
Eq. (8), one can obtain four quantities Vσj ,σj+1 , σj ,σj+1 =
±1/2, as the entries of the following matrix:

V = 2e−β J�
4

(
eβ

B(g3+g4)
4 U− eβ

B(g3−g4)
4 U0

e−β
B(g3−g4)

4 U0 e−β
B(g3+g4)

4 U+

)
, (47)

where

U± = W + ch

(
β

2

√
(Bg+ ± 2K)2 + J 2γ 2

)
,

U0 = W + ch

(
β

2

√
B2g2+ + J 2γ 2

)
, (48)

W = eβ J�
2 ch

(
β

2

√
B2g2− + J 2

)
.

Thus, the partition function can be rewritten in the form

Zdc = 4
N
2 e−β J�N

4 Tr T
N
2 , (49)

where,

T =
(

eβ
B(g3+g4)

2 U 2
− + eβ

B(g3−g4)
2 U 2

0

{
eβ

Bg4
2 U− + e−β

Bg4
2 U+

}
U0{

eβ
Bg4

2 U− + e−β
Bg4

2 U+
}
U0 e−β

B(g3+g4)
2 U 2

+ + e−β
B(g3−g4)

2 U 2
0

)
.
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Then, for the free energy per unit cell in the thermodynamic
limit, N → ∞, we have

f = J�

4
− 1

2β
(log 4 + log λ), (50)

where the λ is the largest eigenvalue of the matrix T, which is
expressed by the entries of the matrix T in the following form:

λ = 1
2

(
T 1

2 , 1
2
+ T− 1

2 ,− 1
2
+
√(

T 1
2 , 1

2
− T− 1

2 ,− 1
2

)2 + 4T 2
1
2 ,− 1

2

)
.

(51)

Now, we will analyze the nonplateau magnetization for
Ising-XYZ diamond chain with different g factors. Using the
free energy, one gets the magnetization

M = −
(

∂f

∂B

)
β

= 1

2β

1

λ

(
∂λ

∂B

)
β

. (52)

As the lattice has six spins in the translational invariant unit
cell, two σ spins and two vertical dimers, the total saturation
magnetization per one block (note that N is the number of
block which is supposed to be even, while the number of the
unit cell with six spins is N/2) is

Msat = 1
2

(
g1 + g2 + 1

2 (g3 + g4)
)
. (53)

One can see the plots of the zero-temperature magnetization
of the Ising-XYZ diamond chain in Fig. 10. The zero-
temperature curves can be obtained as a sufficiently low-
temperature limit of the exact expression (52). One can see
series of quasiplateau and magnetization jumps which can
undergo a certain variation under the changing of the XY

anisotropy γ (upper panel) or axial anisotropy � (lower panel).

B. Ground states

We are not going to present the comprehensive analysis
of all possible ground states and all types of magnetization
curves for the XYZ-Ising diamond chain with different
g factors, but let us just illustrate the ground-state structure of
the T = 0 magnetization curve from Fig. 10(a). To be specific,
let us consider the magnetization curve for J = 1,K =
1,g1 = 8,g2 = 2,g3 = 2,g4 = 4,γ = 0.5, and � = 1.2. The
comparison of the different combinations of the spin-dimer
eigenstates [Eq. (9) with Dz = 0] with the orientation of the
intermediate Ising spins gives rise to a series of possible
eigenstates for the chain. However, only a few of them are
realized in the case we consider here. First of all, the B = 0
ground state is macroscopically degenerate for our choice of
parameters. In this ground state all vertical quantum dimers
are in |�2〉 state from Eq. (9), and all intermediate Ising spins
can freely point either up or down. Thus, we have here a 2N

configurations with the same energy. An arbitrary but nonzero
magnetic field lifts this degeneracy. The system passes through
the following ground state with the increasing magnetic field
which corresponds to the course of the magnetization curve
we are analyzing here:

|GS1〉→|GS2〉→|GS1〉 → |GS3〉 → |QS〉, (54)

FIG. 10. (Color online) Zero-temperature normalized magneti-
zation as a function of magnetic field. Assuming fixed values:
J = 1,g1 = 8,g2 = 2,g3 = 2,g4 = 4,K = 1 (a) for a range values
of � and fixed γ = 0.5, and (b) for a range values of γ and fixed
� = 1.2. Msat = 1

2 [g1 + g2 + 1
2 (g3 + g4)] = 13/2.

where the eigenstates with the corresponding magnetization
and energies are

|GS1〉 =
N∏

j=1

|↑〉j ⊗ |�2〉j ,

M1 = Bg2
−

2
√

B2g2− + J 2
+ 1

4
(g3 + g4),

E1 = −J�

4
− 1

2

√
B2g2− + J 2 − B

4
(g3 + g4),

|GS2〉 =
N∏

j=1

|↓〉j ⊗ |�+
4 〉j ,
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M2 = g+(Bg+ + 2K)

2
√

(Bg+ + 2K)2 + J 2γ 2
− 1

4
(g3 + g4),

E2 = J�

4
− 1

2

√
(Bg+ + 2K)2 + J 2γ 2 + B

4
(g3 + g4),

|GS3〉 =
N/2∏
j=1

|↓〉2j−1 ⊗ |�4〉2j−1 ⊗ |↑〉2j ⊗ |�4〉2j ,

M3 = Bg2
+

2
√

B2g2+ + J 2γ 2
− 1

4
(g3 − g4),

E3 = J�

4
− 1

2

√
B2g2+ + J 2γ 2 + B

4
(g3 − g4),

|QS〉 =
N∏

j=1

|↑〉j ⊗ |�−
4 〉j ,

MQS = g+(Bg+ − 2K)

2
√

(Bg+ − 2K)2 + J 2γ 2
+ 1

4
(g3 + g4),

EQS = J�

4
− 1

2

√
(Bg+ − 2K)2 + J 2γ 2 − B

4
(g3 + g4),

(55)

where |�2,4〉j stands for the corresponding eigenvectors of
the spin dimer [Eq. (9) with Dz = 0] at the j th block and the
|�±

4 〉j is structurally the same |�4〉j eigenstate. But taking into
account the influence of the interaction with the neighboring
Ising spins σj and σj+1, which leads only to a modification of
the coefficient B−,

|�±
4 〉 = 1√

1 + (B±
− )2

(|↑↑〉 + B±
−|↓ ↓ 〉),

(56)

B±
− = Bg+ ± 2K −

√
(Bg+ ± 2K)2 + J 2γ 2

Jγ
,

the arrows indicate the orientation of the corresponding Ising
spins. Here several comments are in order. First of all, one can
see the phenomenon of reentrant phase transition when the
system with increasing magnitude of the magnetic field enters
the same ground state |GS1〉 twice. This is also clearly seen
from the ground-state phase diagram which is presented in
Fig. 11. The return to the ground state |GS1〉 is possible due to
the nonlinear magnetic field dependence of the corresponding
magnetization and the energies of all ground states. One can
also see from Eq. (55) that despite the visible ideal horizontal
character of some part of the magnetization curve, they are not
the magnetization plateaus but just the very slowly growing
part of the curve. Thus, the magnetization always has an
explicit dependence on the magnetic field, unless γ = 0 or/and
g1 = g2. The quasisaturated state |QS〉 at finite values of
γ has the magnetization asymptotically converging to Msat.
However, this value is inaccessible for finite values of magnetic
field. Although most quasiplateaus appear below the saturation
(last critical) field, there also exists an alternative mechanism
for quasiplateau formation. Namely, the last plateau emerging
above the last critical field (which is in fact not a true saturation
field) may change to the quasiplateau due to the XY anisotropy
and consequently, the magnetization varies continuously above

FIG. 11. Zero-temperature ground-state phase diagram � versus
B/J of the XYZ-Ising diamond chain with the different g factors for
K = 1, γ = 0.5 and g factors g1 = 8, g2 = 2, g3 = 2, and g4 = 4.

the last critical field and it never reaches full saturation except
for asymptotically infinite magnetic field.

VII. CONCLUSION

In the present work, we have investigated in detail an
absence of actual plateaus in zero-temperature magnetization
curves of quantum spin clusters and chains. It has been
convincingly evidenced that strict plateaus may disappear from
a magnetization process on the assumption that constituent
spins of quantum spin clusters have different Landé g fac-
tors. More specifically, we have demonstrated this intriguing
feature on a few paradigmatic examples of quantum spin
clusters such as the spin-1/2 Heisenberg dimer, the mixed
spin-(1/2,1) Heisenberg dimer, and the spin-1/2 Heisenberg
trimer, whereas the same phenomenon has been also found
in the spin-1/2 Ising-Heisenberg diamond chain. From this
perspective, the absence of actual magnetization plateaus due
to the difference in Landé g factors can be regarded as a
general feature of low-dimensional quantum antiferromagnets,
because it emerges whenever the total magnetization does not
represent a conserved quantity with well-defined quantum spin
numbers (the total magnetization need not be proportional
to the total spin). Accordingly, a smooth variation of total
magnetization can be attributed to a nonlinear dependence of
a few (or all) discrete energy levels on a magnetic field.

A few remarks are in order here, which might be useful for
possible experimental testing of this interesting phenomenon.
Although the magnetization curves of quantum spin clusters
without strict plateaus may mimic to a certain extent the
magnetization curves of quantum spin chains with continuous
energy bands, it is obvious that the absence of magnetization
plateaus does not in turn mean a gapless excitation spectrum.
On the contrary, small magnetic spin clusters should always
have an energy gap, which can be easily experimentally tested
by various resonance techniques.

It is also worth noting that the deviation of magnetization
from a strict plateau is proportional to a difference between
the Landé g factors, which makes an experimental verification
of this phenomenon more difficult. As a matter of fact, most
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of the transition-metal ions, such as, for instance, Cu2+, Ni2+,
Mn2+, Cr3+, or high-spin Fe3+ with zero or totally quenched
angular momentum, can be described by the notion of more
or less isotropic quantum Heisenberg spins and hence, these
magnetic ions usually have g factors quite close to the free
electron value g ≈ 2 [50,51,57]. Under these circumstances, it
is customary to combine the local Landé g factors of individual
magnetic ions into a single molecular g factor as long
as the isotropic Heisenberg exchange significantly prevails
over the zero-field splitting, asymmetric and/or antisymmetric
exchange [58]. Many experimental studies focused on a
magnetism of such oligonuclear complexes therefore simply
ignore different Landé g factors of individual magnetic ions,
as the isotropic exchange is by far the most dominant coupling.
However, a few transition-metal ions with unquenched angular
momentum may have much higher Landé g factors due to a
relatively strong spin-orbit coupling, such as, for example, the
low-spin Fe3+ ion with a typical value of g ≈ 2.8 or Co2+

ion with g ≈ 6.0 [50,51,57]. Another possibility as to how to
increase the difference of the Landé g factors in oligonuclear
complexes is to combine the almost isotropic transition-metal
ion with highly anisotropic rare-earth ions, which may even
possess much greater Landé g factors (e.g., Dy3+ typically
has g ≈ 20), though this extraordinarily large g value usually
correlates with a rather strong anisotropy in the exchange
interaction [50,59,60]. Under the extreme situation, the XY

part of exchange coupling might even be of opposite sign
than the Z part (ferromagnetic versus antiferromagnetic), as it
has been recently reported for the heterodinuclear Cr3+-Yb3+

complex [59].
Last but not least, let us briefly comment on experi-

mental implications for the quantum spin clusters studied
in the present work. The spin-1/2 Heisenberg dimer has
previously proved its usefulness as the plausible model of
many homodinuclear Cu2+-Cu2+ complexes [50,51,57,61].
However, the difference between the local Landé g factors
in the homodinuclear coordination compounds may only stem
from a different coordination sphere of individual magnetic
ions, whereas this difference does not exceed in most cases
a few percent that would be insufficient for an experimental

testing. On the contrary, the considerable difference in the local
g factors could be expected in heterobimetallic coordination
compounds, which are composed of the nearly isotropic
magnetic ion (e.g., Cu2+, Ni2+, high-spin Fe3+, etc.) and the
highly anisotropic magnetic ion (e.g., Co2+, low-spin Fe3+,
etc.). Hence, the heterodinuclear Co2+-Cu2+ and Fe3+-Cu2+

complexes could be regarded as sought experimental realiza-
tions of the generalized spin-1/2 Heisenberg dimer, which
may display a substantial deviation of the magnetization
from a strict plateau, as the g factors of individual magnetic
ions may even possess opposite signs due to a spin-orbit
coupling. (For example, gFe ≈ −1.7, gCu ≈ 2.1 was reported
in Ref. [62], and negative g factors of Co2+ and Cu2+ magnetic
ions were investigated in Ref. [63].) A similar conjecture
can be formulated for experimental representatives of the
mixed spin-(1/2,1) Heisenberg dimer. As usual, the magnetic
anisotropy in heterodinuclear Cu2+-Ni2+ complexes does not
cause a significant deviation of the magnetization from a
strict plateau [48,49], but a rather large deviation could be
expected instead in heterodinuclear Co2+-Ni2+ coordination
compounds with typical values of the g factors gCo ≈ 5.9 and
gNi ≈ 2.3 [52]. It can be also anticipated that the homotrin-
uclear Cu2+-Cu2+-Cu2+ complexes [64–66] as experimental
representatives of the spin-1/2 Heisenberg trimer should not
have a significant deviation of the magnetization from a
strict plateau, unlike the heterotrinuclear Cu2+-Co2+-Cu2+

complexes [67].
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