
PHYSICAL REVIEW B 92, 214415 (2015)

Interplay of interchain interactions and exchange anisotropy: Stability and fragility of multipolar
states in spin-1

2 quasi-one-dimensional frustrated helimagnets

Satoshi Nishimoto,1,2 Stefan-Ludwig Drechsler,1,* Roman Kuzian,1,3,4 Johannes Richter,5 and Jeroen van den Brink1,2

1Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany
2Department of Physics, TU Dresden, D-01062 Dresden, Germany

3Institute for Problems of Materials Science NASU, Krzhizhanovskogo 3, 03180 Kiev, Ukraine
4Donostia International Physics Center (DIPC), ES-20018 Donostia-San Sebastian, Spain
5Universität Magdeburg, Institut für Theoretische Physik, D-39016 Magdeburg, Germany

(Received 22 December 2012; revised manuscript received 3 November 2015; published 10 December 2015)

We quantify the stability of the formation of multipolar states against always present interchain couplings
in quasi-one-dimensional spin- 1

2 chain systems with a frustrating in-chain J1-J2 exchange, including parameter
regimes that are of direct relevance to many edge-shared cuprate spin-chain compounds. Three representative types
of antiferromagnetic interchain coupling and the presence of uniaxial exchange anisotropy are considered. The
magnetic phase diagrams are determined by density matrix renormalization group calculations and completed by
very accurate analytic and numerical results for the nematic and the dipolar phases employing the hard-core-boson
approach. We establish that a sizable interchain coupling has a strong influence on the possible instability of
multipolar phases at high magnetic fields in the vicinity of the saturation fields in favor of the usual dipolar
one-magnon phase. Moreover, skew interchain couplings strongly affect the pitch of spiral states. Our theoretical
results bring to the fore candidate materials close to quantum nematic/triatic ordering.
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I. INTRODUCTION

In a system with frustrated magnetic interactions, entirely
new ground states (GSs) can emerge from the ensuing
competition. The geometric frustration of classical Ising
spins on a pyrochlore lattice, for instance, results in the
famous spin-ice state, the excitations of which are magnetic
monopoles [1]. In frustrated quantum magnets and/or in the
vicinity of critical points a rich variety of equally interesting
and challenging exotic states such as spin liquids, valence-
bond crystals, or nematic phases can occur [2–4]. For example,
very recently a nematic-like behavior below a wide 1/3
magnetization plateau has been observed in volborthite [5,6],
which is a frustrated magnetic quasi-two-dimensional (2D)
kagome lattice compound. In the context of the present
paper this example is instructive and encouraging in the
sense that theoretical scenarios developed initially for a pure
low-dimensional (2D) model can survive also in the 3D
case with a small but significant magnetic coupling between
the low-dimensional (planar) subsystems. In quantum spin
chain systems, in particular, the competition between short-
and longer-range magnetic couplings is a common source
of frustration, a canonical example of which is the J1-J2

spin- 1
2 chain [2,3]. Having antiferromagnetic (AFM) next-

nearest-neighbor (NNN) interactions (J2 > 0), it is frustrated
irrespective of the sign of of the nearest-neighbor (NN)
coupling J1; see Fig. 1(a). In the classical J1-J2 spin chain
the competing interactions generate a helimagnetic state but
in a single chain quantum fluctuations destroy the long-range
helical order. For sufficiently high magnetic field, for any value
of J1, the FM state takes over and the system’s magnons,
its propagating spin flips, become its exact single-particle
excitations. The exchange parameters J1 and J2 determine the
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magnon dispersion and the interaction between them. An AFM
NN exchange coupling leads to a repulsion between magnons,
whereas a FM NN coupling results in an attraction, which
favors the formation of magnon bound states. For a frustration
ratio α = −J2/J1 > 0.367 an interesting and intensely studied
nematic state can occur, which may be thought of as a
condensate of 2-magnon bound states [7–16] characterized
by a quadrupole spin order with a nonzero anomalous average
〈Ŝ+

i Ŝ+
j 〉. For 1/4 < α < 0.367 also three-, four-, and even

higher magnon bound states can condense, resulting in a
rich phase diagram with quite a number of exotic magnetic
multipolar phases (MPPs).

These theoretical developments have stimulated an ex-
perimental quest to find multipolar condensates in quasi-
one-dimensional (1D) magnetic materials, in particular, in
spin s = 1

2 systems consisting of edge-shared copper-oxide
chains, such as LiVCuO4 (in cuprate notation ≡ LiCuVO4 in
traditional chemical notation) [14,17–21], Li2ZrCuO4 [22,23],
Ca2Y2Cu5O10 [24,25], PbCuSO4(OH)2 [21,26–28] (linarite),
Rb2Cu2Mo3O12 [29], and Li2CuO2 [30,31].

Except for the famous spin-Peierls system CuGeO3 with
an enhanced NN AFM superexchange due to an unusually
large Cu-O-Cu bond angle and a significant crystal field
anisotropy, in these systems J1 is intrinsically FM and J2 can
be of comparable strength, but it is always AFM. In real 3D
materials, however, a magnetic interchain (IC) interaction is
unavoidably present. Due to the fragility of purely 1D bound
states, IC interactions can readily pose a relevant perturbation
to a multipolar state, even when its coupling strength is rela-
tively small [31], i.e., an order of magnitude smaller than the
intrachain couplings. To establish the consequences of this key
ingredient for the stability of MPPs we consider here the three
most common types of IC couplings J IC that are encountered
in the quasi-1D edge-shared cuprates mentioned above (one
perpendicular IC coupling and two different types of skew
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FIG. 1. (Color online) (a) Competing NN and NNN exchange
J1 and J2, respectively, along a chain. Coupling between different
chains: (b) perpendicular coupling J IC

0 , (c) skew (diagonal) coupling
J IC

1 [e.g., PbCuSO4(OH)2], and (d) skew NNN coupling between
shifted chains J IC

2 (e.g., Li2CuO2). The effect of J IC
0 is considered in

both 2D (e.g., LiVCuO4) and 3D arrangements.

ones; see Fig. 1) and determine the boundaries of the magnetic
phase diagram numerically by density matrix renormalization
group (DMRG) calculations and analytically by hard-core
boson (HCB) [31–34] and spin-wave (SW) [25] approaches.
On top of this we consider also as a first illustrative example
the presence of a uniaxial exchange anisotropy focusing on
the anisotropy in the NN coupling along the chains, which
is believed to be the leading anisotropy term in edge-shared
chain cuprates [35–38]. We show that the stability of MPPs
is strongly affected by the strength of the AFM IC couplings
and depends on the concrete type (geometry) of this coupling,
which may also largely affect the pitch of the spiral state.
A small easy-axis exchange anisotropy, however, enhances
the stability of MPPs dramatically, also in the presence
of IC couplings, since it enhances the intrachain attraction
between magnons. From the material’s viewpoint based on
the presently investigated several members of a still growing
family of quasi-1D J1-J2 compounds, our theoretical results
bring to the fore linarite, PbCuSO4(OH)2, as a promising
and experimentally convenient [26,28] candidate compound
with a triatic MPP, which can be stabilized by its sizable
exchange anisotropy, and confirm the closeness of LiVCuO4 to
quantum nematicity. It is noteworthy that for both compounds
the expected neighboring phases of anomalous longitudinal
collinear spin density waves SDWp with p � 2, where the
parameter p = 2,3,4, . . . denotes the character of the expected
adjacent MP order at higher fields up to saturation, have been
detected and analyzed recently [39–42]. These anomalous
SDWp-ordered phases are characterized by a magnetization-
dependent propagation wave vector [cosine-like (sine-like)
spin modulated phases] with zero transverse magnetization.
It is also noteworthy that the expected nematicity-related adja-
cent case p = 2 has been observed for LiVCuO4 [42] whereas
multiple SDWp phases in different field and temperature
regions in the complex phase diagram have been reported for

linarite [39]. But the existence of their corresponding expected
counterparts, namely the nematic states at higher fields, has
very probably not yet been settled experimentally, even in the
simpler nematic case of LiVCuO4 [40,41], in contrast to the
assigned there detection of a bond-nematic phase by Mourigal
et al. [42]. For completeness we mention that the possibility
of coexisting nematic and SDW2 phases after a second-order
phase transition at slightly lower fields has been suggested in
Ref. [43] using the approximate dilute Bose gas approximation
based ladder summation also at finite pair densities, but this
case of a homogeneous coexistence of both competing phases
was explicitly excluded in Refs. [40,41] based on rather general
field-theory-based arguments.

Our paper is organized as follows. In Sec. II we specify the
models considered here and briefly illustrate the methods used
to analyze them. In Sec. III we present our main theoretical
results. The relation of our theoretical findings to concrete
edge-shared cuprate spin-chain compounds is discussed in
Sec. IV. In particular, based on our theoretical analysis we
propose possible candidate compounds to find experimentally
more MPPs and discuss in this context how to influence
the MPPs by external stress or pressure. We summarize our
findings in Sec. V. In order to focus on the obtained results and
their discussion in the main text, we provide technical details of
our hard-core boson (HCB) approach in Appendices A and B.

II. MODELS AND METHODS

The general relevant Hamiltonian

H = H1D + HIC (1)

considered here encompasses in the simplest form the frustrat-
ing magnetic interactions along the 1D chain in the presence of
an external magnetic field h and a small uniaxial NN exchange
anisotropy �1 �= 1,

H1D =
∑
n,i

[−Sn,i · Sn,i+1 + αSn,i · Sn,i+2]

−
∑
n,i

[
(�1 − 1)Sz

n,iS
z
n,i+1 + hSz

n,i

]
, (2)

where n labels the chain and i the position of the spins along
the chain. Neighboring chains n and m interact via

HIC =
∑

〈nm〉,r
J IC

r Sn,i · Sm,i+r , (3)

where r = 0 corresponds to a perpendicular IC coupling and
r = 1,2 refer to skew IC couplings; see Fig. 1. We use
|J1| as the energy unit for all coupling constants entering
our Hamiltonian H . Note that a more general Hamiltonian
allowing also uniaxial anisotropies �2 in the NNN and �IC in
the IC exchange interactions is considered in Appendix A, cf.
Eq. (A1), and the effect of these additional anisotropies is also
briefly discussed in Sec. III A.

To determine the nature of the magnetic GS and its depen-
dence on the frustration α, the different types of IC exchange
J IC, and the exchange anisotropy �1 − 1, we employed
the DMRG method [44] with periodic boundary conditions
(PBCs) for all directions. This method is not restricted to
purely 1D and can also be used for 2D [45,46] and 3D [31,34]
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systems, although the system size is limited, e.g., up to about√
N × √

N × L = √
10 × √

10 × 50 for spin Hamiltonians.
We kept p ≈ 800–5000 density-matrix eigenstates in the
renormalization procedure. About 100–300 sweeps are neces-
sary to obtain the GS energy within a convergence of 10−7J1

for each p value. All calculated quantities were extrapolated to
p → ∞ and the maximum error in the GS energy is estimated
as �E/J1 ∼ 10−4, while the discarded weight is less than
1 × 10−6. Under the PBCs, a uniform distribution of 〈Sz

i 〉
may give an indication to examine the accuracy of DMRG
calculations for spin systems. Typically, 〈Sz〉 − Sz

tot/(NL) is
less than 1 × 10−3 in our calculations. Note that for high-spin
states [Sz

tot � (NL − 10)/2)] the GS energy can be obtained
with an accuracy of �E/J1 < 10−12 by carrying out several
thousand sweeps even with p ≈ 100–800. We considered
systems with different lengths: L = 16–64 (24–96) for 3D
(2D) and adopted power laws to perform a finite-size-scaling
analysis. From this we obtained the saturation field hs in the
thermodynamic limit L → ∞. As a result, we obtain hs with
high accuracy.

In addition to DMRG we have also applied an analytic
HCB approach [32] to provide exact results for the nematic
and dipolar phases. This approach is based on the simple
observation that magnons are the single-particle excitations
above the fully polarized FM state at high magnetic fields.
The problem of an interacting pair of particles is reduced
to a one-particle problem of the motion in an effective
potential well. In our case it corresponds to an impurity
problem in a tight-binding Hamiltonian explained in more
detail in Appendix A, including Fig. 13. In addition, some of
the calculated magnetization curves have been cross-checked
by exact diagonalizations possible for corresponding finite
systems with periodic boundary conditions.

III. RESULTS

A. Perpendicular interchain coupling between unshifted chains

The simplest case, relevant for, e.g., LiVCuO4 and
Li(Na)Cu2O2, is the situation of unshifted neighboring chains
and a perpendicular interchain exchange J IC

0 ; see Fig. 1(b). In
this case spirals on NN chains are only weakly affected by an
AFM IC coupling [47]; on a classical level the pitch of the
incommensurate (INC) spiral state is not affected by J IC

0 . This
is in stark contrast to the effect of skew AFM J IC

1 and J IC
2 ,

which can strongly reduce the pitch.
A typical magnetization curve for α = 0.5 and �1 = 1,

for a nematic phase, is shown in Fig. 2. The height of the
magnetization steps �Sz = 2 when J IC

0 /α = 0.1 is the direct
signature for 2-magnon bound states. At larger values of the
IC coupling these bound states are suppressed, as is clear
from the magnetization curve for J IC

0 /α = 0.2, where the
steps correspond to �Sz = 1. So in the isotropic case, where
�1 = 1, a rather weak critical IC coupling as compared to
|J1| destroys the nematic phase in favor of the usual conical
ordering. Within the picture of ferromagnetically coupled in-
terpenetrating simple AFM Heisenberg chains, it is convenient
to measure the IC in terms of J2; i.e., as J IC

0 /α and to use 1/α

instead of α as has been done in Figs. 2, 4, and 9. At α = 0.5
the critical value for J IC

0 /α amounts 0.188 (0.088) in 2D (3D),
respectively. This value of α is near the maximum of J IC

0 /α (see

J0
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FIG. 2. (Color online) Magnetization vs magnetic field for a
2D arrangement of four chains with N = 24 sites each, with a
perpendicular IC coupling J IC

0 [cf. Fig. 1(b)], α = 1/2, and �1 = 1
(isotropic case).

Figs. 4 and 9). Notice a formal shift of the maximum position
to more than twice as large α values, if J IC

0 is traditionally
measured in units of |J1| and plotted as a function of the inverse
value α (see Fig. 10). Thereby also its shape and height are
changed: for example from 0.088 to 0.07056 in the 3D case.

The consideration of the excitation spectra at fields at or
exceeding the saturation field gives another point of view on
the MPPs. The spectral density of the two-particle Green’s
function is depicted in Fig. 3 for the 2D case. The sharp
peaks below the two-particle continuum correspond to bound
pairs of magnons. The bound-state energy and the continuum
boundaries depend on the total momentum of a pair k. If the
bound-state energy minimum lies below the lowest continuum
energy, the bound pairs may condense at magnetic fields just
below the saturation field. The condensate of pairs forms
the nematic state of the magnetic system [7,15]. We see
that for small IC couplings J IC

0 the spectral density behaves
qualitatively similarly to the 1D case (upper panel of Fig. 3);
i.e., the peak corresponding to a bound pair lies below the
continuum, and its dispersion exhibits a minimum at the total
momentum ka = π of a pair (middle panel of Fig. 3). In the
lower panel of Fig. 3 we see that the behavior of the spectral
density changes for large enough IC. The bound state is still
present near the edge of the Brillouin zone, but its energy is
higher than the minimum of the two-particle continuum. In this
case, single magnons will condense at magnetic fields below
the saturation field, and form the dipolar phase.

The full phase diagram [48] is shown in Fig. 4, where the
phase boundaries are extracted from the kinks in the calculated
saturation field hs as a function of J IC

0 , as shown in Figs. 4(a)–
4(c). Clearly, the three-, four-, and higher magnon MPPs are
even more strongly affected by the IC interaction.

Except for the obvious strong influence of the IC coupling
J IC

0 there is also a substantial effect of a finite uniaxial
exchange anisotropy, �1 − 1 �= 0, on the stability of the MPP
[see the symbols in Fig. 4(d) at (1/α) = 2]. Note that the
anisotropy in the NN exchange �1 − 1 is the leading-order
anisotropy in the cuprate spin-chain compounds (according to
theoretical microscopic studies for quasi-1D cuprates [35,36]).
Figure 4(d) shows that for α = 0.5 a moderate anisotropy
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FIG. 3. (Color online) The spectral density of the two-particle
Green’s function as a function of the wave vector k (parallel to the
chain direction a) and of the energy ω for a 2D arrangement of
unshifted J1-J2 chains, a perpendicular IC interaction J IC

0 (upper,
middle, and lower panels correspond to J IC

0 = 0, 0.1, and 0.25,
respectively) and α = 1 (J2 = −J1). The spectral density graphs
are shifted vertically, where the shift is proportional to π − ka.
On each panel, the lowest (highest) graph corresponds to ka = π

(ka = −π/26). A small imaginary part η = 0.01 was added to ω in
order to visualize the δ-function peaks corresponding to bound states.
The green dashed (black double dotted) line shows the lower (upper)
boundary of the 2-magnon continuum. The blue dotted line shows
the 2-magnon bound state dispersion ωb(ka). The line in the upper
panel is given by an analytic expression (see Eqs. (38) and (39) in
Ref. [32]) ωb(ka) = ωb(π ) + (ka − π )2/2meff . In the other panels
the lines showing ωb(ka) have been found numerically.

FIG. 4. (Color online) DMRG-derived phase diagram for un-
shifted chains with perpendicular IC coupling. (a)–(c) Saturation field
hs as a function of the perpendicular IC coupling J IC

0 [cf. Fig. 1(b)] and
�1 = 1. (d) Phase diagram with critical IC coupling in 3D (thick line)
and 2D (thin line). The phase boundaries are extracted from the kinks
in the saturation field hs ; cf. panels (a)–(c). Symbols: The dependence
of the critical J IC

0 on the uniaxial exchange anisotropy �1 − 1 > 0 in
3D for α = 0.5, where ◦/× correspond to the DMRG/HCB results,
respectively.

of �1 − 1 = 0.1, only, increases the critical IC coupling by
a factor of ∼ 1.6, and thus significantly enhances the MPP
stability region.

Now we will discuss in more detail some approximate
analytical results obtained within the framework of our
HCB approach which provides, in contrast with the standard
situation in many-body physics with a complex ground state, a
restricted finite set of (closed) equations expanded analytically
by treating the interchain interaction in various orders of the
perturbation theory. The derivation of the phase boundary
between the one- and two-magnon instabilities relies first of
all on the derivation of the saturation fields for these two
instabilities, hs,1 and hs,2, respectively. Requiring

hs,2 = hs,1 (4)

then renders the equation for the critical IC Jcr coupling as a
function of the anisotropy and the frustration parameters. The
saturation field hs,1 of the INC phase on the one-magnon side
is described already within the SW theory (see Appendix B):

hs,1 ≡ − �1 + (1 + �2)α + 1

8α

+ NIC

2

(
J IC

0 �IC + |J IC
0 |), (5)
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FIG. 5. (Color online) The second-order expansion coefficient η2

as a function of the frustration parameter α and various exchange
anisotropies �1. The green dashed lines show the large α asymptotics
3(1 + α/�1)/8�1.

where NIC denotes the number of IC neighbors (i.e., for J IC
0

in 3D and 2D, NIC = 4 and 2, respectively). We note that,
in principle, NIC = 3, 4, and 6 are relevant for alternative 3D-
chain arrangements, i.e., for hexagonal, kagome, and triangular
chain lattices, respectively. However, to the best of our
knowledge for the type of the frustrated edge-shared cuprate
chain compounds under consideration such chain structures
have not been found hitherto, although several triangular (but
unfrustrated or both NN and NNN ferromagnetic couplings
along the chain directions) examples are known. Hence, these
so far academically interesting cases with possible additional
frustrations perpendicular to the chains for antiferromagnetic
interchain couplings will not be considered here.

From Eq. (5) it is obvious that for an isotropic FM IC
coupling, i.e., for J IC

0 < 0 and �IC = 1, the saturation field
hs,1 does not depend on J IC

0 at all; cf. Ref. [32].
For the nematic phase we are able to obtain exact values

for hs,2 using the HCB approach [32]. The HCB values are
in accord with the DMRG results (see Figs. 5 and 10). In
the limit J IC

0 � 1 we arrive at a fastly converging expansion
with relatively simple analytical expressions for the leading
coefficients

hs,2 =h1D
s,2 + NIC

2
J IC

0 �IC

+ NIC
[
η2

(
J IC

0

)2 + η4
(
J IC

0

)4 + O
(
J IC

0

)6]
, (6)

where the saturation field of the single chain including both
in-chain exchange anisotropies �i , i = 1,2, is given by [32,49]

h1D
s,2 = −�1 + (1 + �2)α + �2

1

2(�1 + α)
. (7)

The expansion coefficient η2 in second order of the IC coupling
reads

η2(α,�1) = (�1 + α)
(
3α2 + 3α�1 + �2

1

)
2�2

1(�1 + 2α)2
,

= 3
(
1 + α

�1

)
8�1

[
1 + 1

3
(
1 + 2α

�1

)2

]
. (8)
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FIG. 6. (Color online) The fourth-order expansion coefficient η4

as a function of the frustration parameter α and various exchange
anisotropies �1 for 2D (upper panel) and 3D (lower panel) systems.

The inspection of the second term within the large parentheses
in Eq. (8) and the plot of η2 in Fig. 5 shows that for α � 0.75
the η2 values exhibit a quasilinear behavior governed by the
prefactor 3(1 + α/�1)/8�1 in the second equality of Eq. (8).
The general derivation of the next relevant coefficient η4

determining the fourth-order term is provided in Appendix B.
The inspection of Eq. (8) shows also that η2 does not depend
on the dimensionality. That is, in the second order, the
contributions of neighboring chains sum up independently.
Notice that this is not the case for higher orders. In particular,
the coefficient η4 occurs differently for 2D and 3D geometries
as shown in Fig. 6.

We show, as an example, in Fig. 7 the saturation field
as a function of the IC coupling J IC

0 for the 2D case at
α = 1, i.e., the optimal parameter value for the existence
of the nematic phase, where J IC

0,cr ≈ 0.1655. For small J IC
0

the second-order expansion reproduces well the DMRG data
which coincide with the results from a numerical solution of
Eq. (B3). Naturally, for larger interchain coupling J IC

0 > 0.15
a fourth-order expansion is needed. As a second example
we consider a 3D system with uniaxial anisotropy. The
dependence of the saturation field on the IC and anisotropy
strength is shown in Fig. 8. We see that although Eq. (6) for
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FIG. 7. (Color online) The saturation field hs for a 2D array of
chains for α = 1, �1 = 1 (isotropic case) vs IC coupling J IC

0 . The
notations on both panels: magenta circles, DMRG data; red crosses,
HCB data from the numerical solution of the general HCB equations
Eq. (B3); black short-dashed, green long-dashed, and thick red solid
lines show linear, quadratic, and quartic approximations to hs,2 given
by Eq. (6), respectively; thin black solid line, the 1-magnon value of
hs,1 [see Eq. (5)]. The intersections of the hs,2 and the hs,1 curves yield
the values of the critical IC coupling J IC

0,cr. Lower panel: The region
around J IC

0,cr, which is denoted on the upper panel by a red rectangle.

hs,2 is approximate, it is accurate enough for many practical
purposes (see Figs. 4, 8, and 9).

Comparing the expressions for hs,1 and hs,2 one notices,
besides the presence of already mentioned various nonlinear IC
terms for the nematic side, that also its linear term differs from
that in the usual one-magnon phase. The approximate solution
of Eq. (4) with hs,2 given by Eq. (6) provides very precise
analytical expressions for the critical IC interaction J IC

0,cr above
which the nematic phase does not exist. It is noteworthy that for
an external magnetic field parallel to the easy axis considered
here both anisotropies �2 and �IC of the NNN exchange and
the IC coupling [see Eq. (6)], as well as the simple linear term
in J IC

0 in general, drop out and one is left with a polynomial
equation in terms of |J IC

0 |, only, since there are no higher
order odd terms. [Note that the vanishing of the cubic term
in J IC

0 is shown explicitly in Appendix B; see Eqs. (B29)
and (B30).] Then the critical IC coupling coincides for both
signs. This somewhat unexpected finding is in accord with
the results reported for the 3D case by Ueda and Totsuka in
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FIG. 8. (Color online) The saturation field hs for perpendicular
IC coupling J IC

0 (3D case, i.e., a square-lattice arrangement of
unshifted chains), α = 0.5, and various values of the easy-plane
anisotropy (�1 < 1), as well as easy-axis anisotropy (�1 > 1). Large
symbols show DMRG data (�1 �= 1); small red crosses show the data
from a numerical solution of the HCB equation (B3). Solid [dashed]
lines show the analytic expression for hs,2, Eq. (6) [hs,1, Eq. (5)].

Ref. [50] (see Fig. 6 therein) based on a summation of ladder
diagrams. We stress that according to our DMRG calculations
this remarkable sign independence of the critical IC coupling
is valid (i) for very special types of IC geometries such as
the NN-perpendicular coupling J IC

0 considered here, only, and
(ii) for not too strong FM J IC

0 values. For stronger negative
(i.e., FM) IC couplings above a critical coupling some higher
order multimagnon states may become more favorable than
the nematic and the one-magnon phase as well. Anyhow, a
systematic study of this “strong coupling” FM IC case, to
the best of our knowledge not observed in edge-shared chain
cuprates, is beyond the scope of the present work.

We can also get physical insight into the role of the IC
coupling by the inspection of the effective Hamiltonian derived
within the HCB approach and given in Appendix A. Obviously,
the IC coupling leads to a D-dimensional (D > 1) periodic part
of the effective Hamiltonian [see Eq. (A13) in Appendix A].
The enhanced kinetic energy causes a more shallow impurity
level (i.e., it diminishes the binding energy of the bound
pair). As shown in Appendix B, the effective particle (i.e.,
internal pair) motion is not affected by the effective impurities
corresponding to the IC, while the minimum of the bound-state
dispersion occurs at ka = π . This is the reason why the critical
value of the IC coupling is independent of its sign, while the
minimum of the spectrum corresponds to two-particle bound
states. In the same context it becomes clear why in general
a 2D arrangement is more stable against IC than a 3D one,
as mentioned above for the particular case α = 0.5. In the
FM IC regime the increase of the attractive FM interactions
beyond a critical threshold stabilizes a complex higher order
multimagnon bound state. Anyhow, since in the majority
of the edge-shared chain compounds AFM IC coupling is
expected, we will below focus on this case, i.e., J IC

r � 0.
After this more general qualitative but rigorous discussion

let us now derive simple analytical expressions for the critical
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FIG. 9. (Color online) Boundary between the 1- and 2-magnon
phases for a system with perpendicular IC coupling J IC
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values of the uniaxial anisotropy �1. Symbols +, ×, and * show the
numerical solution of Eq. (B3). Thick curves: J IC

0,cr2 from Eqs. (12)
and (13); thin curves: J IC

0,cr1 from Eq. (9). Upper panel: The 2D case.
Lower panel: The 3D case. Green triangles show the results from the
summation of ladder diagrams (Ref. [50]) including also additional
points provided kindly by the authors of Ref. [50]. Magenta circles:
Our DMRG data (for more details see also Fig. 10).

IC coupling using Eqs. (4), (5), and (6). Keeping only the
linear IC coupling term in the expression (6) for hs,2, we find

∣∣J IC
0,cr1

∣∣ = 1

NIC

(
�2

1

�1 + α
− 1

4α

)

= 4α�2
1 − �1 − α

4α(�1 + α)NIC
(9)

[cf. also Eq. (51) in Ref. [15], where a bond-operator formalism
and a system of vertex equations (BOFVE) is used and
where the IC coupling is treated as a small perturbation,
only]. Measuring the critical IC coupling in units of J2, i.e.,
considering J IC

0,cr1/α ≡ κJ IC
0,cr1 as in Fig. 4 and in Ref. [50],

one finds in the first-order approximation for the isotropic
case a maximum of κJ IC

0,cr1 = 3
4NIC

(2 − √
3) ≈ 0.3481/NIC at

κ = √
3. The explicit form of Eq. (9) provides also direct

qualitative insight into the influence of the exchange anisotropy
�1 on the stability of the nematic phase. For α � 0.367, where

for the isotropic 1D model the nematic phase exists, |J IC
0,cr1|

increases with growing �1; i.e., an easy-axis anisotropy is in
favor of the nematic phase.

Very accurate analytic expression for the critical IC cou-
pling may be obtained by the following straightforward calcu-
lation: After substitution of the approximate expression (6) for
hs,2 into Eq. (4) we write the equation for the determination of
the critical IC coupling J IC

0,cr in the form

f
(
J IC

0,cr

) = 0, (10)

f (x) = η4x
4 + η2x

2 − 1
2

(
x − J IC

0,cr1

)
. (11)

We search the roots of Eq. (10) in the form

J IC
0,cr2 = J IC

0,cr1 + δ (12)

assuming δ/J IC
0,cr1 � 1. We expand the expression (11) up to

the second order,

f
(
J IC

0,cr1 + δ
) ≈ f + f ′δ + 1

2f ′′δ2,

where the derivatives and the function f on the right-hand
side,

f (x) = η4x
4 + η2x

2,

f ′(x) = 4η4x
3 + 2η2x − 1

2 ,

f ′′(x) = 12η4x
2 + 2η2,

are taken at x = J IC
0,cr1. We then obtain

δ ≈ − 2f

f ′ − sgn(f ′)
√

(f ′)2 − 2ff ′′
. (13)

A comparison of the results of the approximate analytic
Eqs. (9), (12), (13), and (14) with the numerical data is
shown in Figs. 9 and 10. The deviation of J IC

0,cr2 from the
numerical solution of the HCB-equations value does not
exceed 10−3 (3 × 10−5) for 2D (3D) arrangements of the
chains (see Fig. 14 in Appendix B). Thus, Eqs. (12) and (13)
provide a tedious but excellent description. In the isotropic 3D
case discussed here in detail also the straightforward second-
order perturbation theory result yields already a reasonable
accuracy but within a much simpler analytical description:

∣∣J IC
0,cr2

∣∣ = 2
∣∣J IC

0,cr1

∣∣
1 +

√
1 − 8η2

∣∣J IC
0,cr1

∣∣ . (14)

In fact, to illustrate this point, we note that the max-
imum value of |J IC

0,cr | = 0.0625, 0.702928, 0.07056, and
0.0718 (measured in units of |J1|) is achieved at αmax =
1,1.06448,1.07333, and about 1.1 within first and second order
given by Eqs. (9) and (14), the improved HCB approximation
given by Eqs. (12) and (13), and the DMRG result, respectively.

An inspection of the phase diagram shown in Figs. 4 and 9
reveals also that the maximal value for the critical IC coupling
J IC

cr occurs in the nematic phase at values of 1/α near 1.7, i.e.,
in the region of maximal in-chain frustration and particularly
strong quantum fluctuations [32,33]. This can be understood
already in linear approximation, where J IC

0,cr1 is proportional to
the difference of the one- and two-magnon critical fields of an
isolated chain J IC

0,cr1 = 2(h1D
s − h1D

s,1 )/NIC.
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Finally, we note that the comparison with the results of
the summation of ladder diagrams in the dilute Bose gas
approximation [50] with one excited “quasiparticle” yields
in the 3D case with an accuracy of about 10−4 to 10−5 the
same result as the numerical solution of our HCB equations.
This is similar to the pure 1D case (where simple fully
analytical expressions are available) as mentioned already in
our previous work [32]. In this context it should be noted that
the related accuracy problem occurs at two different levels:
on a fundamental one concerning the accuracy (validity “in
principle”) of the derived basic equations and approaches,
and on a purely numerical one related to the solution of the
corresponding equations including the determination of the
critical IC coupling from Eq. (4) for a given set of Hamiltonian
parameters.

A closer inspection of the critical IC couplings J IC
0,cr1 as

obtained by the various methods employed here and in the
literature [50] is shown in Fig. 10. Starting from about α ≈ 0.9
one observes systematically slightly larger values for J IC

0,cr1 of
our DMRG data as compared to our numerical and analytical

HCB results as well as to the results obtained within the
dilute Bose gas approximation [50]. Similar effects occur
also in the 2D case (not shown here). The exact reasons for
this small difference being mainly of academic theoretical
interest remains unclear at present. Its elucidation is beyond
the scope of the present paper and therefore postponed to
future investigations. The fundamental point is related to the
obvious fact that the excitation energy was derived under the
assumption of a unique, i.e., nondegenerate, simple ground
state given by the fully aligned FM ground state. However, at
the critical point we arrive at a situation where the new ground
state becomes suddenly degenerate due to the calculated zero
excitation energy of the magnetic “quasiparticles” under con-
sideration in formal contradiction with the initial assumption.
The solution of this puzzle might lead to a small but finite
density of interacting condensed quasiparticles in contrast
with the single quasiparticles moving in the studied HCB
approaches in an effective potential, only (see Appendix A),
which allows an exact (closed) solution within the subspaces
of one- and two-particle excitations. Anyhow, in our opinion a
self-consistent solution of this interesting puzzle seems to be
not relevant for the general physical phenomenon considered
in the present paper: the detrimental effect of a too strong IC
coupling for the realization of MP states in many real 2D and
3D materials.

B. Skew interchain coupling

In the present subsection we consider briefly also the two
simplest cases of skew IC couplings for shifted and unshifted
nearest-neighboring chains [see Figs. 1(c) and 1(d)], which are
relevant for several real edge-shared chain compounds to be
discussed below. We apply the same methods as in the previous
subsection and restrict ourselves to numerical results, only.
The inspection of Fig. 11 reveals that the general behavior is
similar to that for perpendicular IC coupling; cf. Fig. 4.

The largest IC coupling that does not destroy the nematic
phase again is found for 1/α ≡ |J1|/J2 ∼ 1.5 to 2, i.e., in
the region of strong in-chain frustration where the quantum
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FIG. 11. (Color online) Phase diagram for multipolar phases
with skew (diagonal) IC coupling J IC

1 (left) and J IC
2 (right) in 3D;

cf. also Figs. 1(c) and 1(d), respectively. Filled black squares (open
circles): DMRG(HCB) results, respectively.
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fluctuations are at maximum [32,33]. Approaching the critical
point α = 1/4 the same sequence of higher multipolar phases
is observed. Near the critical point (α � 1/4) and for almost
decoupled Heisenberg chains (1/α → 0) the saturation field
tends to the simple 1-magnon value and additional quantum
effects vanish. In the general case, i.e., if both perpendic-
ular and skew IC couplings are present, qualitatively the
same behavior in a naturally more complex and extended
IC parameter space can be expected. The numerical study
of the general case is straightforward using our DMRG
approach, but it is left for future studies of concrete materials,
if needed.

For completeness we mention here that the stability of the
nematic phase for unshifted chains and weak ferromagnetic
skew IC coupling has been considered up to the second order
in Ref. [15]. The critical IC coupling has been derived therein
adopting the validity of Eq. (4), i.e., the competition between
the nematic and the dipolar one-magnon phase. However,
according to our numerical DMRG results this is not justified
in the present case for any pure skew FM IC coupling, because
for this situation it is determined by the competition of the
nematic phase with higher order multimagnon phases being
beyond the range of the present day forms of the HCB and
the more approximate low-order IC approach employed in
Ref. [50]. Then analogously to Eq. (4) other phases and
border lines and/or additional interactions must be examined.
We plan to return to this important and challenging issue
devoted to a correct microscopic description of LiVCuO4 in
the near future in detail. Here we restrict ourselves to the
statement that the claimed reached “reasonable” description
of LiVCuO4 in Appendix B of Ref. [50] in terms of the
classical spin-wave-based parameter set proposed in Ref. [14]
is not conclusive. What remains is simply the fact that at a
weak IC coupling various different 1D parameter sets describe
roughly the experimental saturation field data. Hence, in such
a situation other properties must be considered to extract the
relevant microscopic parameters [33,51].

It is obvious that for shifted chains the region of the
nematic phase in the phase diagram exhibits a relatively sharp
maximum (peak). Moreover, for shifted chains, the phase
diagram becomes more complex due to the presence of three
one-magnon phases, namely two incommensurate INC1 and
INC2 and one commensurate C one-magnon phase. The latter
commensurate C phase has been considered in detail in our
previous paper [31] devoted to one-magnon peculiarities of the
saturation field of Li2CuO2. Interestingly, the sharp maximum
in the nematic phase corresponds to a triple point, where the
two incommensurate one-magnon phases INC1 and INC2 and
the nematic phase meet. As a consequence, the border lines
with the neighboring incommensurate one-magnon phases
exhibit opposite curvatures as compared with the case of
unshifted chains. Above this maximum there is even another
triple point, where the two incommensurate one-magnon
phases INC1 and INC2 meet the one-magnon commensurate
C phase. Experimentally, the investigation of systems with
parameter regimes near these special points in the phase
diagram is promising and might be provide deeper insight
into the involved microscopic exchange mechanism. We will
discuss this issue in the next section.

IV. DISCUSSION

Having investigated theoretically in general how the com-
petition between frustration, different types of IC coupling, and
exchange anisotropy plays out, we now apply these insights to
identify candidate materials potentially displaying a quantum
MPP. Li2CuO2 is near the critical point, having α ≈ 0.33 and
a rather small �1 − 1 ≈ 0.01 [30]. Its skew IC coupling J IC

2 ,
see Fig. 1(d), however, is strong enough to even destabilize
the spiral state and drives the chains into a state with FM
in-chain correlations. Also Li2ZrCuO4 is close to the critical
point [22] (α ≈ 0.3) but in this case as well for any realistic
IC interaction and reasonable value for �1, all higher MPP
are unstable. The compounds Li(Na)Cu2O2 are away from
the detrimental critical point but their IC coupling is too
large [52–54] (J IC ∼ 0.5 to 1) to establish a nematic phase
for the estimated, moderate, values of �1 [55].

Instead LiVCuO4 is a good material for a nematic phase,
having a coupling between the chains that is characterized by
a very weak J IC

0 , which manifests itself in strong quantum
fluctuations evidenced by a small ordered magnetic moment
(0.3μB) at low temperature and the observation of a 2-spinon
continuum in inelastic neutron scattering [56]. The weak J IC is
also in accord with the fact that its saturation field is close to the
value of the uncoupled 1D chain given by h1D

s [51]. In addition,
the estimated α ≈ 0.75 [33,51] near the maximum of the
critical J IC

0,cr(1/α) curve is almost optimal for a nematic phase
to survive (see Fig. 4). From a more rigorous quantitative point
of view the details of the IC coupling remain still somewhat
unclear, since its determination in the region of strong quantum
fluctuations is a very difficult task that is clearly beyond
the predictions of the standard spin-wave theory nevertheless
used in the interpretation of the experimental inelastic neutron
scattering data in Ref. [17] and the adopted corresponding
results in the saturation field analysis given in Ref. [15].

A very interesting case is provided by the natural mineral
linarite, PbCuSO4(OH)2, which consists of neutral edge-
shared Cu(OH)2 chains surrounded by Pb2+ and [SO4]−2 ions
and has α ≈ 0.36 [26]. Below 2.7 K a spiral state with a
pitch angle of 34◦ sets in [27,57]. A perpendicular J IC

0 barely
affects the pitch angle of the magnetic spiral, in sharp contrast
to skew IC coupling J IC

1 . (Without such a realistic skew
coupling suggested also by LSDA+U based calculations, the
pitch would be about twice as large [33], in conflict with
the experimental data mentioned above.) We have considered
this situation theoretically in more detail and have calculated
the phase diagram as a function of (small) anisotropy �1 − 1
and IC coupling J IC

1 ; see Fig. 12 [58]. For the given value
of α even relatively small values of J IC

1 and �1 − 1 are
nevertheless sufficient to reduce the pitch from about 60◦
to the experimental value of 34◦ obtained from diffraction
data collected at a finite low temperature of T = 1.8 K but
estimated in our present approach at T = 0. The experimental
pitch strongly restricts the possible values for J IC

1 and �1 − 1
(see the red line in Fig. 12). An additional piece of information
is the experimental value of the saturation field of about 11
T—the 1D saturation field gives in this case about 5 T—which
indicates a reduced value of J IC

1 , renormalized by a sizable
�1 − 1, placing the system close to the triatic (i.e., the bound
three-magnon phase) region of the phase diagram in Fig. 12.
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FIG. 12. (Color online) Influence of the first skew interchain
coupling J IC

1 and an easy-axis anisotropy �1 of the NN exchange
coupling on the ground state of a system of coupled anisotropic
J1-J2 spin chains for J1 = −1 and an intrachain frustration rate
α = −J2/J1 = 0.36. Panel (a): Zero-field plot of the interchain
coupling J IC

1 vs easy-axis anisotropy �1 > 1 for various fixed pitch
angles φ (given in degrees at the left side of each curve). The NNN
coupling J2 is assumed to be isotropic. The ground-state phase with
purely FM in-chain correlations (i.e., φ = 0), present for large enough
J IC

1 , is shown in the light blue upper part of the figure. Note that the
red curve corresponds to the experimentally observed pitch angle
for PbCuSO4(OH)2 (linarite). Panel (b): Character of the lowest
excitations above the FM ground state for large external field above
the saturation field applied in the easy-axis b direction.

In this context experimental studies under chemical or
physical pressure are of great interest, since these can signif-
icantly change the IC coupling. When applying hydrostatic
pressure one expects an increase of the IC coupling and
thereby a weakening and possibly disappearance of the MPPs
in the mentioned two candidate materials. Vice versa, growing
isomorphic crystals with larger isovalent cations (chemical
pressure) the interchain coupling can be modified and most
probably might be somewhat suppressed. Thus, substituting,
e.g., Li by Na, Rb, or Cs, i.e., synthesizing for instance
RbCu2O2 or CsCu2O2, it is expected to create candidate MPP

materials due to a decrease of the detrimental IC couplings. In
other words, if it were possible to synthesize such (hypothet-
ical) compounds, one would expect, e.g., for Cs(Rb)Cu2O2

and Na(Rb)2ZrCuO4 an increased stability of the nematic and
triatic phases, respectively. Using mixed crystals with isovalent
partial substitution such as Li1−xNaxVCuO4 the interchain
coupling might be tuned continuously providing this way more
insight into its role for different physical properties. Preparing
strained epitaxial thin films from candidate materials will allow
us to study similar effects, where tuning of the strain by using
different substrates can change the IC in different directions.

In view of the ongoing debate on the possibility of a Bose
condensation of MP states in 2D or 3D quasi-1D systems
and the experimental search in real systems [40,41,43,59,60],
we briefly discuss on a qualitative level some consequences,
relations, and remaining open questions with respect to the
results presented here. First of all, our approach deals with
the lowest excitation energy of a single “quasiparticle” for the
given simple aligned ground state at the saturation field by a
single MP state as compared to the corresponding one-magnon
state. Then for slightly lower fields the density of MP states
might increase up to a critical value, where the corresponding
Bose-Einstein condensation sets in. In other words one starts
with a second-order phase transition regarding the density of
MP states as a field-dependent order parameter. In this case
a too strong IC coupling seems to prevent also a spontaneous
creation of a single MP bound state and any Bose-Einstein
condensation of several of them at slightly lower fields, too.
Due to the more complex ground state of slightly misaligned
momenta a rigorous theoretical proof of this intuitive picture,
e.g., in terms of the HCB approach employed here, is a
challenging many-body problem left for future investigations.
Furthermore, the present theory cannot describe the case of
a first-order transition, when a finite density of interacting
MP states is formed spontaneously at the saturation field.
The most challenging and difficult problem for the presently
known candidate materials is the theoretical determination
of the border line between the SDWp phases and the cor-
responding MP phases or the elucidation for the conditions
for a spatially homogeneous coexistence/field-driven spatially
inhomogeneous phase separation of them [39] within effective
models for coupled quasi-1D chain [59] or planar units [61].

Another somewhat unclear question concerns the role of
the IC in the formation of a macroscopic condensate in a
quasi-1D system with 2D or 3D IC. In spite of the slightly
reduced binding energy (cf. the discussion above), there must
be nevertheless also tunneling processes (provided by the
same interactions) between the chains in order to perform
the corresponding 2D or 3D ground state. Probably, a very
weak IC well below the critical coupling strength considered
in Sec. III is sufficient to establish the corresponding ordering
like in quasi-low-dimensional superconductors provided by
the Josephson coupling of planes or chains.

V. SUMMARY

We have demonstrated the crucial role of different types of
antiferromagnetic and ferromagnetic interchain interactions
and of a uniaxial exchange anisotropy for the NN in-chain
exchange in frustrated quasi-1D helimagnets. The anisotropy
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of the NNN in-chain does not affect the stability of multipolar
states in the adopted simple easy-axis case. The rich and exotic
physics of multipolar phases recently predicted for single
chains is very sensitive to the strength and type of the additional
interchain interactions unavoidable in real compounds as well
as to the frequently observed easy-axis anisotropy of the NN
in-chain coupling.

The investigations of the present paper are representative for
a number of spin- 1

2 quasi-1D frustrated helimagnetic materials
but still not fully comprehensive. Indeed, more complex forms
of the interchain couplings, in-chain exchange, and alternation,
as well as other cases of symmetric and antisymmetric ex-
change patterns, can be present and relevant in real compounds
and merit systematic investigation. Also impurities always
present in real materials can affect the physical properties
significantly, especially for LiVCuO4 in which some Li ions
can be misplaced on Cu sites and vice versa; also these effects
are worth studying in detail microscopically.
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APPENDIX A: EXACT TWO-MAGNON GREEN’S
FUNCTION

At high magnetic fields, the Hamiltonian of coupled
frustrated spin- 1

2J1-J2 XXZ-Heisenberg chains reads

Ĥ = Ĥ1D + ĤIC, (A1)

Ĥ1D =
∑

m

[
1

2

∑
n

Jn
(
�nŜ

z
mŜz

m+n + Ŝ+
mŜ−

m+n

) − hŜz
m

]
,

(A2)

ĤIC = 1

2

∑
m,f

Jf
[
�f Ŝ

z
mŜz

m+f + Ŝ+
mŜ−

m+f

]
, (A3)

where m enumerates the lattice sites, n = ±na, n = 1,2
determines the NN sites within the chain, and a is the lattice
vector along the chain. The vector f connects sites at different
chains. For the sake of convenience we set and denote for
the two in-chain couplings J1 ≡ −1 (FM) and J2 = α > 0
(AFM), respectively. The Hamiltonian given by Eq. (A1) is
more general than that from Eq. (1); it allows for uniaxial
anisotropy of all exchange couplings. The magnetic field is
directed along the anisotropy axis.

In terms of hard-core boson operators b, defined by

Ŝ+ ≡ b, Ŝ− ≡ b†, Ŝz ≡ 1
2 − n̂,

n̂m = b†mbm = 0,1,

{bm,b†m} = 1, [bm,b
†
m′ ] = 0, m �= m′,

(A4)
b†m|FM〉 ≡ b†m| · · · ↑↑↑m↑↑↑ · · · 〉

= | · · · ↑↑↓m↑↑↑ · · · 〉,
(b†m)2 = (bm)2 = 0,

the Hamiltonian (A1) becomes

Ĥ = Ĥ0 + Ĥint, (A5)

Ĥ0 = ω0

∑
m

n̂m + 1

2

∑
m,R

JRb†mbm+R, (A6)

Ĥint = 1

2

∑
m,R

JR�Rn̂mn̂m+R, (A7)

where ω0 ≡ h − 1
2

∑
R JR�R, R = n,f.

The n-particle excitation spectra are given by the singular-
ities of the corresponding retarded Green’s functions (GFs):

〈〈X̂|Ŷ 〉〉 ≡ −ı

∫ ∞

t ′
dteiω(t−t ′)〈[X̂(t),Ŷ (t ′)]〉, (A8)

ω〈〈X̂|Ŷ 〉〉 = 〈[X̂,Ŷ ]〉 + 〈〈[X̂,Ĥ ]|Ŷ 〉〉. (A9)

A negative (zero) value of the excitation energy signals an
instability of the ground state, which is given by the fully
polarized state achieved from below for a magnetic field first
at the saturation field h = hs . The equation of motion for the
two-magnon operator,

Âk,l = 1√
N

∑
m

e−ık(m+l/2)bmbm+l = Âk,−l, (A10)

reads

[Âk,l,Ĥ ] =
(

2ω0 +
∑

R

JR�Rδl,R

)
Âk,l

+ (
1 − δl,0

)∑
R

JR cos
kR
2

Âk,l+R, (A11)

where k is the total quasimomentum of the magnon pair, N =
N⊥Nx is the number of sites, N⊥ is the number of chains, and
Nx denotes the number of sites in the chain.

As usual, the exclusion of the center-of-mass motion
reduces the problem of an interacting pair of particles to
a one-particle problem of motion in an effective potential
well. In our case it corresponds to an impurity problem in
a tight-binding Hamiltonian [32] (see Fig. 13)

Ĥtb(k) = T̂ (k) + V̂ , (A12)

T̂ (k) = 2ω0

∑
m

|m〉〈m| +
∑
m,R

|m + R〉tR(k)〈R|, (A13)

V̂ =
∑
m′

∣∣m′〉εm′
〈
m′∣∣, (A14)

where

tR(k) = JR cos
kR
2

, (A15)

m′ = 0,r,f,ε0 = ∞, εR = JR�R. (A16)

The Hamiltonian depends on the total pair momentum.
The two-magnon GF reads

Gl,n(k,ω) = 〈〈Ak,l|A†
k,n〉〉 = 〈φl|(ω − Ĥtb)−1|φn〉, (A17)

with |φl〉 = (|l〉 + | − l〉)/√2. The GF is analytic everywhere
in the complex energy plane but may have singularities on
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1 ty

t

t

2

FIG. 13. (Color online) Cartoon of the effective impurity prob-
lem given by the Hamiltonian (A12), which describes the internal
motion of a magnon pair with the total quasimomentum k (2D case).
The pink, open, shaded, and cyan circles depict the impurities with
εm = ∞,�1,α,J IC

0 (in units of |J1|), respectively. Blue filled circles:
the regular sites of the lattice; arcs: the k-dependent hoppings given
by Eq. (A15) (in units of |J1|), i.e., t1 = − cos(ka/2), t2 = α cos(ka),
and ty = J IC

0 cos(kb/2).

the real axis: branch cuts and isolated poles. The branch cuts
correspond to the continuum spectrum of unbounded motion of
the effective particle, which in its turn corresponds to the two-
particle continuum in the pair motion. The poles correspond
to the energies of localized impurity states, which are bound
states for the pair when the energies lie below the continuum
or anti-bound-states in the opposite case. It is clear from
Eqs. (A12)–(A16) that bound states are possible only when
some εR are negative, i.e., for FM JR < 0. The bound-state
energy ωb(k) and the continuum boundaries depend on the total
momentum of the pair k. If the bound-state energy minimum
lies below the lowest continuum energy (that may occur at
different k values), the bound pairs will condense at magnetic
fields just below the saturation field, the gas of pairs being the
nematic state of the magnetic system [7,15].

When all JR are positive, like in the AFM-AFM J1-J2

model, only anti-bound-states occur at energies higher than
the two-particle continuum. In this case only the one-magnon
condensation occurs below the saturation field.

We will use the identity

Ĝ = ĝ + ĝV̂ Ĝ (A18)

for the solution in the real space of the impurity problem
given by Eqs. (A12)–(A17) (see Fig. 13). In Eq. (A18), ĝ ≡
(ω − T̂ )−1 is the resolvent operator for the periodic part, and
Ĝ ≡ (ω − Ĥtb)−1 is the resolvent for the impurity problem.
According to Ref. [62], we may solve the problem step by
step. Starting from the GF of a free particle, which in matrix
form reads

gl,n = gl−n(k,ω) (A19)

= 1

N

∑
q

cos q(l − n)

ω − (
ωSW

k/2+q + ωSW
k/2−q

) , (A20)

ωSW
q = ω0 + 1

2

∑
R

JReıqR, (A21)

we add the impurity at the origin. Its infinite potential reflects
the impossibility to have two particles on the same site (A4),

g
(0)
l,n = gl,n + gl,0ε0g

(0)
0,n,

(A22)

g
(0)
l,n = gl,n + gl,0ε0g0,n

1 − ε0g0,0
→ gl,n − gl,0g0,n

g0,0
.

Next, we add an impurity at the site i and express the GF via
ĝ(0):

g
(i)
l,n = g

(0)
l,n + g

(0)
l,i εig

(0)
i,n

1 − εig
(0)
i,i

,

and so on; the GF of the system with r impurities is expressed
via the GF of the system with r − 1 impurities:

g
(r)
l,n = g

(r−1)
l,n + g

(r−1)
l,r εrg

(r−1)
r,n

1 − εrg
(r−1)
r,r

. (A23)

Thus, in principle, we may take into account any number of
in-chain and interchain exchange couplings (IC) and obtain
Gl,n(k,ω) [Eq. (A17)]. The explicit expression for the GF
G1,1(k,ω) for the 1D J1-J2 model (2) has been given in
Ref. [32]. Its spectral density is plotted in the upper panel
of Fig. 3. The sharp k-dependent peaks below the two-particle
continuum corresponds to bound pairs of magnons.

APPENDIX B: PHASE BOUNDARY BETWEEN DIPOLAR
AND NEMATIC PHASES

At higher dimensions, the role of the interchain interac-
tion (A3) is twofold. First, the periodic part of the effective
Hamiltonian (A13) becomes D-dimensional. This changes
ĝ from Eq. (A19) via the change of ωSW

q (A21). Second,
new impurities with the strength εf = Jf�f are added at
points r. The simplest geometry for the IC corresponds to
f vectors perpendicular to the chains, which connect NN sites,
only, Jf = J IC

0 . The spectral density for the GF Ga,a(k,ω)
for k ‖ a for the 2D case is depicted in the middle panel
of Fig. 3. We see that for small IC couplings the spectral
density behaves qualitatively similar to the 1D case; i.e., the
peak corresponding to a bound pair lies below the continuum,
and its dispersion exhibits a minimum at the total momentum
ka = π of a bound pair. We have checked numerically that the
minimum position remains at the point kπ = (π/a,0,0) for
all values of the IC satisfying the condition J IC

0 < Jcr being
the critical IC defined implicitly by Eq. (4). On the lower
panel of Fig. 3 we see that the behavior of the spectral density
changes for large enough IC. The bound state is still present
near the edge of the Brillouin zone, but its energy is higher
than the minimum of the two-particle continuum. It is clear
that the critical IC value Jcr is defined by the condition

ωb ≡ ω(kπ ) = ωmin, (B1)

where ωmin = 2(h − hs,1) is the minimum of the energy of the
two-particle continuum, and

hs,1 ≡ −�1 + α(�2 + 1) + 0.125/α

+0.5NIC
(
J IC

0 �IC + |J IC
0 |), (B2)

is the critical field of the 1-magnon instability [see Eqs. (B2)
and (5)].
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In order to find the expression for the saturation field Hs as
a function of the interchain coupling |J IC

0 | < Jcr, we need the
expression for ωb, which is the position of an isolated pole of
the GF:

[Ga,a(kπ ,ωb)]−1 = 0. (B3)

In terms of the effective model Ĥtb(kπ ) (A12), ωb is the
energy of the localized impurity level. From Eq. (A15) we
see that the nearest-neighbor hopping along the chain vanishes,
ta = − cos π

2 = 0, and the sites with r = na + mb + lc having
odd and even n’s are decoupled. In the subsystem with odd
n’s, only two impurities of the same strength εa = J1 = −1
are present at the sites ±a = (±a,0,0). The effective particle
motion is not affected either by the impurity at the origin
(of infinite strength) or by the impurities at the sites ±2a =
(±2a,0,0) and f = (0, ± b,0),(0,0, ± c) with the energies
α�2 and J IC

0 �IC, respectively. Note that this peculiarity has
an important consequence: the critical value of the IC given by
Eqs. (9) and (12) depends only on the NN exchange anisotropy
value �1 and not on the NNN �2. It explains also why the
critical IC coupling value is the same for FM and AFM IC
within our approach.

So, we may immediately write down the expression for the
GF (cf. Eq. (49) of Ref. [32]):

Ga,a(kπ ,ω) = {[
G(0)

a,a(kπ ,ω)
]−1 − J1�1

}−1
, (B4)

where

G(0)
a,a(kπ ,ω) = 〈φa|(ω − T̂ (kπ ) − |0〉ε0〈0|)−1|φa〉

= g0(kπ ) + g2a(kπ ) − 2g2
a(kπ )

g0
(B5)

= g0(kπ ) + g2a(kπ ). (B6)

In Eq. (B5) we have used the relation (A22) and Eq. (B6)
which follows from ga(kπ ) = 0, since the vector a joins two
decoupled subsystems. Then Eq. (B3) may be rewritten as

G(0)
a,a(kπ ,ω) = (J1�1)−1 = −1/�1. (B7)

Now, using the definition (A19), we may write

G(0)
a,a(kπ ,ω) = 1

N⊥

∑
qy ,qz

G
(0)
1,1(π,ω − E⊥(π,q)), (B8)

G
(0)
1,1(π,ω) = 1

Nx

∑
qx

1 + cos 2qxa

ω − E1D(π,qx)
, (B9)

E1D(π,qx) = 2[h + �1 − α(cos 2qxa + �2)], (B10)

E⊥(π,q) = NICJ IC
0 (γq − �IC), (B11)

where γq = cos qyb [(cos qyb + cos qzc)/2], NIC = 2 (4) for
a 2D (3D) geometry. In the 2D case the summation over qz

should be dropped. The 1D GF as given by Eq. (B9) is easily
calculated:

G
(0)
1,1(π,ω) = G(z)/α, (B12)

G(z) = [z + 1 − τ (z)]−1, (B13)

where

z(ω) ≡ [ω − 2(h + �1 − α�2)]/α, (B14)

and the dimensionless Green’s function of a semi-infinite tight-
binding chain τ (z) = [z − τ (z)]−1. Now, we search for the
solution of Eq. (B4) in the form

ωb = α(zb1 + ζ ) + 2
(
h + �1 − α�2 − 1

2NICJ IC
0 �IC

)
,

(B15)

where ζ is unknown, and

zb1 ≡ −
(

�1 + α

α
+ α

�1 + α

)
(B16)

is the solution for the 1D problem [32]. Note that in the present
work we use another definition for the frustration parameter
α ≡ J2/|J1| as compared to Ref. [32].

Assuming ζ � 1, we rewrite Eq. (B7) in the form

1

N⊥

∑
qy ,qz

∞∑
m=0

G(m)

m!
(ζ − eq)m = − α

�1
, (B17)

where eq ≡ NICJ IC
0 γq/α,

G(m) ≡
(

∂

∂z

)m

G(z) |z=zb1 . (B18)

Note that G(zb1) = −α/�1, and keeping only terms with m �
4, we obtain the equation

ζG′ + 1
2

(
ζ 2 + e2

q

)
G′′ + 1

6

(
ζ 3 + 3ζe2

q

)
G′′′

+ 1
24

(
ζ 4 + 6ζ 2e2

q + e4
q

)
GIV = 0, (B19)

where

em
q ≡ 1

N⊥

∑
qy ,qz

em
q , (B20)

and we have taken into account that eq = e2n−1
q = 0 after a

direct calculation, whereas for even m = 2n substituting the
expression of γq, we obtain

e2n
q =

(
NICJ IC

0

α

)2n
1

π

∫ π

0
cos2n xdx,

=
(

J IC
0

α

)2n
2n(2n − 1)!!

n!
for 2D; (B21)

e2n
q =

(
NICJ IC

0

2α

)2n(
1

2π

)2 ∫∫ π

−π

(cos x + cos y)2ndxdy,

(B22)

for 3D. Notice that for both 2D and 3D cases

e2
q = NIC

(
J IC

0 /α
)2

holds. For the next term m = 4 we have

e4
q =

(
2J IC

0

α

)4
1

16π

∫ π

−π

(cos 4x + 4 cos 2x + 3)dx

= 3

8

(
2J IC

0

α

)4

(B23)
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for 2D, and

e4
q =

(
2J IC

0

α

)4
[

1

π

∫ π

−π

cos4 xdx + 3

2π2

(∫ π

−π

cos2 xdx

)2
]

= 9

4

(
2J IC

0

α

)4

(B24)

for 3D. We see that starting with n = 4 the role of the space
dimension cannot be reduced to the number of neighbors NIC,
and the topology of interaction bonds comes into play. We will
see below that this leads to the difference between 2D and 3D
values of η4:

G′ = G2[τ ′ − 1], (B25)

G′′ = 2G3[τ ′ − 1]2 + G2τ ′′, (B26)

G′′′ = 6G4[τ ′ − 1]3 + 6G3[τ ′ − 1]τ ′′ + G2τ ′′′, (B27)

GIV = 24G5[τ ′ − 1]4 + 36G4[τ ′ − 1]2τ ′′

+ 6G3(τ ′′)2 + 8G3[τ ′ − 1]τ ′′′ + G2τ IV , (B28)

τ ′ = − α2

�1(�1 + 2α)
,

τ ′′ = −2[
α(�1 + α)

�1(�1 + 2α)
]3,

τ ′′′ = −6

[
α(�1 + α)

�1(�1 + 2α)

]4
�2

1 + 2�1α + 2α2

�1(�1 + 2α)
,

τ IV = −24
α5(�1 + α)5F

[�1(�1 + 2α)]7 ,

F ≡ �4
1 + 4�3

1α + 9�2
1α

2 + 10�1α
3 + 5α4.

Substituting the expansion

ζ = ζ1J
IC
0 + ζ2

(
J IC

0

)2 + ζ3
(
J IC

0

)3 + ζ4
(
J IC

0

)4
(B29)

into Eq. (B19), we obtain

ζ1 = ζ3 = 0, (B30)

ζ2 = −NICG′′

2α2G′

= − NIC(�1 + α)

α
[
�1(�1 + 2α)

]2

[
�2

1 + 3�1α + 3α2
]
, (B31)

ζ4 = − 1

G′

[
G′′

2
ζ 2

2 + NICG′′′

2α2
ζ2 + GIV

24(J IC
0 )4

e4
q

]
. (B32)

At the saturation field, ωb in the right-hand side of Eq. (B15)
vanishes, and we obtain

hs,2 =h1D
s,2 + NIC

2
J IC

0 �IC

− α

2

[
ζ2

(
J IC

0

)2 + ζ4(J IC
0 )4], (B33)

h1D
s,2 = − �1 + α�2 − α

2
zb1.

Equation (B33) coincides with Eq. (6) with

ηi = −0.5αζi/NIC. (B34)

We see from Eqs. (B31) and (B34) that η2 does not depend
on the dimensionality (or more precisely on the number of
interacting NN chains, since a 3D square lattice with NIC =
4 differs in general, e.g., from a hypothetical 3D hexagonal
chain lattice with NIC = 3 not considered in the present paper
devoted mainly to known typical edge-shared cuprate chains).
However, in higher orders, the geometry of exchange paths
plays a nontrivial role. The term e4

q (B24) in Eq. (B32) is not
simply proportional to N2

IC as are other terms. It is clear from
the definition that em

q (B20) will have nontrivial dependence
on m > 2.

The boundary between the 1-magnon and the 2-magnon
phases is obtained by solving Eq. (4) for the critical IC J IC

cr . If
one retains only the linear term in the expansion in powers of
the IC given by (B33), we obtain |J IC

cr,1| given by Eq. (9). This
approximation demonstrates the qualitative behavior of J IC

cr
as a function of the anisotropy and the frustration parameters
�1 and α, respectively. Practically, a complete quantitative
agreement with our numerical data is achieved, if we use
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FIG. 14. (Color online) Difference between the numerical solu-
tion of the HCB Eq. (B3) and the implicit analytic expression given
by Eqs. (12) and (13) (see Fig. 9). The upper (lower) panel shows the
2D (3D) case.
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Eqs. (12) and (13). The high precision of these expressions
is shown in Fig. 14.

It is convenient to normalize the couplings on J2 > 0, and
introduce κ ≡ 1/α, which measures the attraction provided by
the FM J1. Using the same normalization for the IC, too, we
write y ≡ J IC

0 /α. Then Eqs. (B31) and (9) may be rewritten

as

ζ2 = − NIC(κ�1 + 1)

[�1(κ�1 + 2)]2

[
κ2�2

1 + 3�1κ + 3
]
, (B35)

|ycr,1| = κ2
(
4�2

1 − κ�1 − 1
)

4NIC(κ�1 + 1)
. (B36)
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[2] U. Schollwöck, J. Richter, D. Farnell, and R. Bishop (eds.),
Quantum Magnetism, Lecture Notes in Physics, Vol. 645
(Springer-Verlag, Berlin, 2004).

[3] C. Lacroix, P. Mendels, and F. Mila (eds.), Introduction to
Frustrated Magnetism (Springer-Verlag, Berlin, 2011).

[4] L. Balents and O. A. Starykh, arXiv:1510.07640.
[5] H. Ishikawa, M. Yoshida, K. Nawa, M. Jeong, S. Krämer, M.
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