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The Casimir effect is a general phenomenon in physics, which arises when the vacuum fluctuation of an
arbitrary field is modified by static or a slowly varying boundary. However, its spin version is rarely addressed,
mainly due to the fact that a macroscopic boundary in quantum spin systems is hard to define. In this paper,
we explore the spin Casimir effect induced by the zero-point fluctuation of spin waves in a general noncollinear
ordered quantum antiferromagnet. This spin Casimir effect results in a spin torque between local spins and
further causes various singular and divergent results in the framework of spin-wave theory, which invalidate the
standard 1/S expansion procedure. Based on the spin Casimir torque interpretation, we develop a spin-wave
expansion approach named as torque equilibrium spin wave theory. In this approach, the spin Casimir effect is
treated in a self-consistent way, and the spin-wave expansion results are free from singularities and divergences.
A detailed spin-wave analysis of the antiferromagnetic spin-1/2 Heisenberg model on a spatially anisotropic
triangular lattice is undertaken within our approach. Our results indicate that the spiral order is only stable in
the region 0.5 < α < 1.2, where α is the ratio of the coupling constants. In addition, the instability in the region
1.2 < α < 2 is owing to the spin Casimir effect instead of the vanishing sublattice magnetization. Furthermore,
our method provides an efficient and convenient tool that can estimate the correct exchange parameters and
outline the quantum phase diagrams, which can be useful for experimental fitting processes in frustrated quantum
magnets.
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I. INTRODUCTION

Low-dimensional quantum antiferromagnetic systems have
witnessed a great deal of interest for a long time due to their
deep connection with magnetic properties of high-temperature
superconductors [1,2]. However, low-dimensional quantum
spin systems are of interest in their own right as fruitful
resources of novel and exotic quantum phases, such as valence
bond solids [3,4] and spin liquids (SL) [2,5–8]. The most
indispensable ingredient in the emergence of these exotic
quantum states is the quantum fluctuation caused by the SU (2)
commutation relation of the spin operators. Frustration, on the
other hand, acts as a very efficacious way of enhancing the
quantum fluctuation effects and can even lead to the melting
of magnetic long-range order at zero temperature [6,8]. If
such magnetic long-range order survives, it is expected that
the quantum fluctuation effects will be suppressed and can
have only small influences on the thermodynamic properties
of the system [8]. Nevertheless, exceptions may occur, and as
we shall see, quantum fluctuation can exhibit decisive con-
sequences in noncollinear quantum antiferromagnets, despite
the fact that the system is long-range ordered. This can occur
because of the Casimir effect generated by the zero-point
fluctuation in a noncollinear background, which may generate
some emergent phenomena to be less touched so far.

The Casimir effect was originally discovered by Casimir in
1948, which states the presence of an attractive force between
two parallel conducting plates placed in the vacuum [9,10].
This effect, which was described by Schwinger as one of
the least intuitive consequences of quantum electrodynamics
(QED), is actually ubiquitous in nature, covering many topics
ranging from cosmology to condensed matter physics [11,12].
It arises when the quantum fluctuation of a general field
(scalar, vector, spinor, or even tensor field) is modified by

a static or slowly varying “boundary.” This intriguing idea
has generated continuing theoretical interest in generalized
Casimir problems [13,14]. The same type of Casimir effects
have been predicted and discussed in many condensed matter
systems such as quantum liquids [15] and nanoparticle systems
[12]. The advantage of condensed matter systems as platforms
to demonstrate the Casimir effects is the already known
structure of the quantum vacuum, at least in principle [15].
Moreover, various exotic quantum phases in condensed matter
systems may allow different characteristics of the Casimir
effects. In this respect, the low-dimensional quantum magnets
seem to provide an ideal playground for dealing with the
generalized Casimir problem and a spin version of this
intriguing effect may be expected consequently.

The spin Casimir effect is the spin analog of the Casimir ef-
fect in vacuum, which describes various macroscopic Casimir
force and torque that emerge from quantum spin systems.
Note the overall strength of the interaction generated by
the Casimir effect is proportional to the driving energy of
quantum fluctuation (�) and its scale is related to the correlation
strength of the fluctuations [11]. Thus, the Casimir force is
expected to be strong and long ranged in a system with strong
fluctuation and long-range correlation. From this point of view,
a system with highly degenerated ground states or in the
vicinity of a quantum critical point is of particular interest
and may generate rich Casimir physics such as the instability
of charge ordered states caused by spin Casimir effect in doped
antiferromagnets, where the zero-point spin-wave fluctuation
induces a uniformly attractive force between hole clusters [16].
Another interesting example is the quantum fluctuation lifted
massive classical degeneracy of the ground state, which is
called “quantum order by disorder” (QObD) [17,18]. In this
case, the “boundary” is the long-range-ordered classical spin
structure. The effective description of the Casimir effect is

1098-0121/2015/92(21)/214409(12) 214409-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.92.214409


DU, LIU, XIE, WANG, AND LIU PHYSICAL REVIEW B 92, 214409 (2015)

apparent in some cases. For example, the Casimir (QObD)
effect in a bilayer square-lattice Heisenberg antiferromagnetic
model can be efficiently described by adding an additional term
(Si · Sj )2 to the original Hamiltonian [19]. However, there are
other cases where the detailed form of the Casimir physics is
obscure and can be seen only by loop expansions.

In this paper, we explore the emergence of spin Casimir
effect in noncollinear ordered quantum magnets. The appear-
ance of this effect is due to the zero-point fluctuation in a
noncollinear ordered spin structure and leads to the difference
of measured ordering vector from the classical one. Although
this difference has been discussed by several authors, its
Casimir nature and related consequences have not yet been
thoroughly investigated [20,21]. This is mainly due to the fact
that the spin Casimir effect is of order O(1/S), which makes
the modification of the ordering vector much smaller than
the classical value. Thus it is usually negligible in classical
ordered systems. In contrast, we predict in this paper that in
some circumstances a standard spin-wave theory becomes no
longer applicable due to the presence of the spin Casimir effect,
even though the system is long-range ordered. In this sense, the
spin Casimir effect is no longer negligible. Furthermore, this
effect can cause the spiral state instability, which is essentially
different from other long-range-order “melting” cases. We
consider a two-dimensional spatially anisotropic triangular
spin-1/2 antiferromagnet for the sake of general interest and
perform a concrete and well-controlled calculation. We believe
that our results are equally applicable to other noncollinear
ordered quantum systems with arbitrary spin value.

It is known that an isotropic triangular lattice Heisenberg
antiferromagnet even for S = 1/2 may order into the so-called
120◦ state [8,22–25]. As the spatially anisotropic exchange
interaction is turned on, the spin Casimir torque emerges,
imposing modification to the classical ordering vector. Sur-
prisingly, a careful 1/S expansion in the anisotropic case
shows that a usual perturbative estimation of the modification
of the ordering vector becomes divergent near the quantum
critical point and the one-loop expansions of the energy
spectrum and sublattice magnetization are strongly singular.
These singular behaviors are believed to be the outcomes of the
spin Casimir torque, and their appearance does not represent
the onset of quantum disordered phases. To fix this point, we
develop a self-consistent approach in the framework of the
spin-wave theory, giving correct ordering vector modification
and excluding the singularities of the 1/S expansions. Based
on this self-consistent approach, a quantum phase diagram
is obtained, which is qualitatively consistent with previous
numerical works [26–29]. More than that, detailed results can
be obtained with our approach by calculation that is no harder
than a linear spin-wave expansion. Accordingly, our method
can be considered as an efficient and fast experimental fitting
tool for spiral phases.

The remainder of this paper is organized as follows. In
Sec. II we introduce the anisotropic triangular lattice antifer-
romagnetic model, which is simple but instructive and grasps
the core ingredients of physics. Section III provides a brief
review of the standard large-S expansion procedure and the
formal definition of the spin Casimir torque which describes
the modification of the classical spin structure due to quantum
fluctuation. The first-order O(1/S) quantum correction for the

spin-wave spectrum and its singular behavior are considered
in Sec. IV A, while Sec. IV B is devoted to the calculation of
the sublattice magnetization to the order of O(1/S2), which is
divergent due to the presence of the spin Casimir torque. In
Sec. V we develop the torque equilibrium spin wave theory
(TESWT), which is free of the aforementioned singularities.
Several physical properties are calculated within our approach
and a quantum phase diagram is obtained. We discuss our
scheme as an experimental exchange parameter fitting tool
in Sec. VI. Finally, we draw our conclusions and discussions
in Sec. VII.

II. ANISOTROPIC TRIANGULAR LATTICE
ANTIFERROMAGNET

The two-dimensional triangular lattice is the simplest
realization of geometrical frustration where a spin liquid has
been suggested. However, it is proved that the Heisenberg
spins with the isotropic nearest-neighbor antiferromagnetic
interactions on such lattice display a long-range-ordered state
[8,22,23]. Nevertheless, the sublattice magnetization is highly
reduced from its classical value due to the strong quantum
fluctuation, indicating that small perturbations may destroy
the long-range order and drive the system towards a quantum
disordered state [24,25]. In this respect, different kinds of
interactions have been studied on the triangular lattice for
the potential realization of the spin-liquid state. Some of
the most interested cases are the ring-exchange interaction
[30,31], the next-nearest-neighbor interaction [32–35], and the
spatial anisotropic interaction [26–29,35–37]. The last case
is particularly appreciated because of its applicability to real
materials such as inorganic Cs2CuCl4 [38–40] and Cs2CuBr4

[41,42], and organic salts κ-(BEDT-TTF)2Cu2(CN)3 and
κ-(BEDT-TTF)2Cu2[N(CN)]2 [22,23].

The Heisenberg antiferromagnet on an anisotropic triangu-
lar lattice has its Hamiltonian:

Ĥ = J

δ1∑
〈ij〉

Si · Sj + J ′
δ2,δ3∑
〈ij〉

Si · Sj , (1)

where J is the interaction along the δ1, J ′ is the zigzag interac-
tion along the δ2,3, and the vectors δi connecting neighboring
sites are shown in Fig. 1. In this work, both J and J ′ are positive
and we denote the ratio of the coupling constants as α = J ′/J .
When J = J ′, the system is nothing but the isotropic triangular
lattice Heisenberg antiferromagnetic model, whose ground

δ1
δ2

δ3

J

J’

J’

x

z

FIG. 1. (Color online) Exchange couplings between the different
sites of the anisotropic triangular lattice.
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FIG. 2. (Color online) The ordering vector Q (in units of π ) of
the optimal spiral state as a function of α = J ′/J . The black curve
is the LSWT result, the blue curve is the SE results [26], the green
curve is the MSWT results [28], and the red curve is our TESWT
result. The gray regions denote the values of α where the modified
spin-wave calculations fail to converge indicating the onset of the
quantum disordered phases [28].

state is a long-range-ordered spiral state, i.e., the so-called
120◦ state. In the limit J = 0, the system is equivalent
to the isotropic square lattice Heisenberg antiferromagnetic
model, whose ground state is also long-range ordered—the
so-called Néel state. In the limit J ′ = 0, the system turns to
the decoupled one-dimensional Heisenberg antiferromagnetic
chains, where long-range order is forbidden even at zero
temperature due to the Mermin-Wagner-Coleman theorem
[43]. In this case, the system is quantum disordered and
shows many striking properties such as fractional excitation
and power law correlation. Consequently, the related weakly
coupled chain region (J � J ′) has attracted considerable
attention [6,22,23,44,45].

We first sketch the classical case. The classical ground
state is usually simple and constitutes the foundation of the
further spin-wave expansion. In the classical case, the quantum
fluctuation is absent and spins are vectors rather than operators.
In the whole parameter space the ground state is a general spiral
structure whose magnetization Mi on lattice point ri is given
by

m̂i = cos(Qcl · ri)x̂ + sin(Qcl · ri)ẑ. (2)

Here the spins are assumed to be in the x-z plane and the
classical ordering vector Qcl = (Qcl,0,0) is

Qcl =
{

2π, α � 2
π + 2 arcsin(α/2), α < 2,

(3)

which is determined by minimizing the classical ground state
energy. This classical result is shown in Fig. 2 and will be
modified once the quantum fluctuation is considered.

Quite a number of theoretical approaches have been
employed to treat the anisotropic triangular lattice Heisenberg
model, such as linear spin-wave theory (LSWT) [46,47], series
expansions (SE) [26,36], modified spin-wave theory (MSWT)

[28], and density matrix renormalization group [48,49]. In
addition, this model in the weakly coupled chain region has
been studied by perturbative bosonization and an effective
Schrödinger equation approach [44,45]. The core prediction
in the weakly coupled chain region is the existence of the
long-sought-after spin-liquid phases, which seems even more
elusive after the variational quantum Monte Carlo method
predicted two spin-liquid phases in this region [37]. Different
from the low α region, it is well recognized that the QObD
effect considerably stabilizes the Néel state over the classical
model, moving the Néel phase from the classical region α � 2
to α � 1.4, although the phase boundary determination is tech-
nique dependent. However, whether the quantum fluctuation
spreads the transition point between the Néel and spiral phases
into a spin liquid is still controversial [26–29]. At first glance,
this controversy has nothing to do with the so-called spin
Casimir effect which only appears in the spiral phase around
α ≈ 1. On the contrary, the emergence of the spin Casimir
torque in the spiral state naturally explains the instability of the
spiral state, which provides the foundation of the QDbO effect
and the potential existence of the quantum disorder phase, to
be discussed below.

III. LARGE-S EXPANSION AND SPIN CASIMIR TORQUE

The spin-wave approach starts from a classical spin con-
figuration which minimizes the Heisenberg interaction and
treats the quantum deviation from the ordered direction as
a collection of bosons [1,25]. In this work, the mapping
from spin operators to bosons is performed via the Hermitian
Holstein-Primakoff transformation in a twisted frame [50].
The resultant spin-wave Hamiltonian is given by

Ĥsw = NEcl + Ĥ2 + Ĥ3 + Ĥ4 + O(S−1), (4)

where Ecl = S2JQ is the classical ground state energy per spin,
and Ĥn denotes the terms of order S2−n/2 but the extension
is only to the cubic and quartic anharmonic terms. Such an
approximation is sufficient for calculation of the O(1/S) order
result of the spin-wave spectrum and the O(1/S2) order result
of sublattice magnetization, which are our main interests. In
the Fourier transformed representation, the explicit expression
of various terms in the Hamiltonian reads as

Ĥ2 = 2S
∑

k

Aka
†
kak − Bk

2
(aka−k + a

†
ka

†
−k),

Ĥ3 = i
√

2S
∑
k,p

ζk(a†
k+pakap − a

†
ka

†
pak+p),

Ĥ4 = 1

4

∑
{ki }

{[(A1−3 + A1−4 + A2−3 + A2−4)

− (B1−3 + B1−4 + B2−3 + B2−4) − (A1 + A2

+A3 + A4)]a†
1a

†
2a3a4 · δ1+2,3+4 + 2

3
(B1 + B2

+B3)(a†
1a

†
2a

†
3a4 + a1a2a3a

†
4) · δ1+2+3,4}. (5)
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Here, 1,2 . . . denote k1,k2 . . ., and the following functions are
introduced:

Jk = J cos kx + 2J ′ cos
kx

2
cos

√
3

2
ky,

ηk = 1

2
(Jk−Q + Jk+Q), ζk = 1

2
(Jk−Q − Jk+Q),

Ak = 1

2
(Jk + ηk − 2JQ), Bk = 1

2
(Jk − ηk). (6)

On this basis, one may perform the 1/S perturbation
expansion either following the formalism developed by
Belyaev [21,51] or turning to the Bogolyubov quasiparticle
representation [24,25]. Here we follow the latter scheme, in
which the quantum fluctuation induced singular behaviors are
much more evident.

The quasiparticle representation is related to the Holstein-
Primakoff representation by a Bogolyubov transformation
[7,15,19]

ak = ukbk + vkb
†
−k, a

†
k = ukb

†
k + vkb−k (7)

under conditions u2
k − v2

k = 1 and

u2
k + v2

k = Ak

εk
, 2ukvk = Bk

εk
(8)

with

εk =
√

A2
k − B2

k. (9)

As a result, the linear spin-wave Hamiltonian takes the
following diagonalized form:

Ĥ2 = 2S
∑

k

εk

(
b
†
kbk + 1

2

)
− Ak

2
(10)

and the cubic term Ĥ3 in the new representation is

Ĥ3 = i
√

2S
∑
k,p

[
1

2!
	1(p,k − p; k)bkb

†
k−pb

†
p

+ 1

3!
	2(p,−k − p; k)b†pb

†
−k−pb

†
k − H.c.

]
. (11)

The first term describes the magnon decay processes and is
symmetric under permutation of two outgoing momenta. The
second term serves as a magnon source and is symmetric under
permutation of all three outgoing momenta [25]. The explicit
forms of these two vertices are

	1(1,2; 3) = −1

2ξ
[ζ1κ1(γ2γ3 + κ2κ3) + ζ2κ2(γ1γ3 + κ1κ3)

+ ζ3κ3(γ1γ2 − κ1κ2)],

	2(1,2; 3) = 1

2ξ
[ζ1κ1(γ2γ3 − κ2κ3) + ζ2κ2(γ1γ3 − κ1κ3)

+ ζ3κ3(γ1γ2 − κ1κ2)] (12)

with

ξ = √
ε1ε2ε3, κi =

√
Ai + Bi, γi =

√
Ai − Bi, (13)

where i ∈ (1,2,3).
It is noted that the transformation of the quartic terms is

rather cumbersome. Given that we are only interested in the

one-loop results, the quartic terms can be conveniently de-
coupled using the Hartree-Fock approximation [21,24,25,51].
Introducing the following Hartree-Fock averages in momen-
tum space

nk = 〈a†
kak〉 = Ak

2εk
− 1

2
, �k = 〈aka−k〉 = Bk

2εk
, (14)

the quartic terms turn to the form Ĥ4 = E4 + δĤ2, where
E4 is the Hartee-Fock corrections to the ground state energy
and δĤ2 is the 1/S modification to the harmonic spin-wave
Hamiltonian with the form

δĤ2 =
∑

k

δεkb
†
kbk − Ok

2
(bkb−k + b

†
kb

†
−k), (15)

where

δεk = (
u2

k + v2
k

)
δAk − 2ukvkδBk,

(16)
Ok = (

u2
k + v2

k

)
δBk − 2ukvkδAk

and

δAk = Ak +
∑

p

1

εp

[
Ap(Ak−p − Ak − Ap − Bk−p)

+Bp

(
Bk

2
+ Bp

)]
,

δBk = Bk −
∑

p

1

εp

[
Bp

(
Ak−p − Ak

2
− Ap − Bk−p

)

+Ap(Bk + Bp)

]
. (17)

The effective Hamiltonian that combines all the terms
together now reads

Ĥeff =
∑

k

[
(2Sεk + δεk)b†kbk − Ok

2
(bkb−k + b

†
kb

†
−k)

]

+ i
√

2S
∑
k,p

[
1

2!
	1(p,k − p; k)bkb

†
k−pb

†
p

+ 1

3!
	2(p,−k − p; k)b†pb

†
−k−pb

†
k − H.c.

]
, (18)

which provides the basis for the 1/S perturbative expansion.
The related Feynman diagrams are shown in Figs. 3(a)–3(d).

At the same time, the 1/S expansion contributes to the cor-
rections of the ground state energy as well. This modification
comes from the zero-point fluctuation of magnon, which is the
fluctuating vacuum of our Casimir problem. For the sake of
simplicity, we only consider the first-order corrections to the
vacuum energy per spin

Evac = Ecl + E2 = S2JQ + S

(
JQ +

∑
k

εk

)
. (19)

Here E2 is the energy correction from the harmonic spin-wave
fluctuation.

With this vacuum energy modification, the ordering vector
of the system should be determined by minimizing the
modified vacuum energy Evac via δEvac/δQ = 0. However,
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FIG. 3. (Color online) The lowest-order cubic vertices [(a) and
(b)], Hartree-Fock vertices [(c) and (d)], and “counterterms” vertices
[(e) and (f)].

this simple variational equation cannot be solved directly due
to the fact that the spin-wave spectrum function εk is only well
defined at Q = Qcl . Thus, the variation is normally treated
approximately as an expansion around Qcl . The 1/S order
result is

Q = Qcl + Q1 (20)

with

Q1 = − 1

2S

[
∂2JQ

∂Q2

]−1 ∑
k

Ak + Bk

εk
· ∂Jk+Q

∂Q

∣∣∣∣
Qcl

. (21)

These ordering vectors have only the x component in our
case via Q1 = (Q1,0,0) and Q = (Q,0,0). This result seems
reasonable and is usually treated as the new ordering vector
of the system [20,21]. However, this is not the case when
the system is in the vicinity of a quantum critical point. The
first-order correction Q1 goes to infinity as α approaches the
classical spiral/Néel critical point α = 2, which is shown in
Fig. 4.

Clearly, this result is unphysical and needs to be regularized.
Here we propose a torque description of the spin Casimir
effect, which is analogous with the force description of the
conventional Casimir problems in QED [11,12]. To access a
quantitative description, we define the spin Casimir torque as

Tsc(Q) =
∑

k

〈
�vac

∣∣∣∣∂Ĥsw

∂Q

∣∣∣∣�vac

〉
, (22)

where |�vac〉 represents the quasiparticle vacuum state. Notice
that Tsc is a function of Q defined on bonds and represents
the tendency of the modification to the relative orientation of
each spin. One can have the same definition for a QObD sys-
tem, which is equivalent with other conventional description
methods. The main advantage of the torque description is to
provide a much more intuitive picture. As an example, the

FIG. 4. (Color online) Tsc, Q1/π , and F (Q−) as a function of α.
Here Q− = Q − 0+. The inset is these functions in region 0 < α < 1.
Here both Q1/π and F (Q−) are divergent when approaching α = 2
as described in the main text.

resultant 1/S order spin Casimir torque at Qcl is

Tsc(Qcl) = S

2

∑
k

Ak + Bk

εk
· ∂Jk+Q

∂Q

∣∣∣∣
Qcl

, (23)

and in our case Tsc(Qcl) has only one component noted as
Tsc(Qcl). Clearly, this spin Casimir torque is well defined in
the whole parameter space as shown in Fig. 4. And the zero
ordering vector modification at α = 1 is easily explained by
the zero spin Casimir torque due to the triangular symmetry.
For α 
= 1, the spin Casimir torque tends to arrange the spins
connected by the strongest bonds collinearly. This tendency
is consistent with the conventional statement that fluctuation
favors collinear spins. Based on the torque interpretation and
noting that S2∂2JQ/∂Q2 is just the classical spin stiffness ρs ,
the complex equation (21) is nothing but the Hooke’s law for
spin system

Tsc(Qcl) = −ρsQ1. (24)

Additionally, the reason for the divergence of Q1 in ap-
proaching the critical point (α = 2) is also apparent. The
transition at α = 2 is continuous and the spin-wave velocity
for Goldstone excitation vanishes at the transition. When the
system approaches α = 2, the quantum fluctuation dominates
and the spin stiffness quickly goes to zero [46,47]. Although
Tsc also goes to zero as α → 2, its Casimir nature is enhanced
as fluctuation dominates. As a consequence, it approaches zero
much more slowly than ρs , and eventually the resultant Q1

blows up around the critical point, exhibiting the singularity at
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the point. One may suggest that this singular behavior of Q1

is understandable because the divergence of the fluctuations
near a Lifshitz point is well known [52]. As a consequence,
the spin-wave theory should be invalid when near a quantum
critical point [1,8]. However, the difficulty for the spin-wave
theory is the existence of other singularities even far away from
the critical point, in the presence of the spin Casimir torque.

IV. SPIN CASIMIR EFFECT INDUCED
SPIN-WAVE SINGULARITY

The core ingredient of the spin-wave theory is the expansion
in powers of 1/S around the classical saddle point. Strictly,
this theory is only well defined in the large-S limit (S � 1)
[1,8] and thus less effective for low-dimensional quantum
spin systems, as quantum spin fluctuations typically increase
in reduced space dimensions and for small spin quantum
numbers S. It is surprising to observe that the standard
spin-wave approach can give a very accurate description of
the zero-temperature physics of a number of low-dimensional
spin models such as the S = 1/2 Heisenberg antiferromagnets
on square and triangular lattices [1,8,24,25]. In this sense,
this expansion approach can still be considered as a useful
technique if an ordered state is observed. Nevertheless, it
fails once the spin Casimir effect is taken into account, to
be demonstrated here.

In the subsequent two subsections we will show that the
one-loop expansions of the energy spectrum and sublattice
magnetization are strongly singular and these singular behav-
iors are related to the spin Casimir torque. To access the explicit
structure of these singular behaviors and show the breakdown
of the conventional 1/S expansion procedure, we first ignore
the spin Casimir effect and Q is identified as Qcl .

A. Spin-wave spectrum

Perturbative expansion for the spin-wave spectrum has to
be performed order by order in 1/S and takes into account all
the quantum corrections of the same order [1,8]. Only in this
manner can one ensure cancellation of all possible divergences
in the individual contributions and preserve the Goldstone
theorem [53]. The first-order correction is straightforward. The
new pole of the magnon Green’s function is determined by the
so-called Dyson equation [25]

ε = εk + 1

2S

[
δεk + �a

3 (k,ε) + �b
3 (k,ε)

]
(25)

with

�a
3 (k,ε) = 1

2

∑
p

|	1(p; k)|2
ε − εp − εk−p + i0+ ,

(26)

�b
3 (k,ε) = −1

2

∑
p

|	2(p; k)|2
ε + εp + εk+p − i0+ .

The diagrammatic representations of the normal self-energies
from the cubic terms are shown in Figs. 5(a) and 5(b).

This equation can be solved either self-consistently through
the off-shell approximation or by replacing ε with linear
spin-wave spectrum εk, i.e., the so-called on-sell approxi-
mation. The 1/S order correction to the spectrum F (k) is

FIG. 5. (Color online) The lowest-order normal [(a) and (b)] and
anomalous [(c) and (d)] magnon self-energies generated by cubic
terms.

obtained within the on-shell approximation, which leads to
the following expression for the renormalized spectrum:

F (k) = εk + 1

2S

[
δεk + �a

3 (k,εk) + �b
3 (k,εk)

]
. (27)

Based on this expression, the one-loop spin-wave spectrum
F (k) can be easily obtained by numerical integration of
self-energies. However, the numerical result shows the sin-
gularity of the spectrum at k = Q (as shown in Fig. 6) and
absence of the Goldstone mode, while the Goldstone mode is
usually expected at every order of the perturbative expansion
[8,24,25,53]. Thus the absence of the Goldstone mode and the
appearance instead of the singular behavior are quite unusual.

To understand this singularity, a careful examination on
all the contributions is needed. Regarding the Goldstone
excitations, the terms proportional to εk can be ignored
safely. The resultant explicit form of the self-energies in the
expression of F (k) is

δεk ≈ 1

2εk

[
κ2

kG0(k) + γ 2
k GQ(k)

]
,

(28)

�a
3 + �b

3 ≈ −1

4

[
κ2

kL0(k) + γ 2
k LQ(k)

]

FIG. 6. (Color online) Numerical results of the spin-wave spec-
trum around k = Q for α = 0.5.
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with

G0(k) =
∑

p

κ2
pγ 2

k−p

εp
− εp,

GQ(k) =
∑

p

γ 2
p γ 2

k−p

εp
− εp,

(29)

L0(k) =
∑

p

	2
0

εp + εk−p
,

LQ(k) =
∑

p

	2
Q

εp + εk−p

and

	0 = 1

ξ
[ζk(κpκk−p − γpγk−p) − (ζp + ζk−p)κpκk−p],

(30)

	Q = 1

ξ
[ζpκpγk−p + ζk−pγpκk−p].

These equations allow a straightforward examination of the
Goldstone mode at k = 0 and k = Q. Noting that γ0 = 0 and
ζ0 = 0, it is easy to prove G0(0)/ε0 = 0 and L0(0) = 0. Hence,
as k → 0 we have

F (0) = κ2
0

2S
·
[
G0(k)

2εk
− L0(k)

4

]
k→0

= 0. (31)

Indeed, the Goldstone mode is preserved at k = 0.
In contrast to the k = 0 case, the Goldstone mode at k = Q

usually appears by cancellation among several terms [24,25].
Notice that with κQ = 0 we obtain

F (Q) = γ 2
Q

2S
·
[
GQ(k)

2εk
− LQ(k)

4

]
k→Q

. (32)

In this case, GQ(Q) and HQ(Q) do not equal zero in an obvious
way; the resultant self-energies are divergent at k = Q. To get
the exact analytic structure, we introduce the following useful
equalities:

ζk = κ2
k−Q − γ 2

k ,

ζp = κ2
k−p − γ 2

p + δ1,

ζk−p = κ2
p − γ 2

k−p + δ2, (33)

δ1 = κ2
p−Q − κ2

k−p,

δ2 = κ2
k−p−Q − κ2

p

noting that δ1 and δ2 equal zero at k = Q. The expansion of
F (Q) is straightforward with the aid of these equalities, and
the final result is

F (Q) = AQ

2S

∑
p

Ap + Bp

εp

∂Jp+Q

∂Q
· k − Q

εk

∣∣∣∣
k=Q

= AQ

S2
Tsc(Q) · k − Q

εk

∣∣∣∣
k=Q

. (34)

The explicit expression along ky = 0 is

F (Q) = sgn(kx − Q)
AQ

vQ

∑
p

Ap + Bp

εp

∂Jp+Q

∂Q

= sgn(kx − Q)
2

S

AQ

vQ

Tsc(Q). (35)

Here sgn(x) represents the sign function and vQ is the
spin-wave velocity at kx = Q along ky = 0. The analytic
result shows that our spin-wave spectrum behaves like a step
across k = Q rather than a cone, which is consistent with
our numerical result. More seriously, F (Q) also blows up as α

approaches the classical critical point α = 2 as shown in Fig. 4.
Interestingly, this singular behavior is directly connected

with the spin Casimir torque defined previously. It is indeed
due to the ignorance of the spin Casimir effect in the above
treatment. Since the spin Casimir torque is directly connected
with the 1/S ordering vector correction Q1, one suggests
that the Q1 induced modification of the linear spin-wave
spectrum εk may avoid the above problem in some region
of the parameter space where Q1 is still finite and reasonable.
In fact, with the equality

vQ = 2
√

ρsAQ (36)

the relationship between F (Q) and Q1 is apparently shown as

F (Q) = − sgn(kx − Q)

2S
vQ · Q1. (37)

On the other hand, a direct 1/S order correction due to the
ordering vector modification is

δF (Q) = ∂εk

∂Q

∣∣∣∣
k=Q

· Q1, (38)

which does not match our expectation. In other words, this
singular behavior cannot be regularized in a conventional
1/S manner, and it can even lead to divergence in high-order
expansions.

B. Sublattice magnetization

In this section, we turn to the sublattice magnetization
which is the order parameter for general long-range-ordered
spin states. It can be used to probe the possible existence of
quantum disordered phases. Within the spin-wave approach,
its definition is

〈S〉 = S − 〈a†
i ai〉 = S − δS1 − δS2. (39)

Here the first quantum correction δS1 is the linear spin-wave
result given by

δS1 =
∑

k

nk (40)

and the second term is the second-order correction to the
sublattice magnetization, which needs an evaluation of the one-
loop results of the normal and anomalous Green’s functions
[24,25]. This term has three contributions:

δS2 = δS1
2 + δS2

2 + δS3
2 . (41)
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These contributions are related to the normal and anomalous
self-energies as shown in Figs. 3(c), 3(d), and 5. The
contributions from the normal self-energies are collected as
δS1

2 , and those from the anomalous self-energies Ok and �
c,d
3

are collected as δS2
2 and δS3

2 , respectively. Calculations of each
contribution to the second-order correction are straightforward
and the final results are

δS2 = 1

2S

∑
k

Itot(k), δSi
2 = 1

2S

∑
k

Ii(k) (42)

with i ∈ (1,2,3), Itot(k) = ∑
i Ii(k), and

I1(k) = 1

2

∑
p

Ak

εk
· |	2(k,p)|2

(εk + εp + εk+p)2
,

I2(k) = 1

2

∑
p

Bk

εk
· Ok

ε2
k

, (43)

I3(k) = 1

2

∑
p

Bk

εk
· 	1(k,p)	2(−k,p)

εk(εk + εp + εk−p)
.

As often taken for the high-order perturbative expansion,
the integrands of all three contributions are divergent. In
particular, the integrands I2(k) and I3(k) behave as O(1/k3)
at k → Q, implying that not only the leading divergences in
them, but also the subleading ones O(1/k2) must cancel in
order to produce a finite result. Expanding near k = 0 and
k = Q points, such a cancellation can be verified analytically
at α = 1 as shown by Chubukov [24]. Here we perform the
expansion with a general α.

Because the divergence appears only near k = 0 and k =
Q, the terms proportional to εk (finite part) can be ignored
as before. After lengthy but straightforward derivation one
obtains

I1(k) ≈ Ak

8εk

[
κ2

kU0(k) + γ 2
k UQ(k)

]
,

I2(k) ≈ Bk

4ε3
k

[−κ2
kG0(k) + γ 2

k GQ(k)
]
, (44)

I3(k) ≈ Bk

8ε2
k

[
κ2

kV0(k) − γ 2
k VQ(k)

]
with

U0(k) =
∑

p

	2
0

(εk + εp + εk−p)2
,

UQ(k) =
∑

p

	2
Q

(εk + εp + εk−p)2
,

(45)

V0(k) =
∑

p

	2
0

εk + εp + εk−p
,

VQ(k) =
∑

p

	2
Q

εk + εp + εk−p
,

where G0(k), GQ(k), 	0, and 	Q have been defined in Eqs. (29)
and (30). These equations are similar to those obtained in
the expansion of the spin-wave spectrum. As a consequence,
the divergence cancellation results are quite similar as well.

The leading and subleading parts of the integrands are zero at
the k = 0 point, as expected. However, the perfect divergent
cancellation near k = Q is not accessed in our general case
and the final result is a subleading divergent contribution

I div
tot (Q) = AQBQ

2ε2
Q

∑
p

Ap + Bp

εp

∂Jp+Q

∂Q
· k − Q

εk

∣∣∣∣
k=Q

= AQBQ

Sε2
Q

Tsc(Q) · k − Q
εk

∣∣∣∣
k=Q

(46)

whose explicit expression along ky = 0 is

I div
tot (Q) = sgn(kx − Q)

BQ

ε2
Q

SAQ

vQ

·
∑

p

Ap + Bp

εp

∂Jp+Q

∂Q

= sgn(kx − Q)
BQ

ε2
Q

2AQ

vQ

· Tsc(Q)

= S
BQ

ε2
Q

· F (Q), (47)

which is related to the spin Caisimir torque too. One may argue
that this divergent result is inherited from the singular behavior
of the spin-wave spectrum. As a matter of fact, this divergence
is indeed caused by the one-loop Green’s function, but it is
generated from the abnormal Green’s function rather than the
normal Green’s function which accounts for the spin-wave
spectrum.

Correspondingly, a conventional 1/S consideration of the
ordering vector modification induced sublattice magnetization
correction is [21]

δS
Q
2 = −Q1

∑
k

Bk(Ak + Bk)

4ε3
k

· ∂Jk+Q

∂Q

∣∣∣∣
Qcl

, (48)

which is a finite integration. The total sublattice magnetization
is still divergent even by adding this contribution, preventing
the spin-wave expansion beyond the harmonic approximation
in spiral phases. As we have shown, the only region in the
parameter space that is free of divergence is the α = 1 point,
but it is not likely that the long-range order only exists at
this single point [26–29,36,37]. Furthermore, one can expect
more serious divergence when the expansion to higher order
is carried out, making the conventional spin-wave theory
fail. Accordingly, an alternative expansion scheme that can
encompass the spin Casimir effect is needed.

V. TORQUE EQUILIBRIUM SPIN-WAVE THEORY

The spin Casimir effect described in our work can be
generalized as the effect to shift the quantum fluctuation
induced classical saddle point in quantum spin systems. As
a consequence, the corresponding spin excitations should be
considered by expansion around the shifted (new) saddle point.
However, a shift of the saddle point is prevented by two
essential issues: (1) Where is the new saddle point while the
1/S expansion results are divergent at some parameter region?
(2) How do you shift the saddle point from Qcl to Q in the
effective Hamiltonian with so many functions defined only
at Qcl?
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The first issue can be easily handled using our torque
description of the spin Casimir effect. The quantum fluctuation
induced shift of the saddle point is accomplished by the spin
Casimir torque. As this spin Casimir torque shifts the spin
structure away from its classical saddle point, a classical
reaction spin torque is generated by the deformation. The final
saddle point is determined by the torque equilibrium condition

Tsc(Q) + Tcl(Q) = 0, (49)

where

Tcl(Q) = ∂Ecl(Q)

∂Q
= S2 ∂JQ

∂Q
. (50)

This is nothing but the variational equation of the vacuum
energy δEvac/δQ = 0. However, this equation cannot be
solved directly owing to the existence of the second issue,
which is the main difficulty in our perturbative expansion
scheme. To overcome it, an alternative spin-wave expansion
scheme is needed.

It is noted that Ak and Bk are well defined for all Q. The
ordering vector can be shifted arbitrarily for the Hamiltonian
Ĥ2, Ĥ3, and Ĥ4 in Eq. (5). Yet, for Q 
= Qcl the resultant
εk(Q) would be imaginary at some k points reminding one
that the expansion is carried out around the wrong saddle
point. The basic idea of our scheme is to rearrange the
perturbation processes and take into account the ordering
vector modification in a self-consistent way.

Given Q as the final ordering vector of the system, all the
functions in Eq. (5) are shifted from Qcl to Q. For any function,
taking Ak as an example here, it can be written as

Ak(Q) = Ãk(Q) + Ac
k(Q) (51)

with

Ac
k(Q) = Ak(Q) − Ãk(Q), (52)

where Ãk is the Ak function of another spin system whose
classical ordering vector Q̃cl equals Q. Here we assume that
this spin system has the same symmetry and set of exchange
integrals as the original one. As a result, this spin system is
nothing but the original one with a different α denoted as α̃.
The spin-wave Hamiltonian written in this manner is

Ĥ2(α,Q) = H̃2(̃α,Q) + Hc
2 (53)

with

H̃2 = 2S
∑

k

Ãka
†
kak − B̃k

2
(aka−k + a

†
ka

†
−k),

(54)

Hc
2 = 2S

∑
k

Ac
ka

†
kak − Bc

k

2
(aka−k + a

†
ka

†
−k).

The H̃2 is free of the imaginary energy problem and Hc
2 is

obviously proportional to Tsc. In spite of the 2S factor, the
Hamiltonian Hc

2 is of order O(S0) just as Ĥ4 due to the fact
that Ac

k(Q) and Bc
k(Q) are of order O(1/S). In the spirit of the

1/S expansion, we treat Hc
2 as an interaction term and H̃2 as

the modified harmonic Hamiltonian. The spin Casimir torque
at the equilibrium point can be expressed approximately as

T̃sc(Q) = S

2

∑
k

Ãk + B̃k

ε̃k
· ∂J̃k+Q

∂Q
. (55)

This approximate spin Casimir torque has only one component
T̃sc(Q) as well. The torque equilibrium equation can be
approximately written as

∂JQ

∂Q
= − 1

2S

∑
k

Ãk + B̃k

ε̃k
· ∂J̃k+Q

∂Q
. (56)

The exchange parameters on the left-hand side of the equation
are exact as α, while the parameters on the right-hand
side approximate as α̃. Noticing that α̃ = −2 cos(Q/2), this
equation can be solved and the numerical results are shown in
Fig. 2. The results show drastic modification of the classical
ordering vector caused by the quantum fluctuation. Our results
are similar to the results obtained by much more sophisticated
numerical methods [26,28,29]. Interestingly, for α > 1.2, the
torque equilibrium equation has no nontrivial solutions other
than Q = 2π , hence no spiral order is stable. Therefore, in
this region, the system is either in a QObD induced Néel phase
or some quantum disordered phases. Nevertheless, whether
a spin-liquid phase exists in this region is still controversial
[26–29]. Either way, the conventional spin-wave expansion
starting from the classical spiral state is qualitatively incorrect
for 1.2 < α < 2. As S becomes large, the range of this spiral
instable region is narrowed and eventually shrinks to a point
α = 2 for S = ∞.

The above separation procedure can be repeated for every
term in Eq. (5). Eventually, we obtain a whole set of H̃i andHc

i .
The resultant new terms are very similar to the counterterms in
quantum field theory [53]. Interestingly, the Casimir problem
in the quantum field theory is divergent and this divergence can
be regulated by introducing the counterterms that are fixed with
physical renormalization conditions [13,14]. It is expected that
our divergence problem can be solved in a similar way. Given
that we are only interested in the results at 1/S order, the
“counterterms” Hc

3 and Hc
4 can be neglected.

H̃sw = NEcl(Q) + H̃2 + Hc
2 + H̃3 + H̃4. (57)

Following the same procedure described in Sec. III, the
effective Hamiltonian reads

H̃eff =
∑

k

{
(2Sε̃k + δ̃εk)b†kbk − Õk

2
(bkb−k + b

†
kb

†
−k)

+ 2S

[
εc

kb
†
kbk − Oc

k

2
(bkb−k + b

†
kb

†
−k)

]}

+ i
√

2S
∑
k,p

[
1

2!
	̃1(p,k − p; k)bkb

†
k−pb

†
p

+ 1

3!
	̃2(p,−k − p; k)b†pb

†
−k−pb

†
k − H.c.

]
. (58)

Here R̃ represents R(̃α,Q) and

εc
k = (̃

u2
k + ṽ2

k

)
Ac

k − 2ũkṽkB
c
k,

(59)
Oc

k = (̃
u2

k + ṽ2
k

)
Bc

k − 2ũkṽkA
c
k.

The diagram representation of these extra terms is similar to the
counterterms in the quantum field theory as shown in Figs. 3(e)
and 3(f). The resultant contribution from our counterterms to
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0.0

0.5

1.0

1.5  LSWT
 TESWT

(0, 0)                                   (π, 0)                                 (2 π, 0)

ε k/J

 

FIG. 7. (Color online) Spin-wave spectrum for α = 0.5 along the
symmetric directions in the Brillouin zone. The blue line is the results
obtained in the LSWT approximation. The red and green lines are the
real (energy) and imaginary (damping rate) parts of our 1/S results,
respectively. The gray areas show the width of the spectral peaks due
to the damping [25].

the 1/S spin-wave spectrum is

εc
k = 1

ε̃k
[ÃkAk(Q) − B̃kBk(Q)] − ε̃k (60)

whose contribution to the k = 0 point is zero, while that to the
k = Q point is

Fc(Q) = ÃQ
∂JQ

∂Q
· k − Q

ε̃k

∣∣∣∣
k=Q

. (61)

The contribution from the other terms is

F̃ (Q) = ÃQ

S2
T̃sc(Q) · k − Q

ε̃k

∣∣∣∣
k=Q

. (62)

Noting that the approximate torque equilibrium equation,
Eq. (56), can be written as S2∂JQ/∂Q = −T̃sc(Q), the singular
contribution is canceled by the counterterms contribution. The
cancellation along other directions is straightforward to verify
and the Goldstone theorem is preserved as it should be. The
numerical results of the spin-wave spectrum are shown in
Fig. 7, which manifests well behaved Goldstone modes and
magnon decay effects [25,54–56]. The downward modification
of the magnon spectrum and the line shape of the magnon
damping rate are consistent with previous works [25,54].
For α = 1, the spin Casimir effect vanishes and our results
are exactly the same with that obtained by Chernyshev and
Zhitomirsky [25,54,55].

On the other hand, the contribution to the sublattice
magnetization from our counterterms is

δSc
2 = 1

2S

∑
k

Ic(k) (63)

with

Ic(k) = 1

2

Bk

εk
· Oc

k

ε2
k

. (64)

0.5 1.0 1.5 2.0 2.5

0.0

0.1

0.2

0.3
LSWT
TELSWT

1/S-SWT
1/S-TESWT

SL Spiral QObD/SL? Neel

〈S
〉

α = J'/J

FIG. 8. (Color online) The sublattice magnetization 〈S〉 as a
function of α = J ′/J . The red triangular dots represent the LSWT
results, and the purple dots represent the standard 1/S expansion
results. The blue square dots are our torque equilibrium linear
spin-wave theory results, and the green dots are our 1/S-TESWT
expansion results.

This integrand is also zero at the k = 0 point and divergent at
the k = Q point as

Ic(Q) = S
ÃQB̃Q

ε̃2
Q

∂JQ

∂Q
· k − Q

ε̃k

∣∣∣∣
k=Q

. (65)

The divergent contributions from the other terms are

Ĩ div
tot (Q) = ÃQB̃Q

Sε̃2
Q

T̃sc(Q) · k − Q
ε̃k

∣∣∣∣
k=Q

. (66)

These two divergences cancel again owing to the approximate
torque equilibrium equation and this cancellation persists to
other directions. Eventually, we can obtain a finite second-
order correction to the sublattice magnetization.

The above results allow us to perform systematic calcula-
tions on the sublattice magnetization of the system in the whole
parameter space, which may indicate the potential existence
of spin-liquid phases [8]. The calculation is straightforward
and follows our previous established scheme in the spiral
region and the sublattice magnetization in the Néel state is
obtained within a standard spin-wave expansion scheme. The
final results of the sublattice magnetization and related phase
diagram are presented in Fig. 8. In the obtained quantum phase
diagram, the spiral state is destroyed by quantum fluctuation
as α < 0.5, which is not far from the MSW results. In addition,
above the isotropic point α = 1, the spiral state is no longer
stable in the region α > 1.2, which is also consistent with
previous numerical studies [26,28]. This instability is not
due to the vanishing sublattice magnetization but owing to
the fact that the classical saddle surface is so shallow that
quantum fluctuation can induce the instability of the classical
spiral state. In our torque description, this instability can be
understood as the so weak stiffness of the “spring” that the
spin Casimir torque can squeeze it arbitrarily until the torque
disappears. In this manner, the spin Casimir effect shows us a
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spatial way to “melt” a long-range noncollinear ordered state,
which is different from the perception of the collinear cases.
What should be mentioned here is that the exact structure of
the phase diagram in the region 1.2 < α < 2 is still unclear
[26–28], and the perturbative nature of our approach prevents
us from identifying whether the system is in a QObD induced
Néel phase or some quantum disordered phases.

Our approach can be easily generalized to systems with
multiparameters by considering more counterterms such as
Hc

3 and Hc
4. Other than that, more self-consistent equations

can be obtained using the divergence cancellation condition
in higher order. The nonrenormalizable form of the effective
Hamiltonian ensures that we can have all kinds of divergences
and counterterms as long as we carry out our calculations
to high enough order [53]. However, the whole spin-wave
basis can break down if high-order loops are considered
and it is usually unnecessary [1]. One can simply apply the
present scheme to the parameter dominating the ordering
vector, given other parameters are unchanged. In addition,
our approach can be considered as a general approximation
method for the quantum fluctuation induced saddle-point shift
problems.

VI. EXPERIMENTAL APPLICATIONS

Due to fundamental theoretical interest, further impetus
to investigate frustrated magnets has arisen from recent
experimental developments identifying several materials in
which spin-liquid-like unconventional behaviors is observed
[22,23]. Hence potential progress is expected in the near future.
So as to test the theory experimentally, precise information on
the spin-Hamiltonian parameters for the materials of interest is
demanded. The most effective way of solving this problem is
to suppress quantum fluctuation by a strong enough magnetic
field. However, such experiments are only possible for those
systems with small enough exchange parameters such as
Cs2CuCl4, so that the required field can be available practically.
It would be highly desirable to dispose of a fast tool that
can estimate the correct exchange parameters and outline the
quantum phase diagrams.

Here we propose that the methods presented in this
work will serve this very purpose. Compared with other
sophisticated numerical and analytical methods, our approach
is much less technique involved. As a matter of fact, detailed
results can be obtained in our approach by calculation that is
no harder than a linear spin-wave expansion. Other than that,
our approach can be conveniently applied to magnetic systems
with general spin Hamiltonian and the only requirement is
the existence of the long-range order. In other words, our
scheme only requires experimental results with magnetic fields
that can drive the system into long-range-ordered states. More
importantly, the long-range-ordered phases in magnetic fields
are usually noncollinear, such as “fan” and “umbrella” phases.
Adding it all up, our method shows clinical improvement
compared with the conventional parameter fitting processes
based on LSWT but keeps the computational difficulty nearly
unchanged.

In order to demonstrate the superiority of our method, we
consider Cs2CuCl4 as an example. The effective exchange
parameters obtained from the global fit of the zero-field

neutron scattering results are α = 0.175 [40]. This fitting
result based on LSWT is far from the exact result α = 0.34
that is obtained using the high-field technique where quantum
fluctuations are quenched out [38,39]. However, by using our
approximate torque equilibrium equation, Eq. (56), the LSWT
fitting result α̃ = 0.175 predicts the bare parameters with
α = 0.35, which is very close to the high-field exact result.
Beyond that, our approach further shows that the sublattice
magnetization of the system without Dzyaloshinskii-Moriya
(DM) interaction vanishes based on linear approximation. As
a result, the long-range spiral state in Cs2CuCl4 cannot be
stable without DM interaction, which is consistent with other
theoretical analysis [21,51].

In summary, our approach enables one to estimate the
correct exchange parameters and outline the quantum phase
diagrams based on simple linear spin-wave approximation.
Thus, besides the theoretical setups, our method can also
serve as an efficient tool for the experimental fitting processes
of the exchange parameters in general frustrated quantum
magnets.

VII. SUMMARY

We have presented a detailed analysis of the spin-wave ex-
pansion on the spatial anisotropic triangular lattice Heisenberg
antiferromagnets [22,23]. The phenomena that the classical
ordering vector is modified by the quantum fluctuation is
carefully studied and its Casimir nature is revealed. This effect
shares the same origin with the well-known QObD effect
[17,18]. Both of these cases can be interpreted as the spin
Casimir effects in which the quasiparticle vacuum with zero-
point fluctuation plays the role of the fluctuating vacuum and
the classical spin structure acts as the macroscopic boundary.
To describe these spin Casimir effects quantitatively we further
define a spin Casimir torque, which describes a long-range
torque effect generated by quantum spin fluctuation.

Based on these results, it is shown that the presence of
the spin Casimir effect can induce divergent results in a
conventional spin-wave expansion even though the long-range
order is stable. A careful expansion shows these divergences
are directly connected with the spin Casimir torque. As a
result, the appearance of these divergences invalidates the
conventional 1/S expansion in an obvious way [1,8]. The
encountered problems are rather generic and common to a
variety of frustrated antiferromagnets regardless of the spin
value. For the systems with large spins, the situation is
especially aggravating even though the spin Casimir torque
goes to zero as S → ∞. This is due to the fact that long-range
order is more stable and the 1/S expansion becomes more
reliable when S � 1, while the divergences prevent any
reasonable prediction.

In the present work, we have developed a self-consistent
approach in the frame of the spin-wave theory, which is
applicable to a variety of systems with quantum fluctuation
induced saddle-point shift problems. The self-consistently
calculated modification to the ordering vector is finite and
close to previous SE and MSW results as shown in Fig. 2.
Furthermore, our approach regularizes all the divergences in
the 1/S expansion effectively. This accomplishment allows
us to calculate many spin-wave properties beyond linear

214409-11



DU, LIU, XIE, WANG, AND LIU PHYSICAL REVIEW B 92, 214409 (2015)

approximation. The spin-wave spectrum results are shown
in Fig. 7, which present well behaved Goldstone modes and
magnon decay effects [25,54–56]. Other than the conventional
spin-wave properties, an approximate quantum phase diagram
is also obtained, which displays good consistency with
previous numerical works [26,28]. These results evidence
that our approach is a suitable tool to study various other
problems in noncollinear quantum antiferromagnets. Besides
the theoretical setups, our method can be further applied
to estimate the correct exchange parameters and outline the

quantum phase diagrams, which can be useful for experimental
fitting processes in frustrated quantum magnets.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (Grants No. 11234005 and No.
51431006), China Postdoctoral Science Foundation
(2015M571729) and the National 973 Projects of China
(Grant No. 2015CB654602).

[1] E. Manousakis, Rev. Mod. Phys. 63, 1 (1991).
[2] P. A. Lee, N. Nagaosa, and X. G. Wen, Rev. Mod. Phys. 78, 17

(2006).
[3] N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989).
[4] N. Read and S. Sachdev, Phys. Rev. B 42, 4568 (1990).
[5] S. B. Lee, S. Onoda, and L. Balents, Phys. Rev. B 86, 104412

(2012).
[6] L. Balents, Nature (London) 464, 199 (2010).
[7] X.-G. Wen, Quantum Field Theory of Many-Body Systems

(Oxford University Press, New York, 2004).
[8] Quantum Magnetism, edited by U. Schollwock, J. Richter, D.

Farnell, and R. Bishop (Springer, Berlin, 2004).
[9] H. B. G. Casimir, Proc. K. Ned. Akad. Wet. B51, 793 (1948).

[10] H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).
[11] M. Kardar and R. Golestanian, Rev. Mod. Phys. 71, 1233 (1999).
[12] G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko,

Rev. Mod. Phys. 81, 1827 (2009).
[13] R. L. Jaffe, Phys. Rev. D 72, 021301(R) (2005).
[14] T. Emig, N. Graham, R. L. Jaffe, and M. Kardar, Phys. Rev. D

77, 025005 (2008).
[15] G. E. Volovik, The Universe in a Helium Droplet (Oxford

University Press, New York, 2003).
[16] L. P. Pryadko, S. Kivelson, and D. W. Hone, Phys. Rev. Lett. 80,

5651 (1998).
[17] E. F. Shender, Sov. Phys. JETP 56, 178 (1982).
[18] A. L. Chernyshev and M. E. Zhitomirsky, Phys. Rev. Lett. 113,

237202 (2014).
[19] A. M. Tsvelik, Quantum Field Theory in Condensed Matter

Physics (Cambridge University Press, Cambridge, 1995).
[20] A. V. Chubukov, J. Phys. C: Solid. State. Phys. 17, L991 (1984).
[21] D. Dalidovich, R. Sknepnek, A. J. Berlinsky, J. Zhang, and C.

Kallin, Phys. Rev. B 73, 184403 (2006).
[22] K. Kanoda and R. Kato, Annu. Rev. Condens. Matter. Phys. 2,

167 (2011).
[23] B. J. Powell and R. H. McKenze, Rep. Prog. Phys. 74, 056501

(2011).
[24] A. V. Chubukov, S. Sachdev, and T. Senthil, J. Phys.: Condens.

Matter 6, 8891 (1994).
[25] A. L. Chernyshev and M. E. Zhitomirsky, Phys. Rev. B 79,

144416 (2009).
[26] Weihong Zheng, R. H. McKenzie, and R. P. Singh, Phys. Rev.

B 59, 14367 (1999).
[27] J. Reuther and R. Thomale, Phys. Rev. B 83, 024402 (2011).
[28] P. Hauke, T. Roscilde, V. Murg, D. Porras, and R. Schmied,

New J. Phys. 13, 075017 (2011).
[29] P. Hauke, Phys. Rev. B 87, 014415 (2013).

[30] O. I. Motrunich, Phys. Rev. B 72, 045105 (2005).
[31] T. Grover, N. Trivedi, T. Senthil, and P. A. Lee, Phys. Rev. B 81,

245121 (2010).
[32] R. V. Mishmash, J. R. Garrison, S. Bieri, and C. Xu, Phys. Rev.

Lett. 111, 157203 (2013).
[33] Z. Zhu and S. R. White, Phys. Rev. B 92, 041105(R), 2015.
[34] W.-J. Hu, S.-S. Gong, W. Zhu, and D. N. Sheng, Phys. Rev. B

92, 140403 (2015).
[35] J. Merino, M. Holt, and B. J. Powell, Phys. Rev. B 89, 245112

(2014).
[36] J. O. Fjærestad, W. H. Zheng, R. R. P. Singh, Ross H. McKenzie,

and R. Coldea, Phys. Rev. B 75, 174447 (2007).
[37] S. Yunoki and S. Sorella, Phys. Rev. B 74, 014408 (2006).
[38] R. Coldea, D. A. Tennant, A. M. Tsvelik, and Z. Tylczynski,

Phys. Rev. Lett. 86, 1335 (2001).
[39] R. Coldea, D. A. Tennant, K. Habicht, P. Smeibidl, C. Wolters,

and Z. Tylczynski, Phys. Rev. Lett. 88, 137203 (2002).
[40] R. Coldea, D. A. Tennant, and Z. Tylczynski, Phys. Rev. B 68,

134424 (2003).
[41] T. Ono, H. Tanaka, H. Aruga Katori, F. Ishikawa, H. Mitamura,

and T. Goto, Phys. Rev. B 67, 104431 (2003).
[42] H. Tsujii, C. R. Rotundu, T. Ono, H. Tanaka, B. Andraka, K.

Ingersent, and Y. Takano, Phys. Rev. B 76, 060406(R) (2007).
[43] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966);

S. Coleman, Commun. Math. Phys. 31, 259 (1973).
[44] O. A. Starykh and L. Balents, Phys. Rev. Lett. 98, 077205 (2007).
[45] M. Kohno, O. Starykh, and L. Balents, Nat. Phys. 3, 790 (2007).
[46] J. Merino, R. H. McKenzie, J. B. Marston, and C. H. Chung,

J. Phys.: Condens. Matter 11, 2965 (1999).
[47] A. E. Trumper, Phys. Rev. B 60, 2987 (1999).
[48] M. Q. Weng, D. N. Sheng, Z. Y. Weng, and R. J. Bursill,

Phys. Rev. B 74, 012407 (2006).
[49] A. Weichselbaum and S. R. White, Phys. Rev. B 84, 245130

(2011).
[50] T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
[51] M. Y. Veillette, A. J. A. James, and F. H. L. Essler, Phys. Rev.

B 72, 134429 (2005).
[52] L. Capriotti and S. Sachdev, Phys. Rev. Lett. 93, 257206 (2004).
[53] M. Srednicki, Quantum Field Theory (Cambridge University

Press, Cambridge, England, 2007).
[54] A. L. Chernyshev and M. E. Zhitomirsky, Phys. Rev. Lett. 97,

207202 (2006).
[55] M. E. Zhitomirsky and A. L. Chernyshev, Rev. Mod. Phys. 85,

219 (2013).
[56] O. A. Starykh, A. V. Chubukov, and A. G. Abanov, Phys. Rev.

B 74, 180403 (2006).

214409-12

http://dx.doi.org/10.1103/RevModPhys.63.1
http://dx.doi.org/10.1103/RevModPhys.63.1
http://dx.doi.org/10.1103/RevModPhys.63.1
http://dx.doi.org/10.1103/RevModPhys.63.1
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/PhysRevLett.62.1694
http://dx.doi.org/10.1103/PhysRevLett.62.1694
http://dx.doi.org/10.1103/PhysRevLett.62.1694
http://dx.doi.org/10.1103/PhysRevLett.62.1694
http://dx.doi.org/10.1103/PhysRevB.42.4568
http://dx.doi.org/10.1103/PhysRevB.42.4568
http://dx.doi.org/10.1103/PhysRevB.42.4568
http://dx.doi.org/10.1103/PhysRevB.42.4568
http://dx.doi.org/10.1103/PhysRevB.86.104412
http://dx.doi.org/10.1103/PhysRevB.86.104412
http://dx.doi.org/10.1103/PhysRevB.86.104412
http://dx.doi.org/10.1103/PhysRevB.86.104412
http://dx.doi.org/10.1038/nature08917
http://dx.doi.org/10.1038/nature08917
http://dx.doi.org/10.1038/nature08917
http://dx.doi.org/10.1038/nature08917
http://dx.doi.org/10.1103/PhysRev.73.360
http://dx.doi.org/10.1103/PhysRev.73.360
http://dx.doi.org/10.1103/PhysRev.73.360
http://dx.doi.org/10.1103/PhysRev.73.360
http://dx.doi.org/10.1103/RevModPhys.71.1233
http://dx.doi.org/10.1103/RevModPhys.71.1233
http://dx.doi.org/10.1103/RevModPhys.71.1233
http://dx.doi.org/10.1103/RevModPhys.71.1233
http://dx.doi.org/10.1103/RevModPhys.81.1827
http://dx.doi.org/10.1103/RevModPhys.81.1827
http://dx.doi.org/10.1103/RevModPhys.81.1827
http://dx.doi.org/10.1103/RevModPhys.81.1827
http://dx.doi.org/10.1103/PhysRevD.72.021301
http://dx.doi.org/10.1103/PhysRevD.72.021301
http://dx.doi.org/10.1103/PhysRevD.72.021301
http://dx.doi.org/10.1103/PhysRevD.72.021301
http://dx.doi.org/10.1103/PhysRevD.77.025005
http://dx.doi.org/10.1103/PhysRevD.77.025005
http://dx.doi.org/10.1103/PhysRevD.77.025005
http://dx.doi.org/10.1103/PhysRevD.77.025005
http://dx.doi.org/10.1103/PhysRevLett.80.5651
http://dx.doi.org/10.1103/PhysRevLett.80.5651
http://dx.doi.org/10.1103/PhysRevLett.80.5651
http://dx.doi.org/10.1103/PhysRevLett.80.5651
http://dx.doi.org/10.1103/PhysRevLett.113.237202
http://dx.doi.org/10.1103/PhysRevLett.113.237202
http://dx.doi.org/10.1103/PhysRevLett.113.237202
http://dx.doi.org/10.1103/PhysRevLett.113.237202
http://dx.doi.org/10.1088/0022-3719/17/36/008
http://dx.doi.org/10.1088/0022-3719/17/36/008
http://dx.doi.org/10.1088/0022-3719/17/36/008
http://dx.doi.org/10.1088/0022-3719/17/36/008
http://dx.doi.org/10.1103/PhysRevB.73.184403
http://dx.doi.org/10.1103/PhysRevB.73.184403
http://dx.doi.org/10.1103/PhysRevB.73.184403
http://dx.doi.org/10.1103/PhysRevB.73.184403
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140521
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140521
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140521
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140521
http://dx.doi.org/10.1088/0034-4885/74/5/056501
http://dx.doi.org/10.1088/0034-4885/74/5/056501
http://dx.doi.org/10.1088/0034-4885/74/5/056501
http://dx.doi.org/10.1088/0034-4885/74/5/056501
http://dx.doi.org/10.1088/0953-8984/6/42/019
http://dx.doi.org/10.1088/0953-8984/6/42/019
http://dx.doi.org/10.1088/0953-8984/6/42/019
http://dx.doi.org/10.1088/0953-8984/6/42/019
http://dx.doi.org/10.1103/PhysRevB.79.144416
http://dx.doi.org/10.1103/PhysRevB.79.144416
http://dx.doi.org/10.1103/PhysRevB.79.144416
http://dx.doi.org/10.1103/PhysRevB.79.144416
http://dx.doi.org/10.1103/PhysRevB.59.14367
http://dx.doi.org/10.1103/PhysRevB.59.14367
http://dx.doi.org/10.1103/PhysRevB.59.14367
http://dx.doi.org/10.1103/PhysRevB.59.14367
http://dx.doi.org/10.1103/PhysRevB.83.024402
http://dx.doi.org/10.1103/PhysRevB.83.024402
http://dx.doi.org/10.1103/PhysRevB.83.024402
http://dx.doi.org/10.1103/PhysRevB.83.024402
http://dx.doi.org/10.1088/1367-2630/13/7/075017
http://dx.doi.org/10.1088/1367-2630/13/7/075017
http://dx.doi.org/10.1088/1367-2630/13/7/075017
http://dx.doi.org/10.1088/1367-2630/13/7/075017
http://dx.doi.org/10.1103/PhysRevB.87.014415
http://dx.doi.org/10.1103/PhysRevB.87.014415
http://dx.doi.org/10.1103/PhysRevB.87.014415
http://dx.doi.org/10.1103/PhysRevB.87.014415
http://dx.doi.org/10.1103/PhysRevB.72.045105
http://dx.doi.org/10.1103/PhysRevB.72.045105
http://dx.doi.org/10.1103/PhysRevB.72.045105
http://dx.doi.org/10.1103/PhysRevB.72.045105
http://dx.doi.org/10.1103/PhysRevB.81.245121
http://dx.doi.org/10.1103/PhysRevB.81.245121
http://dx.doi.org/10.1103/PhysRevB.81.245121
http://dx.doi.org/10.1103/PhysRevB.81.245121
http://dx.doi.org/10.1103/PhysRevLett.111.157203
http://dx.doi.org/10.1103/PhysRevLett.111.157203
http://dx.doi.org/10.1103/PhysRevLett.111.157203
http://dx.doi.org/10.1103/PhysRevLett.111.157203
http://dx.doi.org/10.1103/PhysRevB.92.041105
http://dx.doi.org/10.1103/PhysRevB.92.041105
http://dx.doi.org/10.1103/PhysRevB.92.041105
http://dx.doi.org/10.1103/PhysRevB.92.041105
http://dx.doi.org/10.1103/PhysRevB.92.140403
http://dx.doi.org/10.1103/PhysRevB.92.140403
http://dx.doi.org/10.1103/PhysRevB.92.140403
http://dx.doi.org/10.1103/PhysRevB.92.140403
http://dx.doi.org/10.1103/PhysRevB.89.245112
http://dx.doi.org/10.1103/PhysRevB.89.245112
http://dx.doi.org/10.1103/PhysRevB.89.245112
http://dx.doi.org/10.1103/PhysRevB.89.245112
http://dx.doi.org/10.1103/PhysRevB.75.174447
http://dx.doi.org/10.1103/PhysRevB.75.174447
http://dx.doi.org/10.1103/PhysRevB.75.174447
http://dx.doi.org/10.1103/PhysRevB.75.174447
http://dx.doi.org/10.1103/PhysRevB.74.014408
http://dx.doi.org/10.1103/PhysRevB.74.014408
http://dx.doi.org/10.1103/PhysRevB.74.014408
http://dx.doi.org/10.1103/PhysRevB.74.014408
http://dx.doi.org/10.1103/PhysRevLett.86.1335
http://dx.doi.org/10.1103/PhysRevLett.86.1335
http://dx.doi.org/10.1103/PhysRevLett.86.1335
http://dx.doi.org/10.1103/PhysRevLett.86.1335
http://dx.doi.org/10.1103/PhysRevLett.88.137203
http://dx.doi.org/10.1103/PhysRevLett.88.137203
http://dx.doi.org/10.1103/PhysRevLett.88.137203
http://dx.doi.org/10.1103/PhysRevLett.88.137203
http://dx.doi.org/10.1103/PhysRevB.68.134424
http://dx.doi.org/10.1103/PhysRevB.68.134424
http://dx.doi.org/10.1103/PhysRevB.68.134424
http://dx.doi.org/10.1103/PhysRevB.68.134424
http://dx.doi.org/10.1103/PhysRevB.67.104431
http://dx.doi.org/10.1103/PhysRevB.67.104431
http://dx.doi.org/10.1103/PhysRevB.67.104431
http://dx.doi.org/10.1103/PhysRevB.67.104431
http://dx.doi.org/10.1103/PhysRevB.76.060406
http://dx.doi.org/10.1103/PhysRevB.76.060406
http://dx.doi.org/10.1103/PhysRevB.76.060406
http://dx.doi.org/10.1103/PhysRevB.76.060406
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1007/BF01646487
http://dx.doi.org/10.1007/BF01646487
http://dx.doi.org/10.1007/BF01646487
http://dx.doi.org/10.1007/BF01646487
http://dx.doi.org/10.1103/PhysRevLett.98.077205
http://dx.doi.org/10.1103/PhysRevLett.98.077205
http://dx.doi.org/10.1103/PhysRevLett.98.077205
http://dx.doi.org/10.1103/PhysRevLett.98.077205
http://dx.doi.org/10.1038/nphys749
http://dx.doi.org/10.1038/nphys749
http://dx.doi.org/10.1038/nphys749
http://dx.doi.org/10.1038/nphys749
http://dx.doi.org/10.1088/0953-8984/11/14/012
http://dx.doi.org/10.1088/0953-8984/11/14/012
http://dx.doi.org/10.1088/0953-8984/11/14/012
http://dx.doi.org/10.1088/0953-8984/11/14/012
http://dx.doi.org/10.1103/PhysRevB.60.2987
http://dx.doi.org/10.1103/PhysRevB.60.2987
http://dx.doi.org/10.1103/PhysRevB.60.2987
http://dx.doi.org/10.1103/PhysRevB.60.2987
http://dx.doi.org/10.1103/PhysRevB.74.012407
http://dx.doi.org/10.1103/PhysRevB.74.012407
http://dx.doi.org/10.1103/PhysRevB.74.012407
http://dx.doi.org/10.1103/PhysRevB.74.012407
http://dx.doi.org/10.1103/PhysRevB.84.245130
http://dx.doi.org/10.1103/PhysRevB.84.245130
http://dx.doi.org/10.1103/PhysRevB.84.245130
http://dx.doi.org/10.1103/PhysRevB.84.245130
http://dx.doi.org/10.1103/PhysRev.58.1098
http://dx.doi.org/10.1103/PhysRev.58.1098
http://dx.doi.org/10.1103/PhysRev.58.1098
http://dx.doi.org/10.1103/PhysRev.58.1098
http://dx.doi.org/10.1103/PhysRevB.72.134429
http://dx.doi.org/10.1103/PhysRevB.72.134429
http://dx.doi.org/10.1103/PhysRevB.72.134429
http://dx.doi.org/10.1103/PhysRevB.72.134429
http://dx.doi.org/10.1103/PhysRevLett.93.257206
http://dx.doi.org/10.1103/PhysRevLett.93.257206
http://dx.doi.org/10.1103/PhysRevLett.93.257206
http://dx.doi.org/10.1103/PhysRevLett.93.257206
http://dx.doi.org/10.1103/PhysRevLett.97.207202
http://dx.doi.org/10.1103/PhysRevLett.97.207202
http://dx.doi.org/10.1103/PhysRevLett.97.207202
http://dx.doi.org/10.1103/PhysRevLett.97.207202
http://dx.doi.org/10.1103/RevModPhys.85.219
http://dx.doi.org/10.1103/RevModPhys.85.219
http://dx.doi.org/10.1103/RevModPhys.85.219
http://dx.doi.org/10.1103/RevModPhys.85.219
http://dx.doi.org/10.1103/PhysRevB.74.180403
http://dx.doi.org/10.1103/PhysRevB.74.180403
http://dx.doi.org/10.1103/PhysRevB.74.180403
http://dx.doi.org/10.1103/PhysRevB.74.180403



