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Nonlinear domain wall resonance in garnet films with perpendicular anisotropy:
Critical role of nonlinear damping
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Domain wall resonance spectra in the weakly nonlinear regime for garnet films with a perpendicular anisotropy
supporting parallel stripe domains have been investigated using micromagnetic simulations and zero-field
broadband ferromagnetic resonance experiments. The main characteristics of the 2D numerical micromagnetic
approach we developed is to solve the Landau-Lifshitz equation by an iterative method in the frequency domain
and to incorporate a nonlinear phenomenological damping term. It is shown that the nonlinear damping affects
simultaneously the driving field dependencies of the resonance frequency and the resonance linewidth for the
fundamental domain wall resonance of parallel stripe domains, and the critical field for the domain wall resonance
foldover. The micromagnetic simulations allow us to reproduce quantitatively both the nonlinear redshift of the
domain wall resonance frequency and the nonlinear line broadening experimentally observed for increasing
values of the input microwave power.
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I. INTRODUCTION

Magnetic films with a perpendicular anisotropy are promis-
ing systems for various applications in high-density storage
media [1], spintronics devices [2,3], or skyrmion-hosting ma-
terials without the Dzyaloshinskii-Moriya interaction [4]. One
striking feature of such films is the existence of a regular stripe
domain pattern at zero magnetic field according to the film
thickness and its quality factor Q defined as Q = Ku/2πM2

S ,
where Ku is the uniaxial perpendicular anisotropy constant and
Ms the saturation magnetization [5]. Nowadays, a critical point
both for fundamental physics and for applications is to get a
deep understanding of the nonlinear high-frequency dynamics
in such films with nonuniform magnetization configurations.
This issue can be tackled by considering monocrystalline
garnet films with a large quality factor Q > 1 as a model
system. In this case, it is possible to stabilize as a micromag-
netic ground state a parallel stripe domain pattern consisting
of nearly homogeneous up and down magnetized domains
separated by narrow domain walls (DWs). The excitation
spectrum in the linear regime of parallel stripe domains in
garnet films with Q > 1 has been extensively studied [6,7].
One powerful tool for measuring it is to excite the stripe
domain pattern by means of a small-amplitude rf magnetic
field and to detect the rf power absorption. It is well known
that the absorption spectra exhibit multiple DW and domain
resonances depending on the pumping field orientation [8–10].

On the other hand, the nonlinear dynamics of parallel
stripe domains can be probed by increasing the amplitude
of the driving field. Such measurements were conducted at
the beginning of the 1980s. Regarding the DW resonances,
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a downshift (redshift) of the resonance frequency for the
fundamental DW resonance [11], the parametric excitation
of DW waves [12,13], and the saturation of the resonance
line amplitude [13] were experimentally evidenced using a
magneto-optical detection. From the theoretical viewpoint, the
nonlinear dynamics of DWs in a parallel stripe pattern has
been investigated by considering either a nonlinear potential
energy or a nonlinear kinetic energy. In the former case, the
nonlinear response of DWs has been analyzed in detail by
means of a one-dimensional equation of motion for the DW
displacement including a nonlinear restoring force due to the
magnetic charges at the film surfaces [14–16]. According to the
amplitude of the rf exciting field, periodic, quasiperiodic, and
chaotic DW oscillations have been predicted [15]. In the last
case, the kinetic energy relies on a change of the internal DW
structure. It was recognized that for a film with a large quality
factor Q > 1, the kinetic nonlinearity is predominant with
respect to the potential nonlinearity [11,17] and is responsible
for the observed redshift. However, a quantitative comparison
between experience and modeling regarding the nonlinear
DW resonance spectra in terms of resonance frequency and
resonance linewidth is still lacking. Moreover, Tiberkevich
and Slavin [18] have proposed a new phenomenological
damping term to represent the nonlinear dissipation torque
in the Landau-Lifshitz equation. This formalism succeeded in
explaining the nonlinear dissipation rate in current-driven in-
plane magnetized ferromagnetic nanopillars [18], the existence
condition for the foldover of the ferromagnetic resonance
(FMR) line [19,20] in Permalloy strips, and, partially, the
nonlinear FMR resonance linewidth in yttrium iron garnet
films (YIG) [21]. An intriguing question is now to know to
what extent this formalism can be applied for analyzing the
nonlinear DW spectra.
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In this context, this paper aims at investigating the funda-
mental DW resonance in a weakly nonlinear regime for garnet
films with a perpendicular anisotropy supporting parallel
stripe domains by means of micromagnetic simulations and
broadband FMR measurements at zero magnetic field. Much
attention is paid to the effect of the nonlinear damping on the
main features of the rf power dependent DW resonance spectra
(resonance frequency shift, resonance line broadening). It is
shown from the comparisons between the experimental data
and the simulations results that the nonlinear damping term
plays a critical role in reproducing the experimental data.

The paper is organized as follows. Section II presents the
micromagnetic model and the numerical method for solving
the nonlinear Landau-Lifshitz equation for magnetization
motion in the frequency domain. Two phenomenological rep-
resentations for the magnetic dissipation have been considered:
the standard linear Gilbert damping term and the nonlinear
damping term proposed by Tiberkevich and Slavin [18]. The
results of micromagnetic simulations conducted for the case
of a thin garnet film exhibiting a stripe domain pattern are then
reported. The computed evolutions of the frequency shift and
the resonance linewidth for the fundamental DW resonance as
the amplitude of the rf exciting field increases are displayed.
The linear and nonlinear damping dependencies of the critical
field for DW resonance foldover are presented as well.
Section III is devoted to experimental results coming from the
broadband FMR and the comparisons with the micromagnetic
simulations for a garnet film with a stripe domain pattern. The
limitations of the phenomenological approach of the nonlinear
DW damping are discussed in Sec. IV. Conclusions are drawn
in Sec. V.

II. MICROMAGNETIC SIMULATIONS

A. Model

Modeling of the rf magnetic field driven absorption
spectrum in the nonlinear regime for magnetic films or
elements with nonuniform magnetization configurations is a
challenging problem. The most powerful and general approach
is based on micromagnetic simulations. So far, the standard
procedure consists of integrating the Landau-Lifshitz-Gilbert
equation for magnetization motion in the time domain in the
presence of a temporal exciting magnetic field to obtain the
temporal response of the magnetization configuration [22–28].
The time-averaged absorbed power is usually computed by
integrating over one or several periods of the driving field
the dot product of the temporal excitation and the temporal
magnetization [26]. In the present work, two innovative
developments have been carried out. First, the nonlinear
damping term suggested by Tiberkevich and Slavin [18] has
been introduced in the micromagnetic simulations. Second, an
alternate iterative method was developed for solving the non-
linear Landau-Lifshitz equation in the frequency domain. This
one generalizes the method of successive approximations [29]
used for spatially uniform magnetization states. On the other
hand, this two-dimensional (2D) micromagnetic approach
extends the one previously reported for computing the dynamic
susceptibility spectra (linear regime) of films with nonuniform
magnetization configuration [30,31]. The method saves the

same advantages. (i) The power absorption spectrum can be
easily refined within spectral ranges including resonance lines.
This results in high-accuracy determinations of the resonance
frequency, resonance linewidth, and maximum amplitude for
each line. (ii) The spatial map of the dynamic magnetization
at the resonance frequency of each line (mode structure) is
a direct output of simulations. (iii) The time for computing a
spectrum around a resonance line is independent of the spectral
position of the line. This method is briefly described hereafter.

Let us consider a static magnetization configuration
Meq(r) = Msmeq(r), where r is the position vector and Ms the
saturation magnetization. After applying a uniform exciting
magnetic field δh(t), the time evolution of equilibrium state is
described by the Landau-Lifshitz equation:

∂m(r,t)
∂t

= −|γ | [m(r,t) × Heff(r,t)] + T(r,t), (1)

where Heff(r,t) is the total effective field including the
contributions from the demagnetizing, Zeeman, exchange, and
anisotropy fields, and T(r,t) is the damping torque. In what
follows, the generalized nonlinear damping torque proposed
by Tiberkevich and Slavin [18] is considered:

T(r,t) = α(ζ )

[
m(r,t) × ∂m(r,t)

∂t

]
, (2)

where the standard Gilbert damping parameter α is replaced
by the damping function α(ζ ) with ζ defined as

ζ = 1

ω2
M

(
∂m(r,t)

∂t

)2

, (3)

and ωM = γ 4πMS .
After a Taylor series expansion of α(ζ ) and by restricting

ourselves to the linear term in ζ , the nonlinear damping torque
takes the form

T(r,t) = α

[
1 + q1

ω2
M

(
∂m(r,t)

∂t

)2
][

m(r,t) × ∂m(r,t)
∂t

]
,

(4)
where q1 is the dimensionless expansion coefficient charac-
terizing the first-order nonlinear correction in the damping
function, satisfying the criterion q1ζ � 1.

The dynamic magnetization and the effective field can be
split as follows separating the static and dynamic terms:

m(r,t) = meq(r) + δm(r,t), (5)

Heff(r,t) = Heq(r) + Heff(δm) + δh(t), (6)

where Heq(r) = Heff(meq) is the static effective field. Assum-
ing harmonic time dependencies for δm and δh, Eq. (1) can be
expanded as follows using Eqs. (5) and (6) and remembering
the equilibrium condition meq × Heq = 0:

− iω

|γ |δm +
(

Heq + iαω

|γ | meq

)
× δm

− meq × Heff(δm) − meq × δh

+(Heff(δm) + δh) × δm

+ iαω

|γ | q1

(
ω

ωM

)2

|δm|2(meq × δm) = 0, (7)
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where the first two lines correspond to the first-order term in
δm and δh, and the last two to higher-order terms.

Introducing the linear operator L,

Lδm =
(

− iω

|γ |I + D2 − D1DH

)
δm, (8)

where I is the unit operator and the operators D1, D2, and DH

are defined, for any given vector v, by [30]

D1v = meq × v,

D2v =
(

Heq + iαω

|γ | meq

)
× v,

DH v = Heff(v), (9)

and the nonlinear operator N,

N (δm) = (Heff(δm) + δh) × δm

+ iαω

|γ | q1

(
ω

ωM

)2

|δm|2(meq × δm), (10)

the left-hand side of Eq. (7) takes the form

F (δm) = Lδm + N (δm) − D1δh, (11)

and the Landau-Lifshitz equation with the nonlinear damping
term can be recast in the nonlinear equation

F (δm) = 0. (12)

Various strategies can be foreseen to solve Eq. (12). For
our 2D problems, the solution δm is found using the discrete
Newton method [32]. Using a regular spatial grid with n

discretization points, m, meq , δm, Heq , Heff , and δh are 3n

vectors and F becomes a complex vector-valued function F.
Writing δm = {δm1,. . .,δm3n}, and F = {F1,. . .,F3n}, the kth
Newtonian iteration is defined by

B(δmk)s(k) = −F(δm(k)), (13)

where the matrix B is a finite difference approximation of the
Jacobien matrix J :

Jij = ∂Fi(δm)

∂δmj

, i,j = 1, . . . ,3n, (14)

and

s(k) = δm(k+1) − δm(k). (15)

Solving the linear system Eq. (13) leads to the update
solution δm(k+1). A sequence of terms δm(k) k = 1, . . . ,p is
generated and the convergence is reached when the reduced
modulus satisfies

|s(p)|
|δm(p)| < ε, (16)

where ε is a given error. The initial solution {δm(0)} is obtained
by solving the linear equation

Lδm0 = D1δh. (17)

This procedure is applied for each angular frequency ω. The
microwave absorption power Pa is then computed by the
general expression

Pa = 1

2
Re

[
iω

∫
V

dV δh · δm∗
]
, (18)

where the asterisk denotes the complex conjugation and V the
sample volume. For our 2D problems, the sum is restricted to
the cross-sectional surface S.

From the practical standpoint, several points merit being
highlighted. (i) Assembling the dense matrix B represents the
predominant computational cost with respect to solving the
linear system Eq. (13). Consequently, the discrete Newton
method is appropriate for 2D micromagnetic simulations
where the number of unknowns is typically lower than 104.
For larger systems as those usually encountered for 3D
micromagnetic simulations, alternate iterative methods with
preconditioning but without forming and storing the Jacobian
matrix have to be preferred [33]. (ii) The main advantages are
the robustness of the method and its speed of convergence. In
our case, no more than 40 iterations were necessary to reach
convergence for all the conducted simulations with ε = 10−4

and within the explored range of |δh| values.

B. Numerical results

The micromagnetic simulations were conducted by consid-
ering a magnetic garnet film with a perpendicular anisotropy.
The material parameters are the following: the exchange
constant A = 2 × 10−7 erg/cm, the saturation induction
4πMS = 500 G, the uniaxial perpendicular anisotropy con-
stant Ku = 14 000 erg/cm3 (Q ∼ 1.4), the gyromagnetic ratio
γ = 1.8 × 107 s−1 Oe−1, the Gilbert damping parameter α =
0.02, and the film thickness t = 0.25 μm. The small cubic
anisotropy existing in garnet films is neglected in the micro-
magnetic simulations. The zero-field micromagnetic ground
state for such a film is a parallel stripe domain pattern with a
stripe period P0 as depicted in Fig. 1(a). For 2D micromagnetic
simulations, the z axis corresponds to the elongation direction
of the stripe domains (invariant axis), the x axis to the in-plane
direction normal to the stripe domains, and the y axis to the
film normal. The computations were performed using periodic
boundary conditions along the x axis. So, the system is reduced
to the periodic cell of size P0 × t . The used mesh sizes
along the x and y axis are 
x = 7.7 nm and 
y = 15.6 nm,
respectively. These values are lower than the smallest length
scale for magnetic films with Q > 1, namely, the Bloch DW
width parameter 
0 = (A/Ku)1/2 = 37.8 nm. The computed
equilibrium magnetization configuration over one period of
the stripe pattern is reported in Fig. 1(b). It consists of up
(magnetized along the +y axis) and down (magnetized along
the −y axis) domains (see the my component) separated by
a 2D DW with a Bloch character at the film center (see the
mz component) and a Néel character at the film surfaces (see
the mx component). The equilibrium stripe period P0 and the
associated spatial magnetization configuration correspond to
the lowest 2D micromagnetic energy. The optimized P0 value
is equal to 1.35 μm.

In this work, we focus on the fundamental DW reso-
nance (Bloch type) excited by a rf magnetic field applied
along the film normal [30]. The micromagnetic simulations
in the nonlinear regime were carried out using first the
linear Gilbert damping parameter and then the nonlinear
one as defined in Eq. (4). Hereafter, the results will be pre-
sented using two quantities: the local dynamic magnetization
component δmy(x,y) and the spatial average of this term,
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FIG. 1. (Color online) (a) Schematic representation of the paral-
lel stripe domain pattern for a film of thickness t with a perpendicular
magnetic anisotropy and coordinate system. P0 is the zero-field spatial
period of stripe domains. (b) Cross-sectional views of the static
magnetization components mx , my , and mz over one period of the
stripe domain pattern computed by 2D micromagnetic simulations
for the film under consideration (Q � 1.4).

〈δmy〉 = 1
S

∫
S
δm · uy dS, where uy is the unit vector along

the y axis and S = P0 × t .

1. Nonlinear DW resonance with linear damping

Figure 2(a) displays the frequency dependence of the imag-
inary part of the average dynamic magnetization component
〈δmy〉, termed Im(〈δmy〉) for increasing values of the rf driving
field amplitude δhy ranging from 5 mOe up to 35 mOe.
For δhy = 5 mOe (linear regime), the spectrum reveals a
unique resonance line within the frequency band 150 MHz to
190 MHz, located at the frequency fr = 172.6 MHz. The
map of Im(δmy) in the (x,y) plane computed at the resonance
frequency allows us to assign this line to the Bloch DW mode
[see Fig. 2(b)]. As the pumping field amplitude increases,
the symmetric resonance line transforms progressively into an
asymmetric one. The resonance frequency is shifted towards
the low frequencies (redshift). For δhy = 35 mOe, the reso-
nance frequency reaches the value fr = 169.3 MHz resulting
in a lowering of 2.5%. The mode structure remains unchanged
as shown in Fig. 2(b). The essential difference is the downward
shift of the phase of 〈δmy〉. Figure 2(c) shows that this phase
is equal to 90◦ for δhy = 1 mOe (linear regime) in agreement
with the standard damped harmonic oscillator model for DW
oscillations [6] and decreases quadratically down to 64.5◦ for
δhy = 35.3 mOe. The variation of the resonance frequency
with δhy is plotted in Fig. 2(d). The downshift is nicely fitted
by a quadratic law. A vertical slope for the Im(〈δmy〉) curve is
achieved for δhy = 36 mOe, which corresponds to the critical
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FIG. 2. (Color online) Fundamental nonlinear DW resonance
computed by micromagnetic simulations with linear damping. (a)
Imaginary part of the average dynamic magnetization component
〈δmy〉 as a function of the pumping field frequency for various
values of the pumping field amplitude δhy . (b) Spatial distribution
of the imaginary part of the dynamic magnetization component
δmy(x,y) over one period of the stripe domain pattern computed
at each resonance frequency for δhy = 5 mOe (linear regime) and
δhy = 35 mOe (nonlinear regime). For each case, the imaginary part
of δmy(x,y) is normalized by its maximum value. (c) Phase of 〈δmy〉
as a function of δhy . The critical field for the DW resonance foldover
δhy,c is indicated by the arrow. The points A and B refer to the inset
in panel (a). (d) DW resonance frequency versus δhy . The dashed line
is the best quadratic fit.

rf field for the DW resonance foldover, δhy,c. Above this value,
a jump appears in the Im(〈δmy〉) curve that becomes bivalued.
As an illustration, the inset in Fig. 2(a) evidences such a jump
between the points A and B for the spectrum computed at
δhy = 37 mOe. These two solutions for the DW dynamics are
distinguished by the amplitudes of Im(〈δmy〉) [see the inset in
Fig. 2(a)] and the phases of 〈δmy〉 [see Fig. 2(c)]. For larger
δhy values, it is worth noting that the slopes of the phase versus
δhy have opposite signs for the two solutions. The evolution of
the critical field for the DW resonance foldover as a function of
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FIG. 3. (Color online) Evolution of the critical field for the DW
resonance foldover δhy,c with the Gilbert damping parameter α. The
dashed line is the best power-law fit.

the damping parameter α is displayed in Fig. 3. This variation
scales as α3/2.

At this stage, it is instructive to compare these results
with those known for the perpendicular FMR (perpendicularly
magnetized thin films) in the nonlinear regime. The standard
model, based on the cone angle approximation for the
uniform precession mode [34], predicts a quadratic decrease
of the resonance field, or equivalently a quadratic increase
(blueshift) of the resonance frequency for increasing the
driving field amplitude [19,20]. The sense of the shift is
opposite to that observed for the DW resonance. However,
the direction and the amplitude of the FMR shift may
be changed due to the magnetocrystalline anisotropy [35]
or more generally to the effective field [36]. Recently,
the correlation between the downshift of the resonance field
for FMR and the phase of the uniform mode for increasing
values of the rf driving field has been experimentally pointed
out by time-resolved FMR measurements for thin Permalloy
films [37]. Such a correlation is clearly confirmed by our
micromagnetic simulations for the nonlinear DW resonance.
Lastly, the critical field for the FMR foldover varies like α3/2

as well [19,20,34]. However, it should be noted that the inad-
equacy of that model for describing quantitatively the FMR
foldover has been extensively discussed [38] and introduction
of a nonlinear damping has been proposed leading to very good
agreement between theory and experience [19,20]. The effect
of a nonlinear damping on the DW resonance in the nonlinear
regime is numerically addressed in the next section.

2. Nonlinear DW resonance with nonlinear damping

The frequency dependence of Im(〈δmy〉) for various values
of δhy , computed with the nonlinear damping term defined
in Eq. (4) with q1 = 100, is reported in Fig. 4(a). It is worth
noting that for the case under consideration, the condition
q1(ω/ωM )2|δm|2 < 1 is fulfilled for the investigated frequency
and rf field amplitude ranges. Asymmetric resonance profiles
and the redshift of the resonance frequency are again clearly
observed. However, introduction of the nonlinear damping
term leads to new features, namely, (i) a weaker variation
of the resonance frequency and a less asymmetric resonance
line for a given value of δhy , (ii) an upward shift of the critical
field for the DW resonance foldover (δhy,c = 90.5 mOe for
q1 = 100), and (iii) as expected, a significant broadening of
the DW resonance line. The mode structure remains similar to
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FIG. 4. (Color online) Fundamental nonlinear DW resonance
computed by micromagnetic simulations with nonlinear damping.
(a) Imaginary part of the average dynamic magnetization component
〈δmy〉 as a function of the pumping field frequency for various values
of the pumping field amplitude δhy . The nonlinear damping parameter
is fixed at q1 = 100. (b) DW resonance frequency versus δhy for
various q1 values. (c) DW resonance linewidth versus δhy for various
q1 values. The solid lines are guides to the eyes.

those shown in Fig. 2(b) and the phase of 〈δmy〉 decreases more
slowly with respect to the case q1 = 0, from 89.1◦ for δhy =
5 mOe down to 76.3◦ for δhy = 90 mOe. More precisely,
the evolution of the resonance frequency as a function of
δhy is displayed in Fig. 4(b) for q1 = 0 (linear damping),
q1 = 50, and q1 = 100. As q1 increases, the quadratic law
for the resonance frequency downshift is changed and tends
progressively to a quasilinear law for the largest δhy values.
The variation of the resonance linewidth (full width at half
maximum) with δhy for q1 = 0, q1 = 50, and q1 = 100 is
shown in Fig. 4(c). For the linear damping, the resonance
linewidth is independent of δhy except in the vicinity of the
critical field for the DW resonance foldover. In this case, the
resonance line is strongly distorted and appears to be shrunk
[see Fig. 2(a)]. As q1 increases, the driving field amplitude
dependence of the resonance linewidth is getting more and
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FIG. 5. (Color online) Evolution of the critical field for the DW
resonance foldover δhy,c with the nonlinear damping parameter q1.
The dotted line corresponds to the quadratic fit (q1 < 50) whereas the
dashed line is the linear fit (q1 � 50).

more strong. The resonance linewidth follows a quasilinear
variation with δhy for the largest δhy values. For q1 = 100,
the linewidth is raised up by a factor 1.7 with respect to
the linear case. Figure 5 displays the evolution of the critical
field for the DW resonance foldover as a function of q1. The
Gilbert damping parameter is fixed at α = 0.02. It is shown
that δhy,c increases with q1. Two regimes can be distinguished:
a quadratic variation for q1 � 35 and a quasilinear slope
for q1 > 35. δhy,c is increased by a factor 2.4 between the
two extreme q1 values (q1 = 0 and q1 = 100). From these
numerical results, it can be concluded that both the slopes of
the resonance frequency and the resonance linewidth versus
δhy reflect the degree of nonlinearity for the dissipative term.
In addition, the critical field for the DW resonance foldover is
strongly correlated with the nonlinear damping parameter.

Let us come back to the nonlinear FMR. The improved
model including a cone angle dependence for the FMR
linewidth [19,20] is based on the generalized damping term
proposed by Tiberkevich and Slavin [18]. In this case, the
FMR linewidth in the nonlinear regime reads as 
HNL =
β4πMsθ

2, where β is a dimensionless parameter which
depends on frequency, and θ is the cone angle for the uniform
precession. The critical field for the FMR foldover δhc is
expressed by [19,20]: δhc

2 = [(1 + 4β2]/[1 − 2
√

3β]3 within
the parameter range β < 1/(2

√
3) where the foldover effect

exists. This gives rise to a strong increase of δhc when
β approaches the limit value β = 1/(2

√
3). This behavior

departs from the smoother variation of δhy,c with q1 observed
for the nonlinear DW resonance.

III. EXPERIMENTAL RESULTS

A. Materials

The investigated sample is a single-crystal garnet film with
a perpendicular anisotropy grown by liquid phase epitaxy on
a (111)-oriented gadolinium gallium garnet (GGG) substrate.

The film composition and material parameters are gathered
in Table I. The saturation magnetization Ms was determined
with a vibrating sample magnetometer (VSM). Ferromag-
netic resonance (FMR) measurements (linear regime) in the
perpendicular configuration (polarizing field along the film
normal) were used to identify the uniaxial perpendicular
anisotropy constant Ku and the gyromagnetic ratio γ from
the linear variation of the resonance frequency with field, and
the damping constant α from the linear frequency dependence
of the FMR resonance linewidth. The exchange constant A

at room temperature TR was inferred from the theoretical
law [39]: A = AYIG(TN − TR)/(TN,YIG − TR), where TN and
TN,YIG are the Néel temperatures for our substituted YIG film
and for a pure YIG film, respectively, and AYIG is the exchange
constant of pure YIG at room temperature. For TN,YIG =
560 K, TN = 425 K (estimate for our composition), and
AYIG = 4.15 × 10−7 erg/cm, this leads to A = 2 × 10−7

erg/cm. The weak contribution of the cubic magnetocrystalline
anisotropy (|K1|/Ku∼0.05, where K1 is the first-order cubic
anisotropy constant) will be neglected hereafter. The parallel
stripe domain pattern was nucleated using a demagnetiz-
ing process under both perpendicular and parallel magnetic
fields [40]. The measured zero-field stripe domain period P0

is reported in Table I as well. For the comparison between
experiment and simulation, the computations were conducted
using the magnetic parameters reported in Table I except for
the damping parameter. Indeed, it was shown [10] that the
value of the Gilbert damping parameter α = 0.008, greater
than that deduced from the FMR measurements (α = 0.002),
is needed to fit the experimental the DW resonance linewidth
in the linear regime. The value α = 0.008 was hence adopted
for the micromagnetic simulations.

B. DW resonance spectra

The DW resonance measurements were performed within
the frequency range [20 MHz to 1 GHz] using a highly
sensitive broadband spectrometer with a nonresonant 50 


microstrip reflection line. This 1-mm-wide microstrip line
is fed by a microwave current that generates the rf exciting
field. The selected pumping field configuration corresponds
to a predominant in-plane component of the rf exciting
field parallel to the stripe domain direction. An out-of-plane
component of the rf exciting field along the film normal
exists at the microstrip lateral edges [see Fig. 6(a)]. The
input microwave power P was varied from 10−2 mW up to
150 mW. To enhance the sensitivity of the DW resonance
signal, a frequency modulation and a lock-in amplifier were
employed resulting in the derivative power absorption spectra
dPa/df .

The experimental rf power dependence of the derivative
absorption spectra is displayed in Fig. 6(b). Within the

TABLE I. Set of material parameters for the used garnet sample.

Ms Ku γ t P0

Composition (emu/cm3) (erg/cm3) (s−1 Oe−1) α (μm) (μm)

Y1.8 Bi0.63 Lu0.56 Fe4.18 Al0.83012 43.8 1.84 × 104 1.78 × 107 2 × 10−3 0.5 1.5
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FIG. 6. (Color online) DW resonance measurements in linear
and nonlinear regimes. (a) Sketch of the setup for DW resonance
measurements. The garnet sample with a parallel stripe domain
pattern is situated above the rf microstrip line. The predominant
component of the in-plane rf exciting field is parallel to the direction
of stripe domains. (b) Derivative microwave absorption spectra for
various input rf power levels P . The amplification factors are labeled
in the parentheses.

frequency range 220–340 MHz, the low-level power spectrum
(P = 10−1 mW) consists of a unique well-defined resonance
line at frequency fr = 283 MHz, previously identified as the
fundamental Bloch DW (BDW) resonance mode [10]. This
line cannot be excited by the in-plane component of the rf
exciting field but only by the small out-of-plane component for
this pumping field configuration. For increasing P values, the
resonance frequency of the BDW mode is shifted towards the
low frequencies and the resonance line is broadened [Fig. 6(b)].
These spectra are characterized by a weak asymmetry of the
resonance line and the absence of foldover. Furthermore, small
oscillations are clearly observed on the positive part of the
resonance line for the spectrum recorded at P = 50 mW.
Upon increasing the spectral resolution (reduced modulation
amplitude), this fine structure was previously identified as
standing elastic modes in the film/substrate system [41]. Two
additional results merit being highlighted. (i) The amplitude
of the BDW resonance line saturates at around P = 100 mW.
This effect has been previously interpreted as the consequence
of horizontal Bloch line nucleation within the DW [13]. (ii) The
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FIG. 7. (Color online) Comparisons between experimental data
and results of micromagnetic simulations. (a) Reduced DW resonance
frequency as a function of the input microwave power P . The
resonance frequencies are normalized by that in the linear regime
(P = 10−2 mW). (b) Reduced peak-to-peak DW resonance linewidth
as a function of P . The resonance linewidths are normalized by that
in the linear regime. The symbols are related to measurements. The
dashed lines are guides to the eyes. The results of micromagnetic
simulations are displayed by cross symbols.

DW resonance spectra is independent of the frequency sweep
direction for the explored values of the input rf power. These
results are consistent with those obtained by a magneto-optical
detection technique [11].

The evolutions of the resonance frequency and resonance
linewidth as a function of P are reported in Figs. 7(a) and
7(b), respectively. The resonance frequency (resp. resonance
linewidth) at a given power P is normalized by that measured
in the linear regime (P = 10−2 mW). A nonlinear decrease
of the resonance frequency and a nonlinear increase of the
resonance linewidth are observed for increasing P . These
behaviors depart from those that would be expected assuming
a linear damping term, namely, a linear dependence of the
resonance frequency with P and no dependence of the
resonance linewidth as function of P for the investigated power
range (see Fig. 4). This justifies the requirement of a nonlinear
damping term.

Let us now turn on the quantitative comparison between
the experimental data and the results of micromagnetic simula-
tions. First of all, it is necessary to estimate the correspondence
between the incident microwave power P and the rf magnetic
field, in particular the normal component δhy exciting the
DW resonance. The input power is proportional to δhy

2, or
equivalently, δhy

2 = kP , where k is the coupling parameter
depending on the geometrical features of the microstrip line.
For our setup, a reasonable value for k is 633 A2/(W m2)
(which corresponds to δhy = 10 mOe for P = 1 mW).
Figure 7(a) shows the comparison between the experimen-
tal and numerical evolutions of the normalized resonance
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frequency as a function of the microwave power. The micro-
magnetic simulations enable us to reproduce the experimental
nonlinear decrease using the nonlinear damping parameter
q1 = 200. Figure 7(b) displays the variation of the experi-
mental and numerical normalized peak-to-peak linewidth with
P . Once again, the results of micromagnetic simulations are in
very good agreement with the experimental data using the same
q1 value. It should be mentioned that both for the resonance
frequency and for the resonance linewidth, the microwave
power dependencies are reproduced in terms of profiles and
amplitudes.

IV. DISCUSSION

The results presented in Fig. 7 show that the nonlinear
term suggested in Ref. [18] allows us to account for the rf
power dependencies of the DW resonance frequency and the
DW resonance linewidth. However, it should be remarked
that the selected value q1 = 200 is rather large compared
to that previously reported for the nonlinear current-driven
precession in ferromagnetic layers [18] (q1 = 3) and results in
a nonlinear correction q1ζ � 1. This means that the nonlinear
dissipative part is of the same order of magnitude as its
linear counterpart. Recently, the nonlinear FMR in YIG films
was analyzed using the same nonlinear damping term and a
value q1 = 250 was found to match partially the experimental
resonance linewidth [21] which corresponds, once again,
to an equivalent weight between the linear and nonlinear
dissipative terms. For the nonlinear FMR, the validity of
this used phenomenological nonlinear damping term and its
link with microscopic relaxation mechanisms were previously
discussed [18,20]. It was shown that this nonlinear model
can be applied even in magnetic systems where the nonlinear
magnon-magnon relaxation processes are dominant [18]. For
our case of DW resonances in a parallel stripe domain
structure, multiple channels of relaxation exist. Besides the
direct relaxation to thermal magnons or phonons, largely
studied for the case of isolated DWs [42,43], indirect relaxation
mechanisms through interaction of DW waves are operative.
Based on a DW-wave model [44], the dispersion surfaces
fr,n(k‖,kperp) for the fundamental DW mode (n = 0) and
higher-order flexural DW modes (n > 0) were calculated in
the linear regime [13], where fr,n is the resonance frequency
for the considered DW mode, and k‖ and kperp are the
components of the DW wave vector parallel and perpendicular
to the in-plane direction of stripe domains, respectively. From
these dispersion surfaces, it was shown that DW waves
with k‖ �= 0 and kperp �= 0 exist at half frequency of the
fundamental DW wave mode (k = 0) making possible a
parametric excitation of DW waves through a three-DW-wave
interaction mechanism. This splitting process is equivalent
to the first-order Suhl instability for the FMR [45]. Such
parametric DW excitations were experimentally evidenced by
a magneto-optical technique [12,13]. Parametric DW wave
resonances excited through nonlinear coupling are also pointed
out in our experimental DW resonance spectra above a critical
input rf power Pc ∼ 25 mW as shown in Fig. 8. In addition to
the fundamental DW excitation at the resonance frequency fr ,
a small-amplitude signal is revealed at fr/2. Other nonlinear
DW wave interactions can be foreseen from the dispersion
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FIG. 8. (Color online) Derivative absorption spectrum within a
wider frequency range for various input rf power showing the
fundamental nonlinear DW resonance at the frequency fr and the
subsidiary nonlinear DW resonance at fr/2 (parametric excitation of
DW waves) appearing above P = 25 mW.

surfaces: a two-DW-wave interaction [46] (equivalent to the
two-magnon scattering in FMR [47]) and a four-DW-wave
interaction [13] (similar to the four-magnon scattering process
evidenced in YIG microstructures [48] and thin metallic
films [49]). Our 2D micromagnetic simulations cannot account
rigorously for such mechanisms changing the number of
DW-wave magnons with k �= 0 and involving oblique DW
wave vectors. The required high values of q1 to match the
experimental data could reflect artificially such nonlinear DW
relaxation mechanisms. To support this assumption, it has
been established that the dominant nonlinear four-magnon
scattering process in thin ferromagnetic films can be described
using an effective Gilbert-type damping term [49].

To go further, two issues would deserve to be more deeply
investigated in the near future. First, the existence of a
spatially nonuniform magnetic texture entails an enhancement
of the dyadic dissipation as demonstrated by Thiele [50].
In addition, the dynamical change of this texture due to
the DW motion in the nonlinear regime has a feedback
on this dyadic dissipation as well. These effects are taken
into account by the micromagnetic simulations based on a
purely phenomenological generalized Gilbert model assuming
local and isotropic dissipation mechanisms described by the
scalar α and q1 parameters. However, recent investigations
of magnetic damping in conducting ferromagnets with a
noncollinear magnetization pointed out an anisotropic texture-
enhanced Gilbert damping [51,52] both in linear and nonlinear
regimes [53]. It would be interesting to study the relevance of
using linear and nonlinear anisotropic damping terms for our
insulating garnet films.

Second, an important open question is to know whether the
findings obtained by our frequency domain approach with a
nonlinear damping differ (and to what extent) from those that
would result from a direct integration in the time domain of
the nonlinear Landau-Lifshitz-Gilbert equation with a linear
damping term using a high-power field excitation. In the last
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case, a nonlinear contribution to the magnetic dissipation
arises from the nonlinear dynamic magnetization and its time
derivative. Unfortunately, such time domain micromagnetic
simulations of nonlinear DW spectra with a high enough
spectral resolution lead to costly computation time due partly
to the low-lying DW excitation and were not conducted in the
present work. However, it should be remarked that, as shown
in Ref. [18], using the standard Gilbert damping constant
in the nonlinear regime can result in inconsistent nonlinear
behaviors. Indeed, the magnetic dissipation is proportional to
frequency in the framework of the Gilbert model. For magnetic
systems with a nonlinear redshift of the resonance frequency,
this results in a decrease of the time rate of the energy loss
for increasing the excitation amplitude in opposition to most
of the microscopic relaxation processes. Taking into account
a nonlinear damping allows removing this inconsistency.

V. SUMMARY AND CONCLUDING REMARKS

By means of micromagnetic simulations and zero-field
broadband FMR measurements, the DW resonance spectra in
the weakly nonlinear regime have been investigated for garnet
films with a perpendicular anisotropy supporting a parallel
stripe domain pattern. The nonlinear DW response in such sys-
tems reveals two intimately correlated behaviors, namely, the
redshift of the fundamental DW resonance frequency and the

broadening of this resonance line as the input rf field or power
increases. The 2D micromagnetic simulations conducted in
the frequency domain and including a generalized Gilbert-type
dissipation term (first-order nonlinear dissipation model) allow
us to reproduce quantitatively the nonlinear power dependen-
cies of the redshift and the line broadening experimentally
observed. In addition, the micromagnetic simulations show
that the nonlinear damping term controls both the amplitudes
and profiles of these two quantities as a function of the rf
driving solicitation and, consequently, the critical field for the
DW resonance foldover. These results have been established
for the model system of parallel stripe domain pattern in
low-loss garnet films. It should be interesting to investigate
the nonlinear high-frequency response of metallic magnetic
films or micro/nanostructures with a perpendicular anisotropy
(for instance, FePt, CoPt, FePd binary alloys) envisaged for
high-density storage media and spintronics devices to test
the robustness of the phenomenological nonlinear damping
term used in the present work. From the theoretical point of
view, it would be interesting to investigate the effect of the
second-order nonlinear dissipation term on the nonlinear DW
dynamics in stripe domain structures.
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