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Nonlocal torque operators in ab initio theory of the Gilbert damping in random ferromagnetic alloys
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We present an ab initio theory of the Gilbert damping in substitutionally disordered ferromagnetic alloys. The
theory rests on introduced nonlocal torques which replace traditional local torque operators in the well-known
torque-correlation formula and which can be formulated within the atomic-sphere approximation. The formalism
is sketched in a simple tight-binding model and worked out in detail in the relativistic tight-binding linear
muffin-tin orbital method and the coherent potential approximation (CPA). The resulting nonlocal torques are
represented by nonrandom, non-site-diagonal, and spin-independent matrices, which simplifies the configuration
averaging. The CPA-vertex corrections play a crucial role for the internal consistency of the theory and for its
exact equivalence to other first-principles approaches based on the random local torques. This equivalence is
also illustrated by the calculated Gilbert damping parameters for binary NiFe and FeCo random alloys, for pure
iron with a model atomic-level disorder, and for stoichiometric FePt alloys with a varying degree of L10 atomic
long-range order.
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I. INTRODUCTION

The dynamics of magnetization of bulk ferromagnets, ul-
trathin magnetic films, and magnetic nanoparticles represents
an important property of these systems, especially in the
context of high-speed magnetic devices for data storage. While
a complete picture of magnetization dynamics including,
e.g., excitation of magnons and their interaction with other
degrees of freedom is still a challenge for the modern theory
of magnetism, remarkable progress has been achieved in
recent years concerning the dynamics of the total magnetic
moment, which can be probed experimentally by means of the
ferromagnetic resonance [1] or by the time-resolved magneto-
optical Kerr effect [2]. Time evolution of the macroscopic
magnetization vector M can be described by the well-known
Landau-Lifshitz-Gilbert (LLG) equation [3,4]

dM
dt

= Beff × M + M
M

×
(

α · dM
dt

)
, (1)

where Beff denotes an effective magnetic field (with the
gyromagnetic ratio absorbed) acting on the magnetization,
M = |M|, and the quantity α = {αμν} denotes a symmetric
3 × 3 tensor of the dimensionless Gilbert damping parameters
(μ,ν = x,y,z). The first term in Eq. (1) defines a precession of
the magnetization vector around the direction of the effective
magnetic field, and the second term describes a damping of
the dynamics. The LLG equation in itinerant ferromagnets is
appropriate for magnetization precessions that are very slow as
compared to precessions of the single-electron spin due to the
exchange splitting and to frequencies of interatomic electron
hoppings.
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A large number of theoretical approaches to the Gilbert
damping have been worked out during the last two decades;
here we mention only schemes within the one-electron theory
of itinerant magnets [5–20], where the most important effects
of electron-electron interaction are captured by means of
a local spin-dependent exchange-correlation (XC) potential.
These techniques can be naturally combined with existing first-
principles techniques based on the density-functional theory,
which leads to parameter-free calculations of the Gilbert
damping tensor of pure ferromagnetic metals, their ordered
and disordered alloys, diluted magnetic semiconductors, etc.
One part of these approaches is based on a static limit of
the frequency-dependent spin-spin correlation function of a
ferromagnet [5–8,15,16]. Other routes to the Gilbert damping
employ relaxations of occupation numbers of individual Bloch
electron states during quasistatic nonequilibrium processes
or transition rates between different states induced by the
spin-orbit (SO) interaction [9–12,14,20]. The dissipation of
magnetic energy accompanying the slow magnetization dy-
namics, evaluated within a scattering theory or the Kubo linear
response formalism, leads also to explicit expressions for the
Gilbert damping tensor [13,17–19]. Most of these formulations
yield relations equivalent to the so-called torque-correlation
formula

αμν = −α0Tr{Tμ(G+ − G−)Tν(G+ − G−)}, (2)

in which the torque operators Tμ are either due to the XC or
SO terms of the one-electron Hamiltonian. In Eq. (2), which
has the form of the Kubo-Greenwood formula and is valid for
zero temperature of electrons, the quantity α0 is related to the
system magnetization (and to fundamental constants and units
used; see Sec. II B), the trace is taken over the whole Hilbert
space of valence electrons, and the symbols G± = G(EF ±
i0) denote the one-particle retarded and advanced propagators
(Green’s functions) at the Fermi energy EF.
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Implementation of the above-mentioned theories in first-
principles computational schemes proved opposite trends of
the intraband and interband contributions to the Gilbert damp-
ing parameter as functions of a phenomenological quasipar-
ticle lifetime broadening [7,11,12]. These qualitative studies
have recently been put on a more solid basis by considering
a particular mechanism of the lifetime broadening, namely, a
frozen temperature-induced structural disorder, which repre-
sents a realistic model for treatment of temperature dependence
of the Gilbert damping [21,22]. This approach explained
quantitatively the low-temperature conductivity-like and high-
temperature resistivity-like trends of the damping parameters
of iron, cobalt, and nickel. Further improvements of the model,
including static temperature-induced random orientations of
local magnetic moments, have appeared recently [23].

The ab initio studies have also been successful in repro-
duction and interpretation of values and concentration trends
of the Gilbert damping in random ferromagnetic alloys, such
as the NiFe alloy with the fcc structure (permalloy) [17,22]
and Fe-based alloys with the bcc structure (FeCo, FeV, FeSi)
[19,22,24]. Other studies also addressed the effects of doping
the permalloy and bcc iron by 5d transition-metal elements
[19,20,22] and of the degree of atomic long-range order in
equiconcentration FeNi and FePt alloys with the L10-type
structures [20]. Recently, an application to half-metallic Co-
based Heusler alloys has appeared as well [25]. The obtained
results revealed correlations of the damping parameter with
the density of states at the Fermi energy and with the size of
magnetic moments [22,24].

In a one-particle mean-field-like description of a ferro-
magnet, the total spin is not conserved due to the XC field
and the SO interaction. The currently employed forms of
the torque operators Tμ in the torque-correlation formula (2)
reflect these two sources; both the XC- and the SO-induced
torques are local, and their equivalence for the theory of Gilbert
damping has been discussed by several authors [15,16,26]. In
the case of random alloys, this equivalence rests on a proper
inclusion of vertex corrections in the configuration averaging
of the damping parameters αμν as two-particle quantities.

The purpose of the present paper is to introduce another
torque operator that can be used in the torque-correlation
formula (2) and to discuss its properties. This operator is due
to intersite electron hopping, and it is consequently nonlocal;
in contrast to the local XC- and SO-induced torques which
are random in random crystalline alloys, the nonlocal torque
is nonrandom, i.e., independent of the particular configuration
of a random alloy, which simplifies the configuration aver-
aging of Eq. (2). We show that a similar nonlocal effective
torque appears in the fully relativistic linear muffin-tin orbital
(LMTO) method in the atomic-sphere approximation (ASA)
used recently for calculations of the conductivity tensor
in spin-polarized random alloys [27,28]. Here we discuss
theoretical aspects of the averaging in the coherent-potential
approximation (CPA) [29,30] and illustrate the developed
ab initio scheme by applications to selected binary alloys.
We also compare the obtained results with those of the LMTO-
supercell technique [17] and with other CPA-based techniques,
the fully relativistic Korringa-Kohn-Rostoker (KKR) method
[19,22] and the LMTO method with a simplified treatment of
the SO interaction [20].

This paper is organized as follows. The theoretical for-
malism is contained in Sec. II, with a general discussion of
various torque operators and results of a simple tight-binding
model presented in Sec. II A. Section II B describes the
derivation of the LMTO torque-correlation formula with
nonlocal torques; technical details are left to Appendix A
concerning linear-response calculations with varying basis
sets and to Appendix B regarding the LMTO method for
systems with a tilted magnetization direction. Selected formal
properties of the developed theory are discussed in Sec. II C.
Applications of the developed formalism can be found in
Sec. III. Details of numerical implementation are listed in
Sec. III A, followed by illustrating examples for systems of
three different types: binary solid solutions of 3d transition
metals in Sec. III B, pure iron with a simple model of random
potential fluctuations in Sec. III C, and stoichiometric FePt
alloys with a partial long-range order in Sec. III D. The main
conclusions are summarized in Sec. IV.

II. THEORETICAL FORMALISM

A. Torque-correlation formula with alternative
torque operators

The torque operators Tμ entering the torque-correlation
formula (2) are closely related to components of the time
derivative of electron spin. For spin-polarized systems de-
scribed by means of an effective Schrödinger-Pauli one-
electron Hamiltonian H , acting on two-component wave
functions, the complete time derivative of the spin operator is
given by the commutation relation tμ = −i[σμ/2,H ], where
� = 1 is assumed and σμ (μ = x,y,z) denote the Pauli spin
matrices. Let us write the Hamiltonian as H = H p + H xc,
where H p includes all spin-independent terms and the SO
interaction (Hamiltonian of a paramagnetic system), while
H xc = Bxc(r) · σ denotes the XC term due to an effective
magnetic field Bxc(r). The complete time derivative (spin
torque) can then be written as tμ = t so

μ + txc
μ , where

t so
μ = −i[σμ/2,H p], txc

μ = −i[σμ/2,H xc]. (3)

As discussed, e.g., in Ref. [15], the use of the complete torque
tμ in the torque-correlation formula (2) leads identically to
zero; the correct Gilbert damping coefficients αμν follow from
Eq. (2) by using either the SO-induced torque t so

μ or the XC-
induced torque txc

μ . Note that only transverse components (with
respect to the easy axis of the ferromagnet) of the vectors tso

and txc are needed for the relevant part of the Gilbert damping
tensor (2).

The equivalence of both torque operators (3) for the Gilbert
damping can be extended. Let us consider a simple system
described by a model tight-binding Hamiltonian H , written
now as H = H loc + H nl, where the first term H loc is a lattice
sum of local atomiclike terms and the nonlocal second term
H nl includes all intersite hopping matrix elements. Let us
assume that all effects of the SO interaction and XC fields
are contained in the local term H loc, so that the hopping
elements are spin independent and [σμ,H nl] = 0. (Note that
this assumption, often used in model studies, is satisfied only
approximatively in real ferromagnets with different widths of
the majority and minority spin bands.) Let us write explicitly
H loc = ∑

R(H p
R + H xc

R ), where R labels the lattice sites and
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where H
p
R comprises the spin-independent part and the SO

interaction of the Rth atomic potential, while H xc
R is due to

the local XC field of the Rth atom. The operators H
p
R and

H xc
R act only in the subspace of the Rth site; the subspaces

of different sites are orthogonal to each other. The total spin
operator can be written as σμ/2 = (1/2)

∑
R σRμ, where the

local operator σRμ is the projection of σμ on the Rth subspace.
Let us assume that each term H

p
R is spherically symmetric

and that H xc
R = Bxc

R · σ R, where the effective field Bxc
R of the

Rth atom has a constant size and direction. Let us introduce
local orbital-momentum operators LRμ and their counterparts
including the spin, JRμ = LRμ + (σRμ/2), which are gener-
ators of local infinitesimal rotations with respect to the Rth
lattice site, and let us define the corresponding lattice sums
Lμ = ∑

R LRμ and Jμ = ∑
R JRμ = Lμ + (σμ/2). Then the

local terms H
p
R and H xc

R satisfy, respectively, commutation
rules [JRμ,H

p
R] = 0 and [LRμ,H xc

R ] = 0. By using the above
assumptions and definitions, the XC-induced spin torque (3)
due to the XC term H xc = ∑

R H xc
R can be reformulated as

txc
μ = −i

∑
R

[
σRμ/2,H xc

R

] = −i
∑

R

[
JRμ,H xc

R

]

= −i
∑

R

[
JRμ,H

p
R + H xc

R

] = −i[Jμ,H loc] ≡ t loc
μ . (4)

The last commutator defines a local torque operator t loc
μ due to

the local part of the Hamiltonian H loc and the operator Jμ, in
contrast to the spin operator σμ/2 in Eq. (3). Let us define the
complementary nonlocal torque tnl

μ due to the nonlocal part of
the Hamiltonian H nl, namely,

tnl
μ = −i[Jμ,H nl] = −i[Lμ,H nl], (5)

and let us employ the fact that the complete time derivative of
the operator Jμ, i.e., the torque t̃μ = −i[Jμ,H ] = t loc

μ + tnl
μ ,

leads identically to zero when used in Eq. (2). This fact
implies that the Gilbert damping parameters can be also
obtained from the torque-correlation formula with the nonlocal
torques tnl

μ . These torques are equivalent to the original
spin-dependent local XC- or SO-induced torques; however,
the derived nonlocal torques are spin independent, so that
commutation rules [tnl

μ ,σν] = 0 are satisfied.
In order to see the effect of different forms of the torque

operators, Eqs. (3) and (5), we have studied a tight-binding
model of p orbitals on a simple cubic lattice with the ground-
state magnetization along the z axis. The local (atomiclike)
terms of the Hamiltonian are specified by the XC term
bσRz and the SO term ξLR · σ R, which are added to a
random spin-independent p level at energy ε0 + DR, where
ε0 denotes the nonrandom center of the p band, while the
random parts DR satisfy configuration averages 〈DR〉 = 0
and 〈DR′DR〉 = γ δR′R with the disorder strength γ . The
spin-independent nonlocal (hopping) part of the Hamiltonian
has been confined to nonrandom nearest-neighbor hoppings
parametrized by two quantities, W1 (ppσ hopping) and W ′

1
(ppπ hopping) (see, e.g., Ref. [31]). The particular values
have been set to b = 0.3, ξ = 0.2, EF − ε0 = 0.1, γ = 0.05,
W1 = 0.3, and W ′

1 = −0.1 (the hoppings were chosen such
that the band edges for ε0 = b = ξ = γ = 0 are ±1). The
configuration average of the propagators 〈G±〉 = Ḡ± and of
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FIG. 1. (Color online) The torque correlation α/α0, Eq. (2), in
a tight-binding p-orbital model treated in the SCBA as a function
(a) of the spin-orbit coupling ξ and (b) of the exchange field b.
The diamonds display the total torque correlation (tot), and the open
symbols denote the coherent contributions αcoh/α0 calculated with
the SO-induced torque (coh-so); the XC-induced torque (coh-xc),
Eq. (3); and the nonlocal torque (coh-nl), Eq. (5).

the torque correlation (2) was performed in the self-consistent
Born approximation (SCBA) including the vertex corrections.
Since all three torques, Eqs. (3) and (5), are nonrandom
operators in our model, the only relevant component of the
Gilbert damping tensor, namely, αxx = αyy = α, could be
unambiguously decomposed into the coherent part αcoh and
the incoherent part αvc due to the vertex corrections.

The results are summarized in Fig. 1, which displays the
torque correlation α/α0 as a function of the SO coupling
ξ [Fig. 1(a)] and the XC field b [Fig. 1(b)]. The total
value α = αcoh + αvc is identical for all three forms of the
torque operator, in contrast to the coherent parts αcoh, which
exhibit markedly different values and trends when compared
to each other and to the total α. This result is in line with
conclusions drawn by the authors of Refs. [15,16,26], proving
the importance of the vertex corrections for obtaining the same
Gilbert damping parameters from the SO- and XC-induced
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torques. The only exception seems to be the case of the SO
splitting being much weaker than the exchange splitting, where
the vertex corrections for the SO-induced torque can be safely
neglected [see Fig. 1(a)]. This situation, encountered in 3d

transition metals and their alloys, has been treated with the
SO-induced torque on an ab initio level with neglected vertex
corrections in Refs. [11,12]. On the other hand, the use of the
XC-induced torque calls for a proper evaluation of the vertex
corrections; their neglect leads to quantitatively and physically
incorrect results, as documented by recent first-principles
studies [19,22]. The vertex corrections are also indispensable
for the nonlocal torque, in particular for correct vanishing of
the total torque correlation both in the nonrelativistic limit
[ξ → 0, Fig. 1(a)] and in the nonmagnetic limit [b → 0,
Fig. 1(b)].

Finally, let us discuss briefly the general equivalence of the
SO- and XC-induced spin torques, Eq. (3), in the fully relativis-
tic four-component Dirac formalism [32,33]. The Kohn-Sham-
Dirac Hamiltonian can be written as H = H p + H xc, where
H p = cα · p + mc2β + V (r) and H xc = Bxc(r) · β�, where c

is the speed of light, m denotes the electron mass, p = {pμ}
refers to the momentum operator, V (r) is the spin-independent
part of the effective potential, and α = {αμ}, β, and � = {�μ}
are the well-known 4 × 4 matrices of the Dirac theory [34,35].
Then the XC-induced torque is txc = Bxc(r) × β�, which is
currently used in the KKR theory of the Gilbert damping
[19,22]. The SO-induced torque is tso = p × cα; that is, it
is given directly by the relativistic momentum (p) and velocity
(cα) operators. One can see that the torque tso is local but
independent of the particular system studied. A comparison of
both alternatives, concerning the total damping parameters as
well as their coherent and incoherent parts, would be desirable;
however, this task is beyond the scope of the present study.

B. Effective torques in the LMTO method

In our ab initio approach to the Gilbert damping, we employ
the torque-correlation formula (2) with torques derived from
the XC field [15,19,22]. The torque operators are constructed
by considering infinitesimal deviations of the direction of the
XC field of the ferromagnet from its equilibrium orientation,
taken as a reference state. These deviations result from
rotations by small angles around axes perpendicular to the
equilibrium direction of the XC field; components of the
torque operator are then given as derivatives of the one-particle
Hamiltonian with respect to the rotation angles [36].

For practical evaluation of Eq. (2) in an ab initio technique
(such as the LMTO method), one has to consider a matrix
representation of all operators in a suitable orthonormal basis.
The most efficient techniques of the electronic structure theory
typically require basis vectors tailored to the system studied; in
the present context, this leads naturally to basis sets depending
on the angular variables needed to define the torque operators.
Evaluation of the torque correlation using angle-dependent
bases is discussed in Appendix A, where we prove that Eq. (2)
can be calculated solely from the matrix elements of the
Hamiltonian and their angular derivatives [see Eq. (A7)],
whereas the angular dependence of the basis vectors does not
contribute directly to the final result.

The relativistic LMTO-ASA Hamiltonian matrix for the
reference system in the orthogonal LMTO representation is
given by [37–39]

H = C + (
√

�)+S(1 − γ S)−1
√

�, (6)

where C,
√

�, and γ denote site-diagonal matrices of the
standard LMTO potential parameters and S is the matrix of
canonical structure constants. The change of the Hamiltonian
matrix H due to a uniform rotation of the XC field is treated in
Appendix B; it is summarized for finite rotations in Eq. (B7)
and for angular derivatives of H in Eqs. (B8) and (B9). The
resolvent G(z) = (z − H )−1 of the LMTO Hamiltonian (6)
for complex energies z can be expressed using the auxiliary
resolvent g(z) = [P (z) − S]−1, which represents an LMTO
counterpart of the scattering-path operator matrix of the KKR
method [32,33]. The symbol P (z) denotes the site-diagonal
matrix of potential functions; their analytic dependence on
z and on the potential parameters can be found elsewhere
[27,37]. The relation between both resolvents leads to the
formula [28]

G+ − G− = F (g+ − g−)F+, (7)

where the same abbreviation F = (
√

�)−1(1 − γ S) as in
Eq. (B8) was used and g± = g(EF ± i0).

The torque-correlation formula (2) in the LMTO-ASA
method follows directly from relations (A7), (B8), (B9), and
(7). The components of the Gilbert damping tensor {αμν} in
the LLG equation (1) can be obtained from a basic tensor {α̃μν}
given by

α̃μν = −α0 Tr{τμ(g+ − g−)τν(g+ − g−)}, (8)

where the quantities

τμ = −i[J μ,S] = −i[Lμ,S] (9)

define components of an effective torque in the LMTO-ASA
method. The site-diagonal matrices J μ and Lμ (μ = x,y,z)
are Cartesian components of the total and orbital angular
momentum operators, respectively; see text discussion around
Eqs. (B8) and (B9). The trace in (8) extends over all orbitals
of the crystalline solid, and the prefactor can be written as
α0 = (2πMspin)−1, where Mspin denotes the spin magnetic
moment of the whole crystal in units of the Bohr magneton μB

[15,19,22].
Let us discuss properties of the effective torque (9). Its form

is obviously identical to the nonlocal torque (5). The matrix
τμ is not site diagonal, but for a random substitutional alloy
on a nonrandom lattice, it is nonrandom (independent of the
alloy configuration). Moreover, it is given by a commutator
of the site-diagonal nonrandom matrix J μ (or Lμ) and the
LMTO structure-constant matrix S. These properties point
to a close analogy between the effective torque and the
effective velocities in the LMTO conductivity tensor based
on the concept of intersite electron hopping [27,28,40]. Let
us mention that existing ab initio approaches employ random
torques, either the XC-induced torque in the KKR method
[19,22] or the SO-induced torque in the LMTO method [20].
Another interesting property of the effective torque τμ (9) is its
spin independence, which follows from the spin independence
of the matrices Lμ and S.
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The explicit relation between the symmetric tensors {αμν}
and {α̃μν} can easily be formulated for the ground-state
magnetization along the z axis; then it is given simply by
αxx = α̃yy , αyy = α̃xx , and αxy = −α̃xy . These relations reflect
the fact that an infinitesimal deviation towards the x axis
results from an infinitesimal rotation of the magnetization
vector around the y axis and vice versa. Note that the other
components of the Gilbert damping tensor (αμz for μ = x,y,z)
are not relevant for the dynamics of small deviations of
the magnetization direction described by the LLG equation
(1). For the ground-state magnetization pointing along a
general unit vector m = (mx,my,mz), one has to employ the
Levi-Civita symbol εμνλ in order to get the Gilbert damping
tensor α as

αμν =
∑
μ′ν ′

ημμ′ηνν ′ α̃μ′ν ′ , (10)

where ημν = ∑
λ εμνλmλ. The resulting tensor (10) satisfies

the condition α · m = 0 appropriate for the dynamics of small
transverse deviations of magnetization.

The application to random alloys requires configuration
averaging of α̃μν (8). Since the effective torques τμ are
nonrandom, one can write a unique decomposition of the
average into the coherent and incoherent parts, α̃μν = α̃coh

μν +
α̃vc

μν , where the coherent part is expressed by means of the
averaged auxiliary resolvents ḡ± = 〈g±〉 as

α̃coh
μν = −α0Tr{τμ(ḡ+ − ḡ−)τν(ḡ+ − ḡ−)} (11)

and the incoherent part (vertex corrections) is given as a sum
of four terms, namely,

α̃vc
μν = −α0

∑
p=±

∑
q=±

sgn(pq)Tr〈τμgpτνgq〉vc. (12)

In this work, the configuration averaging has been done in the
CPA. Details concerning the averaged resolvents can be found,
e.g., in Ref. [39], and the construction of the vertex corrections
for transport properties was described in the Appendix to
Ref. [30].

C. Properties of the LMTO torque-correlation formula

The damping tensor (8) has been formulated in the
canonical LMTO representation. In the numerical imple-
mentation, the well-known transformation to a tight-binding
(TB) LMTO representation [41,42] is advantageous. The
TB-LMTO representation is specified by a diagonal matrix
β of spin-independent screening constants (βR′�′m′s ′,R�ms =
δR′Rδ�′�δm′mδs ′sβR� in a nonrelativistic basis), and the transfor-
mation of all quantities between both LMTO representations
has been discussed in the literature for pure crystals [42] and
for random alloys [28,39,43]. The same techniques can be used
in the present case together with an obvious commutation rule
[J μ,β] = [Lμ,β] = 0. Consequently, the conclusions drawn
are the same as for the conductivity tensor [28]: the total
damping tensor (8) and its coherent (11) and incoherent (12)
parts in the CPA are invariant with respect to the choice of the
LMTO representation.

It should be mentioned that the central result, namely,
relations (8) and (9), is not limited to the LMTO theory, and
it can be translated into the KKR theory as well, similar to

the conductivity tensor in the formalism of intersite hopping
[40]. The LMTO structure-constant matrix S and the auxiliary
Green’s function g(z) will then be replaced, respectively, by
the KKR structure-constant matrix and by the scattering-path
operator [32,33]. Note, however, that the total (J μ) and orbital
(Lμ) angular momentum operators in the effective torques (9)
will be represented by the same matrices as in the LMTO
theory.

Let us mention for completeness that the present LMTO-
ASA theory allows one to introduce effective local (but
random) torques as well. This is based on the fact that only the
Fermi-level propagators g± defined by the structure constant
matrix S and by the potential functions at the Fermi energy,
P = P (EF), enter the zero-temperature expression for the
damping tensor α̃μν (8). Since the equation of motion (P −
S)g± = 1 implies immediately S(g+ − g−) = P (g+ − g−)
and, similarly, (g+ − g−)S = (g+ − g−)P , one can obviously
replace the nonlocal torques τμ (9) in the torque-correlation
formula (8) by their local counterparts

τ xc
μ = i[P,J μ], τ so

μ = i[P,Lμ]. (13)

These effective torques are represented by random, site-
diagonal matrices; τ xc

μ and τ so
μ correspond, respectively, to

the XC-induced torque used in the KKR method [22] and
to the SO-induced torque used in the LMTO method with a
simplified treatment of the SO interaction [20]. In the case
of random alloys treated in the CPA, the randomness of the
local torques (13) calls for the approach developed by Butler
[44] for the averaging of the torque-correlation coefficient
(8). One can prove that the resulting damping parameters α̃μν

obtained in the CPA with the local and nonlocal torques are
fully equivalent to each other; this equivalence rests heavily
on a proper inclusion of the vertex corrections [45], and it
leads to further important consequences. First, the Gilbert
damping tensor vanishes exactly for zero SO interaction, which
follows from the use of the SO-induced torque τ so

μ and from
the obvious commutation rule [P,Lμ] = 0 that is valid for the
spherically symmetric potential functions (in the absence of
SO interaction). This result is in agreement with the numerical
study of the toy model in Sec. II A [see Fig. 1(a) for ξ = 0]. On
an ab initio level, this property has been obtained numerically
both in the KKR method [22] and in the LMTO method [26].
Second, the XC- and SO-induced local torques (13) within the
CPA are exactly equivalent as well, as has been indicated in a
recent numerical study for a random bcc Fe50Co50 alloy [26]. In
summary, the nonlocal torques (9) and both local torques (13)
can be used as equivalent alternatives in the torque-correlation
formula (8) provided that the vertex corrections are included
consistently with the CPA averaging of the single-particle
propagators.

III. ILLUSTRATING EXAMPLES

A. Implementation and numerical details

The numerical implementation of the described theory
and the calculations have been done with tools similar to
those in our recent studies of ground-state [46] and transport
[27,28,47] properties. The ground-state magnetization was
taken along the z axis, and the self-consistent XC poten-
tials were obtained in the local-spin-density approximation

214407-5
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FIG. 2. The Gilbert damping parameters α of random fcc
Ni80Fe20 (circles) and bcc Fe80Co20 (squares) alloys as functions of
the imaginary part of energy ε. The values of α for the Fe80Co20 alloy
are magnified by a factor of 10.

(LSDA) with parametrization according to Ref. [48]. The
valence basis comprised s-, p-, and d-type orbitals, and the
energy arguments for the propagators ḡ± and the CPA-vertex
corrections were obtained by adding a tiny imaginary part ±ε

to the real Fermi energy. We have found that the dependence
of the Gilbert damping parameter on ε is quite smooth and that
the value of ε = 10−6 Ry is sufficient for the studied systems;
see Fig. 2 for an illustration. Similar smooth dependences
have also been obtained for other investigated alloys, such
as permalloy doped by 5d elements, Heusler alloys, and
stoichiometric FePt alloys with a partial atomic long-range
order. In all studied cases, the number N of k vectors needed for
reliable averaging over the Brillouin zone (BZ) was properly
checked; as a rule, N ∼ 108 in the full BZ was sufficient
for most systems, but for diluted alloys (a few percent of
impurities), N ∼ 109 had to be taken.

B. Binary fcc and bcc solid solutions

The developed theory has been applied to random binary
alloys of 3d transition elements Fe, Co, and Ni, namely, to
the fcc NiFe and bcc FeCo alloys. The most important results,
including a comparison to other existing ab initio techniques,
are summarized in Fig. 3. One can see the good agreement of
the calculated concentration trends of the Gilbert damping
parameter α = αxx = αyy with the results of an LMTO-
supercell approach [17] and of the KKR-CPA method [22]. The
decrease of α with increasing Fe content in the concentrated
NiFe alloys can be related to the increasing alloy magnetization
[17] and to the decreasing strength of the SO interaction [20],
whereas the behavior in the dilute limit can be explained by
intraband scattering due to Fe impurities [11,12,14]. In the case
of the FeCo system, the minimum of α around 20% Co, which
is also observed in room-temperature experiments [49,50], is
related primarily to a similar concentration trend of the density
of states at the Fermi energy [22], although the maximum of
the magnetization at roughly the same alloy composition [51]
might partly contribute as well.

 0
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Fe  concentration

fcc  NiFe
(a)

this work
LMTO-SC

 0
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FIG. 3. (Color online) The calculated concentration dependences
of the Gilbert damping parameter α for (a) random fcc NiFe and
(b) bcc FeCo alloys. The results of this work are marked by the
diamonds, whereas the circles depict the results of other approaches:
the LMTO supercell (LMTO-SC) technique [17] and the KKR-CPA
method [22].

A more detailed comparison of all ab initio results is
presented in Table I for the fcc Ni80Fe20 random alloy
(permalloy). The differences in the values of α from the
different techniques can be ascribed to various theoretical

TABLE I. Comparison of the Gilbert damping parameter α for
the fcc Ni80Fe20 random alloy (permalloy) calculated by the present
approach and by other techniques using the CPA or supercells (SC).
The last column displays the coherent part αcoh of the total damping
parameter according to Eq. (11). The experimental value corresponds
to room temperature.

Method α αcoh

This work, ε = 10−5 Ry 4.9 × 10−3 1.76
This work, ε = 10−6 Ry 3.9 × 10−3 1.76
KKR-CPAa 4.2 × 10−3

LMTO-CPAb 3.5 × 10−3

LMTO-SCc 4.6 × 10−3

Experimentd 8 × 10−3

aReference [22].
bReference [20].
cReference [17].
dReference [49].
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features and numerical details employed, such as the simplified
treatment of the SO interaction in Ref. [20] instead of the fully
relativistic description or the use of supercells in Ref. [17]
instead of the CPA. Taking into account that calculated residual
resistivities for this alloy span a wide interval between 2 μ� cm
(see Refs. [27,52]) and 3.5 μ� cm (see Ref. [17]), one can
consider the scatter of the calculated values of α in Table I
as having little importance. The theoretical values of α are
smaller systematically than the measured values, typically by a
factor of 2. This discrepancy might be partly due to the effects
of finite temperatures as well as due to additional structural
defects of real samples.

A closer look at the theoretical results reveals that the
total damping parameters α are appreciably smaller than the
magnitudes of their coherent and vertex parts (see Table I for
the case of permalloy). This is in agreement with the results
of the model study in Sec. II A; similar conclusions about the
importance of the vertex corrections have been done with the
XC-induced torques in other CPA-based studies [19,22,26].
The present results prove that this unpleasant feature of the
nonlocal torques does not represent a serious obstacle in
obtaining reliable values of the Gilbert damping parameter
in random alloys. We note that the vertex corrections can be
negligible in approaches employing the SO-induced torques,
at least for systems with SO splittings much weaker than the
XC splittings [12], such as the binary ferromagnetic alloys of
3d transition metals [26] (see also Sec. II A).

C. Pure iron with a model disorder

As mentioned in Sec. I, the Gilbert damping of pure ferro-
magnetic metals exhibits nontrivial temperature dependences,
which have been reproduced by means of ab initio techniques
with various levels of sophistication [11,12,21,23]. In this
study, we have simulated the effect of finite temperatures by
introducing static fluctuations of the one-particle potential. The
adopted model of atomic-level disorder assumes that random
spin-independent shifts ±δ, constant inside each atomic sphere
and occurring with probabilities of 50% for both signs, are
added to the nonrandom self-consistent potential obtained
at zero temperature. The Fermi energy is kept frozen, equal
to its self-consistent zero-temperature value. This model can
be easily treated in the CPA; the resulting Gilbert damping
parameter α of pure bcc Fe as a function of the potential shift
δ is plotted in Fig. 4.

The calculated dependence α(δ) is nonmonotonic, with
a minimum at δ ≈ 30 mRy. This trend is in qualitative
agreement with trends reported previously by other authors,
who employed phenomenological models of the electron
lifetime [11,12] as well as models for phonons and magnons
[21,23]. The origin of the nonmonotonic dependence α(δ)
has been identified on the basis of the band structure of the
ferromagnetic system as an interplay between the intraband
contributions to α, dominating for small values of δ, and
the interband contributions, dominating for large values of
δ [7,11,12]. Since the present CPA-based approach does not
use any bands, we cannot perform a similar analysis.

The obtained minimum value of the Gilbert damping,
αmin ≈ 10−3 (Fig. 4), agrees reasonably well with the values
obtained by the authors of Refs. [11,12,21,23]. This agreement

 0
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FIG. 4. (Color online) The calculated Gilbert damping parameter
α (squares) and the residual resistivity ρ (circles) of pure bcc iron
as functions of δ2, where δ is the strength of a model atomic-level
disorder.

indicates that the atomic-level disorder employed here is
equivalent to a phenomenological lifetime broadening. For
a rough quantitative estimation of the temperature effect,
one can employ the calculated resistivity ρ of the model,
which increases essentially linearly with δ2 (see Fig. 4).
Since the metallic resistivity due to phonons increases linearly
with the temperature T (for temperatures not much smaller
than the Debye temperature), one can assume a proportionality
between δ2 and T . The resistivity of bcc iron at the Curie
temperature TC = 1044 K due to lattice vibrations can be es-
timated around 35 μ� cm [23,53], which sets an approximate
temperature scale to the data plotted in Fig. 4. However, a
more accurate description of the temperature dependence of
the Gilbert damping parameter cannot be obtained, mainly
due to the neglected true atomic displacements and the
noncollinearity of magnetic moments (magnons) [23].

D. FePt alloys with a partial long-range order

Since important ferromagnetic materials include ordered
alloys, we address here the Gilbert damping in stoichiometric
FePt alloys with L10 atomic long-range order (LRO). Their
transport properties [47] and the damping parameter [20] have
recently been studied by means of the TB-LMTO method
depending on a varying degree of the LRO. These fcc-based
systems contain two sublattices with respective occupations
Fe1−yPty and Pt1−yFey , where y (0 � y � 0.5) denotes
the concentration of antisite atoms. The LRO parameter S

(0 � S � 1) is then defined as S = 1 − 2y, so that S = 0
corresponds to the random fcc alloy and S = 1 corresponds to
the perfectly ordered L10 structure.

The resulting Gilbert damping parameter is displayed in
Fig. 5 as a function of S. The obtained trend with a broad
maximum at S = 0 and a minimum around S = 0.9 agrees
very well with the previous result [20]. The values of α in
Fig. 5 are about 10% higher than those in Ref. [20], which
can be ascribed to the fully relativistic treatment in the present
study in contrast to a simplified treatment of the SO interaction
in Ref. [20]. The Gilbert damping in the FePt alloys is an
order of magnitude stronger than in the alloys of 3d elements
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FIG. 5. (Color online) The calculated Gilbert damping parameter
α (squares) and the total DOS (per formula unit) at the Fermi energy
(circles) of stoichiometric L10 FePt alloys as functions of the LRO
parameter S.

(Sec. III B) owing to the stronger SO interaction of Pt atoms.
The origin of the slow decrease of α with increasing S (for 0 �
S � 0.9) can be explained by the decreasing total density of
states (DOS) at the Fermi energy (see Fig. 5), which represents
an analogy to a similar correlation observed, e.g., for bcc FeCo
alloys [22].

All calculated values of α shown in Fig. 5, corresponding
to 0 � S � 0.985, are appreciably smaller than the measured
one, which amounts to α ≈ 0.06 reported for a thin L10 FePt
epitaxial film [54]. The high measured value of α might be
thus explained by the present calculations by assuming a
very small concentration of antisites in the prepared films,
which does not seem too realistic. Another potential source
of the discrepancy lies in the thin-film geometry used in the
experiment. Moreover, the divergence of α in the limit of
S → 1 (Fig. 5) illustrates a general shortcoming of approaches
based on the torque-correlation formula (2) since the zero-
temperature Gilbert damping parameter of a pure ferromagnet
should remain finite. A correct treatment of this case, including
the dilute limit of random alloys (Fig. 3), must take into
account the full interacting susceptibility in the presence of SO
interaction [15,55]. Pilot ab initio studies in this direction have
recently appeared for nonrandom systems [56,57]; however,
their extension to disordered systems goes far beyond the scope
of this work.

IV. CONCLUSIONS

We have introduced nonlocal torques as an alternative to
the usual local torque operators entering the torque-correlation
formula for the Gilbert damping tensor. Within the relativistic
TB-LMTO-ASA method, this idea leads to effective nonlocal
torques as non-site-diagonal and spin-independent matrices.
For substitutionally disordered alloys, the nonlocal torques
are nonrandom, which allows one to develop an internally
consistent theory in the CPA. The CPA-vertex corrections
proved indispensable for an exact equivalence of the nonlocal
nonrandom torques with their local random counterparts. The
concept of the nonlocal torques is not limited to the LMTO

method, and its formulation both in a semiempirical TB theory
and in the KKR theory is straightforward.

The numerical implementation and the results for binary
solid solutions show that the total Gilbert damping parameters
from the nonlocal torques are much smaller than the mag-
nitudes of the coherent parts and of the vertex corrections.
Nevertheless, the total damping parameters for the studied
NiFe, FeCo, and FePt alloys compare quantitatively very well
with results of other ab initio techniques [17,20,22], which
indicates a fair numerical stability of the developed theory.

The performed numerical study of the Gilbert damping in
pure bcc iron as a function of an atomic-level disorder yields
a nonmonotonic dependence in qualitative agreement with
the trends consisting of the conductivity-like and resistivity-
like regions, obtained from a phenomenological quasiparti-
cle lifetime broadening [7,11,12] or from the temperature-
induced frozen phonons [21,22] and magnons [23]. Future
studies should clarify the applicability of the introduced
nonlocal torques to a full quantitative description of the
finite-temperature behavior as well as to other torque-related
phenomena, such as the spin-orbit torques due to applied
electric fields [58,59].
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APPENDIX A: TORQUE CORRELATION FORMULA
IN A MATRIX REPRESENTATION

In this Appendix, the evaluation of the Kubo-Greenwood
expression for the torque-correlation formula (2) is discussed
in the case of the XC-induced torque operators using matrix
representations of all operators in an orthonormal basis that
varies due to the varying direction of the XC field. All
operators are denoted by a hat in order to distinguish them
from matrices representing these operators in the chosen basis.
Let us consider a one-particle Hamiltonian Ĥ = Ĥ (θ1,θ2)
depending on two real variables θj , j = 1,2, and let us denote
T̂ (j )(θ1,θ2) = ∂Ĥ (θ1,θ2)/∂θj . In our case, the variables θj

play the role of rotation angles, and the operators T̂ (j ) are
the corresponding torques. Let us denote the resolvents of
Ĥ (θ1,θ2) at the Fermi energy as Ĝ±(θ1,θ2), and let us consider
a special linear response coefficient (arguments θ1 and θ2 are
omitted here and below for brevity)

c = Tr{T̂ (1)(Ĝ+ − Ĝ−)T̂ (2)(Ĝ+ − Ĝ−)}
= Tr{(∂Ĥ/∂θ1)(Ĝ+ − Ĝ−)(∂Ĥ/∂θ2)(Ĝ+ − Ĝ−)}. (A1)

This torque-correlation coefficient equals the Gilbert damping
parameter (2) with the prefactor (−α0) suppressed. For its
evaluation, we introduce an orthonormal basis |χm(θ1,θ2)〉 and
represent all operators in this basis. This leads to matrices
H (θ1,θ2) = {Hmn(θ1,θ2)}, G±(θ1,θ2) = {(G±)mn(θ1,θ2)}, and
T (j )(θ1,θ2) = {T (j )

mn (θ1,θ2)}, where

Hmn = 〈χm|Ĥ |χn〉, (G±)mn = 〈χm|Ĝ±|χn〉,
T (j )

mn = 〈χm|T̂ (j )|χn〉 = 〈χm|∂Ĥ/∂θj |χn〉, (A2)
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and, consequently, to the response coefficient (A1) expressed
by using the matrices (A2) as

c = Tr{T (1)(G+ − G−)T (2)(G+ − G−)}. (A3)

However, in the evaluation of the last expression, atten-
tion has to be paid to the difference between the matrix
T (j )(θ1,θ2) and the partial derivative of the matrix H (θ1,θ2)
with respect to θj . This difference follows from the identity
Ĥ = ∑

mn |χm〉Hmn〈χn|, which yields

T (j )
mn = ∂Hmn/∂θj +

∑
k

〈χm|∂χk/∂θj 〉Hkn

+
∑

k

Hmk〈∂χk/∂θj |χn〉, (A4)

where we employed the orthogonality relations
〈χm(θ1,θ2)|χn(θ1,θ2)〉 = δmn. Their partial derivatives
yield

〈χm|∂χn/∂θj 〉 = −〈∂χm/∂θj |χn〉 ≡ Q(j )
mn, (A5)

where we introduced elements of matrices Q(j ) = {Q(j )
mn} for

j = 1,2. Note that the matrices Q(j )(θ1,θ2) reflect explicitly
the dependence of the basis vectors |χm(θ1,θ2)〉 on θ1 and θ2.
The relation (A4) between the matrices T (j ) and ∂H/∂θj can
now be rewritten compactly as

T (j ) = ∂H/∂θj + [Q(j ),H ]. (A6)

Since the last term has the form of a commutator with the
Hamiltonian matrix H , the use of Eq. (A6) in formula (A3)
leads to the final matrix expression for the torque correlation,

c = Tr{(∂H/∂θ1)(G+ − G−)(∂H/∂θ2)(G+ − G−)}. (A7)

The equivalence of Eqs. (A3) and (A7) rests on the
rules [Q(j ),H ] = [EF − H,Q(j )] and (EF − H )(G+ − G−) =
(G+ − G−)(EF − H ) = 0 and on the cyclic invariance of the
trace. It is also required that the matrices Q(j ) are compatible
with periodic boundary conditions used in calculations of
extended systems, which is obviously the case for angular
variables θj related to the global changes (uniform rotations)
of the magnetization direction.

The obtained result means that the original response
coefficient (A1) involving the torques as angular derivatives
of the Hamiltonian can be expressed solely by using matrix
elements of the Hamiltonian in an angle-dependent basis;
the angular dependence of the basis vectors does not enter
explicitly the final torque-correlation formula (A7).

APPENDIX B: LMTO HAMILTONIAN OF A
FERROMAGNET WITH A TILTED MAGNETIC FIELD

Here we sketch a derivation of the fully relativistic LMTO
Hamiltonian matrix for a ferromagnet with the XC-field
direction tilted from a reference direction along an easy axis.
The derivation rests on the form of the Kohn-Sham-Dirac
Hamiltonian in the LMTO-ASA method [37–39]. The symbols
with a superscript 0 refer to the reference system; the symbols
without this superscript refer to the system with the tilted
XC field. The operators (Hamiltonians, rotation operators) are
denoted by symbols with a hat. The spin-dependent parts of the
ASA potentials due to the XC fields are rigidly rotated, while

the spin-independent parts are unchanged, in full analogy to
the approach employed in the relativistic KKR method [19,22].

The ASA Hamiltonians of both systems are given by lattice
sums Ĥ 0 = ∑

R Ĥ 0
R and Ĥ = ∑

R ĤR, where the individual
site contributions are coupled mutually by ĤR = ÛRĤ 0

RÛ+
R ,

where ÛR denotes the unitary operator of a rotation (in the
orbital and spin space) around the Rth lattice site, which brings
the local XC field from its reference direction into the tilted
one. Let |φ0

R�〉 and |φ̇0
R�〉 denote, respectively, the φ and φ̇

orbitals of the reference Hamiltonian Ĥ 0
R; then

|φR�〉 = ÛR
∣∣φ0

R�

〉
, |φ̇R�〉 = ÛR

∣∣φ̇0
R�

〉
(B1)

define the φ and φ̇ orbitals of the Hamiltonian ĤR. The orbital
index � labels all linearly independent solutions (regular
at the origin) of the spin-polarized relativistic single-site
problem; the detailed structure of � can be found elsewhere
[37–39]. Let us introduce further the well-known empty-space
solutions |K∞,0

RN 〉 (extending over the whole real space),
|K int,0

RN 〉 (extending over the interstitial region), and |K0
RN 〉 and

|J 0
RN 〉 (both truncated outside the Rth sphere), needed for the

definition of the LMTOs of the reference system [41,42,60].
Their index N , which defines the spin-spherical harmonics
of the large component of each solution, can be taken either
in the nonrelativistic (�ms) form or in its relativistic (κμ)
counterpart. We define further

|ZRN 〉 = ÛR
∣∣Z0

RN

〉
for Z = K∞,K, J. (B2)

Isotropy of the empty space guarantees relations (for Z = K∞,
K , J )

|ZRN 〉 =
∑
N ′

∣∣Z0
RN ′

〉
UN ′N,

∣∣Z0
RN

〉 =
∑
N ′

|ZRN ′ 〉U+
N ′N,

(B3)
where U = {UN ′N } denotes a unitary matrix representing the
rotation in the space of spin-spherical harmonics and where
U+

N ′N ≡ (U+)N ′N = (UNN ′ )∗ = (U−1)N ′N ; the matrix U is the
same for all lattice sites R since we consider only uniform
rotations of the XC-field direction inside the ferromagnet. The
expansion theorem for the envelope orbital |K∞,0

RN 〉 is∣∣K∞,0
RN

〉 = ∣∣K int,0
RN

〉 + ∣∣K0
RN

〉 − ∑
R′N ′

∣∣J 0
R′N ′

〉
S0

R′N ′,RN, (B4)

where S0
R′N ′,RN denote elements of the canonical structure-

constant matrix (with vanishing on-site elements, S0
RN ′,RN =

0) of the reference system. The use of relations (B3) in the
expansion (B4) together with an abbreviation∣∣K int

RN

〉 =
∑
N ′

∣∣K int,0
RN ′

〉
UN ′N (B5)

yields the expansion of the envelope orbital |K∞
RN 〉 as∣∣K∞

RN

〉 = ∣∣K int
RN

〉 + |KRN 〉 −
∑
R′N ′

|JR′N ′ 〉(U+S0U )R′N ′,RN,

(B6)
where U and U+ denote site-diagonal matrices with elements
UR′N ′,RN = δR′RUN ′N and (U+)R′N ′,RN = δR′RU+

N ′N . Note the
same form of expansions (B4) and (B6), with the orbitals
|Z0

RN 〉 replaced by the rotated orbitals |ZRN 〉 (Z = K∞,K,J ),
with the interstitial parts |K int,0

RN 〉 replaced by their linear
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combinations |K int
RN 〉, and with the structure-constant matrix

S0 replaced by the product U+S0U .
The nonorthogonal LMTO |χ0

RN 〉 for the reference system
is obtained from the expansion (B4), in which all orbitals
|K0

RN 〉 and |J 0
RN 〉 are replaced by linear combinations of

|φ0
R�〉 and |φ̇0

R�〉. A similar replacement of the orbitals |KRN 〉
and |JRN 〉 by linear combinations of |φR�〉 and |φ̇R�〉 in the
expansion (B6) yields the nonorthogonal LMTO |χRN 〉 for
the system with the tilted XC field. The coefficients in these
linear combinations, obtained from conditions of continuous
matching at the sphere boundaries and leading directly to the
LMTO potential parameters, are identical for both systems,
which follows from the rotation relations (B1) and (B2).
For these reasons, the only essential difference between
both systems in the construction of the nonorthogonal and
orthogonal LMTOs (and of the accompanying Hamiltonian
and overlap matrices in the ASA) is due to the difference
between the matrices S0 and U+S0U .

As a consequence, the LMTO Hamiltonian matrix in the
orthogonal LMTO representation for the system with a tilted
magnetization is easily obtained from that for the reference
system, Eq. (6), and it is given by

H = C + (
√

�)+U+SU (1 − γU+SU )−1
√

�, (B7)

where C,
√

�, and γ are site-diagonal matrices of the potential
parameters of the reference system and where we suppressed
the superscript 0 at the structure-constant matrix S of the
reference system. Note that the dependence of H on the XC-
field direction is contained only in the similarity transformation
U+SU of the original structure-constant matrix S generated
by the rotation matrix U . For the rotation by an angle θ around
an axis along a unit vector n, the rotation matrix is given
by U (θ ) = exp(−in · Jθ ), where the site-diagonal matrices
J ≡ (J x,J y,J z) with matrix elements J μ

R′N ′,RN = δR′RJ μ

N ′N
(μ = x,y,z) reduce to the usual matrices of the total (orbital
plus spin) angular momentum operator. The limit of small θ

yields U (θ ) ≈ 1 − in · Jθ , which leads to the θ derivative of
the Hamiltonian matrix (B7) at θ = 0:

∂H/∂θ = i(F+)−1[n · J,S]F−1, (B8)

where we abbreviated F = (
√

�)−1(1 − γ S) and F+ = (1 −
Sγ )[(

√
�)+]−1. Since the structure-constant matrix S is spin

independent, the total angular momentum operator J in (B8)
can be replaced by its orbital momentum counterpart L ≡
(Lx,Ly,Lz), so that

∂H/∂θ = i(F+)−1[n · L,S]F−1. (B9)

Relations (B8) and (B9) are used to derive the LMTO-ASA
torque-correlation formula (8).

[1] B. Heinrich, in Ultrathin Magnetic Structures II, edited by
B. Heinrich and J. A. C. Bland (Springer, Berlin, 1994),
p. 195.

[2] S. Iihama, S. Mizukami, H. Naganuma, M. Oogane, Y. Ando,
and T. Miyazaki, Phys. Rev. B 89, 174416 (2014).

[3] L. P. Pitaevskii and E. M. Lifshitz, Statistical Physics, Part 2:
Theory of the Condensed State (Butterworth-Heinemann, Ox-
ford, 1980).

[4] T. L. Gilbert, IEEE Trans. Magn. 40, 3443 (2004).
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Electronic Structure of Disordered Alloys, Surfaces and Inter-
faces (Kluwer, Boston, 1997).
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