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Enhancement of spin accumulation in ballistic transport regime
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The conventional spin-diffusion equation, based on the presence of spin-split local chemical potentials, has
successfully described spin accumulation attendant to diffusive transport in spintronics. A recent experiment
shows that spin accumulation far exceeds the limit set by such spin-diffusive theory when the mean free path
is longer than the spin dephasing length. By introducing the momentum and spin dependent chemical potential,
we develop a generalized spin transport equation that is capable of addressing spin transport in systems where
ballistic processes are embedded in the overall diffusive conductor. We find that the ballistic spin injection through
a barrier into a diffusive nonmagnetic layer with strong spin-orbit coupling can enhance spin accumulation by an
order of magnitude when compared to the conventional theory.
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I. INTRODUCTION

Spin accumulation (SA), a nonequilibrium spin density
created by external sources such as spin injection across a
tunnel barrier, and spin current (SC), the difference between
the electric currents carried by spin-up and -down electrons,
play central roles in spintronics. At present, the macroscopic
description of SA and SC relies on the spin-diffusion equation
in which the spatial and temporal dependence of SA, m(r,t),
satisfies

∂m
∂t

= D∇2m − m
τsf

(1)

and the diffusion SC is given by the spin dependent Ohm’s
law js = −D∇m where D is the diffusion constant, τsf is the
spin-relaxation time, and λsd ≡ √

Dτsf is the spin-diffusion
length (SDL). It is understood that the above equation can
be used to determine the local SA and SC at length scales
larger than the mean free path (MFP) [1,2]. While Eq. (1)
has been successfully applied to explain and predict spin
transport phenomena in almost all spintronic devices [3],
a recent experimental result has challenged the validity of
this theory: the SA could be much larger than that predicted
by Eq. (1) when the distance between the spin injector and
detector in a nonlocal spin-valve geometry is less than the
mean free path [4,5]. This finding calls for a theory beyond
the conventional spin-diffusion equation. Several earlier at-
tempts [6–9] by incorporating quantum and ballistic effects
have not been able to predict an enhanced spin accumulation
in the ballistic regime.

Recall that the above spin-diffusive equation was estab-
lished based on the assumption that the SDL is much larger
than the MFP; it would inevitably fail in the opposite limit:
the spin dependent local chemical potential (LCP) without
specifying the direction of electron momentum becomes
meaningless. In ballistic transport in which the relevant spatial
length is shorter than the mean free path, the LCP is ill-defined
since the “chemical potential” (CP) of electrons at a given
spatial point depends on the direction of electron momentum. If
the entire system is ballistic, the standard mesoscopic transport
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assumption would be that the left-going (right-going) electron
has a CP of the right (left) reservoir [10]. To address the SA
within the length scale of the mean free path, the ballistic
nature of the transport must be included. One attempt would
be completely giving up the concept of chemical potentials
and instead directly solving the distribution function from
the generalized semiclassical integrodifferential Boltzmann
equation. Such an approach is numerically complicated in
general, and the obtained numerical results may not give
rise to significant physical insight. Alternatively, we derive
a set of useful macroscopic spin transport equations, similar
to Eq. (1), but take into account ballistic processes embedded
in a diffusive conductor. The key component is to introduce
the spin and directional dependence of the LCP; namely, the
left-going and right-going electrons have different CPs, in
addition to the spin dependent CP. We find that macroscopic
equations of these CPs can be established by approximately
solving the spinor Boltzmann equation in the presence of
spin-orbit coupling (SOC), e.g., of the Dresselhaus form.
The spin ballistic-diffusion equations are solved for the spin
injection from a magnetic tunnel junction to a nonmagnetic
(NM) layer. We show that the SA in the NM layer can largely
exceed the classical limit set by the conventional spin-diffusion
theory when the mean free path is longer than the spin-orbit-
coupling induced spin dephasing length. Our calculated results
successfully explain recent experimental observations [4].

The paper is organized as follows. In Sec. II, we start
from the Boltzmann equation and derive the spin transport
equations within a two-dimensional electron gas (2DEG) in
the presence of Dresselhaus SOC. In Sec. III, by utilizing our
spin transport equations together with appropriate boundary
conditions, we study the spin injection into a 2DEG across a
tunnel barrier. Compared to the spin injection into a diffusive
material, we find that there is an enhancement of the spin
accumulation when the mean free path is larger than the spin
relaxation length within the 2DEG. Section IV comments on
the results and discusses the results obtained in this paper.
Detailed derivations are included in the Appendices.

II. SPIN TRANSPORT EQUATIONS IN 2DEG WITH SOC

We start by considering a simple bilayer structure shown in
Fig. 1 where a ferromagnetic (FM) layer injects spin-polarized
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FIG. 1. (Color online) A model bilayer consists of a ferromagnet
and a nonmagnetic metallic layer separated by a tunnel barrier at
x = 0. The spin dependent transmission and reflection coefficients
are Tσ and Rσ . The spin accumulation at both sides of the barrier is
also shown and will be quantitatively calculated.

electrons into a NM 2DEG through a tunnel barrier and we
determine the SA in the NM 2DEG. An example of this layered
structure is Ga1−xMnxAs as the FM layer, the (Al,Ga)As/GaAs
interface as the NM layer, and the tunnel barrier between them
can be either a Schottky barrier or an insulator film spacer. Note
that the actual experimental geometry in Ref. [4] involves a
nonlocal spin valve for the measurement of the SA. The steady-
state spinor distribution F̂ (x,k) in the NM layer satisfies the
Boltzmann equation [11]

v̂x

∂F̂

∂x
+ eE

m

∂F̂

∂vx

− 1

i�
[ĤSO,F̂ ]

=− F̂ − F̄

τm

− F̄ − (1/2)ÎTr(F̄ )

τsf

(2)

where E is the electric field in the x direction, ĤSO =
(�/2)�k · σ̂ is the Hamiltonian for the spin-orbit coupling, the
bar over F indicates an average over the momentum, τm and
τsf are momentum and spin relaxation times due to impurity
scattering, and Î is the 2 × 2 unit matrix. In the presence of
SOC, the velocity is a spinor v̂x = �kx/meÎ + ∂ĤSO/�∂kx

which leads to spin-charge transport coupling; namely, the
charge density and charge current are dependent on the spin
density and spin current, and vice versa. In Eq. (2), v̂x

∂F̂
∂x

stands

for the anticommutator, 1
2 {v̂x,

∂F̂
∂x

}. In Refs. [12] and [13], a set
of coupled spin and charge transport equations in a diffusive
conductor have been derived. In the present work, we first
simply take vx = �kx/me in Eq. (2) such that the spin and
charge currents are not coupled. We show in Appendix A that
the spinor velocity could be included but the resulting transport
equations are far more cumbersome. Since our present focus
is on the ballistic contribution to spin accumulation and spin
current, we consider the limit that spin-orbit coupling remains
small compared to the Fermi energy, i.e., ESO/EF � 1 such
that the charge and spin transport are separated, as shown in
Appendix A.

One may explicitly separate the equilibrium F0 and
nonequilibrium parts of the distribution function

F̂ = F0Î +
(

− ∂F0

∂ε

)
(f0Î + f1 · σ ) (3)

where f0 and f1 characterize the spin-independent and
spin dependent parts of the nonequilibrium distributions. By
placing Eq. (3) into Eq. (2), and only keeping the term linear
in the electric field, one finds

vx

∂f0

∂x
+ eEvx = −f0 − f̄0

τm

, (4)

vx

∂ f1

∂x
− �k × f1 = − f1 − f̄1

τm

− f̄1

τsf

. (5)

To establish macroscopic equations for SA and SC from the
above integrodifferential equation, Eq. (5), for arbitrary ratios
of the mean free path and spin dephasing length, we introduce
left-going and right-going CPs for spin and charge:

f0 = μ>
0 (x)θ (kx) + μ<

0 (x)θ (−kx) − g0(kx,x), (6)

f1 = μ>
1 (x)θ (kx) + μ<

1 (x)θ (−kx) − g1(kx,x) (7)

where θ (kx) is a step function; thus we identify μc ≡ (μ>
0 +

μ<
0 )/2 as the CP of charge and μcb ≡ μ>

0 − μ<
0 is the ballistic

component of the CP. Similarly, we define that μs ≡ (μ>
1 +

μ<
1 )/2 is the spin CP and μb ≡ μ>

1 − μ<
1 is its ballistic part

(see Appendix A). Next, we specify the spin-orbit coupling �k.
For systems with either structure-inversion or bulk-inversion
symmetry breaking, �k is usually taken as linear with respect
to the momentum k, i.e., �k = 2α/�(k × êz) for the Rashba
Hamiltonian, and �k = 2α/�(kx, − ky,0) for the Dresselhaus
Hamiltonian where α is the Rashba or Dresselhaus constant.
By placing the above definitions in Eqs. (4) and (5), we
have shown in Appendix A that the following macroscopic
equations can be obtained for the Dresselhaus SOC (similarly
for Rashba SOC):

d2

dx2
μb − 2

λ

d

dx
(êx × μb) = 1

l2
eff

μb + 1

λ2
(êz · μb)êz (8)

and
d2

dx2
μs − 2

λ

d

dx
(êx × μs) = 1

λ2
[μs + (êz · μs)êz] + 1

2l0

d

dx
μb

− 1

2l0λ
êx × μb (9)

where l0 = vF τm/
√

2 is the mean free path, λ ≡ �
2/(2meα) is

the spin dephasing length due to spin-orbit coupling, and leff =
(1/l2

0 + 1/λ2)−1/2 is the effective mean free path (EMFP).
One immediately notes from Eq. (8) that the ballistic spin

dependent potential μb has a length scale determined by the
EMFP. In the weak spin-orbit coupling limit where l0 � λ, or
leff ≈ l0, the ballistic CP approaches zero beyond the length
scale of l0 while the spin CP or spin diffusion survives up
to a larger scale of the order of λ. This is the conventional
scenario. In the opposite limit where l0 � λ, the ballistic CP
and the spin CP have a common length scale, leff ≈ λ.

The salient feature of the spin ballistic-diffusion equation,
Eq. (9), is that the spin CP μs depends on the ballistic
components of the chemical potential μb. In addition to the
precession term, Eq. (9) contains the gradient of μb, indicating
that the SA within the length scale of leff could differ from that
of the conventional theory.

The presence of the ballistic CP also modifies the spin
dependent Ohm’s law. The SC j s and the SA δm can be
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expressed in terms of these CPs (see Appendix A):

j sρ = −dμs

dx
+ μb

2l0
+ 1

λ
êx × μs , (10)

δm = μs − l0

2

dμb

dx
+ l0

2λ
êx × μb (11)

where ρ is the Drude resistivity.
Equations (8) and (9), along with Eqs. (10) and (11), are

generalizations of the macroscopic spin-diffusion and spin
dependent Ohm’s law. The crucial ingredient is the existence
of the ballistic CPs. If one places μb = 0, these equations are
identical to the conventional results. How and when does μb

becomes nonzero? For a mesoscopic system where the sample
size is smaller than the mean free path, μb naturally exists
since there is no scattering to establish a well-defined local
potential in the sample, i.e., the left-going electrons have the
CP of the right reservoir while the right-going electrons have
the CP of the left reservoir. For a diffusive conductor, such as
magnetic metals, μb is identically zero inside the sample. For
magnetic tunnel junctions where a tunnel barrier is imbedded
in the diffusive layers, as shown in Fig. 1, μb is nonzero in
the vicinity of the tunnel barrier because the transport across
the barrier is governed by the quantum (ballistic) tunneling
rather than diffusive scattering. To determine μb in this bilayer
system, a set of boundary conditions is needed.

III. SPIN INJECTION INTO A 2DEG

In this section, we study the spin injection into a 2DEG
across a tunnel barrier characterized by the spin dependent
transmission and reflection coefficients Tσ and Rσ where
σ = ↑,↓ and Tσ + Rσ = 1. In principle, these coefficients
are momentum dependent as well. For our macroscopic
description, we simply consider them as their average values.
Within the ballistic picture, the CPs for the incoming and
outgoing electrons are related by these coefficients:

μ>
σ (+0) = Tσμ>

σ (−0) + Rσμ<
σ (+0) (12)

and

μ<
σ (−0) = Tσμ<

σ (+0) + Rσμ>
σ (−0). (13)

The next boundary condition involves the definition of contact
resistance at the interface that connects the spin current to the
CPs between the left and right sides of the interface:

μ>
σ (−0) − μ<

σ (+0) = Rσ
J jσ (0) (14)

where Rσ
J = (h/Ne2)(Rσ/Tσ ) is the interface resistance of

spin channel σ , and N is the number of modes within the
layer per unit cross-section area [10,14,15]. By combining
Eqs. (12)–(14), we immediately find

μ>
σ (−0) − μ<

σ (−0) = μ>
σ (+0) − μ<

σ (+0) = jσ

h(1 − Tσ )

e2N
.

(15)

From the definition μb = (μ>
↑ − μ>

↓ ) − (μ<
↑ − μ<

↓ ), we have

μb(+0) = μb(−0) = jepeff

(
h

e2N

)
, (16)

where we have defined the effective spin polarization peff ≡
[(1 − T↑)j↑ − (1 − T↓)j↓]/(j↑ + j↓).

The above boundary conditions result in three interesting
consequences.

(1) The ballistic CP is continuous across the junction which
is in direct contrast with the diffusive CP which has a jump
if there is interface roughness scattering or if the interface is
treated as a diffusive resistor.

(2) The ballistic CP is zero if Tσ = 1, i.e., if there is
no tunnel barrier; this is evident since the entire bilayer is
diffusive.

(3) If Tσ is small, the ballistic CP is always nonzero,
indicating the fundamental difference between tunneling and
diffusive scattering.

These boundary conditions together with the continu-
ity of current and the spin ballistic-diffusion equations,
Eqs. (8)–(11), completely determine the position dependence
of the CP, spin accumulation, and spin current. To gain further
insight on the roles of ballistic CP, we present the detailed
solution for a simple case where the magnetization of the FM
layer is parallel to êx such that the precession terms (the terms
with cross products) in Eqs. (8)–(11) vanish and μs = μs êx

and μb = μbêx :

d2μb

dx2
= μb

l2
eff

, (17)

and

d2μs

dx2
= μs

λ2
+ 1

2l0

dμb

dx
. (18)

The solutions are

μb = A exp

(
− x

leff

)
,

(19)

μs = − l0

2leff
A exp

(
− x

leff

)
+ A′ exp

(
− x

λ

)
,

where A and A′ are integration constants determined by
the boundary conditions. The general expressions for spin
accumulation, spin current, and CPs for arbitrary parameters
are given in Appendix B. Here, we illustrate some limiting
cases. In Fig. 2, we show four CPs (spin up and down with
the momentum right and left going) as well as μs , μb and
δm at x > 0 where we have chosen a small ratio of the
mean free path to the spin-diffusion length, l0/λ = 0.2; this
is the case valid for the conventional spin-diffusion equation.
The left-going and right-going CP merges to a single value
after x = l0, but a spin-split CP exists up to λ. Equivalently,
μb approaches zero for x > l0 and μs survives between l0
and λ. For l0 < x < λ, δm arises purely from μs . Thus,
we conclude that the conventional spin-diffusion equation,
Eq. (1), describes the transport well in this limit, even though
the ballistic transmission through the tunnel barrier is not a
diffusive process.

Next, we consider the case, l0 > λ. Within the conventional
spin diffusion theory, the SA in the nonmagnetic layer is
δm0 = pJ jeρλ exp(−x/λ), where pJ is the spin polarization
at the interface, je is the electric current density, and ρ is
the resistivity [16,17]. In Fig. 3(a) we show four CPs and
the corresponding μs , μb; in Fig. 3(b) we show the SA.
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FIG. 2. (Color online) Spin injection through a tunnel barrier
(Tσ � 1) into a diffusive NM layer, l0/λ = 0.2; the polarization of the
barrier resistance is pJ = 0.5. We plot CPs and spin accumulation in
units of ρjepJ λ. (a) The directional and spin dependence of chemical
potentials in the NM layer for left-going, right-going, spin-up, and
spin-down electrons. (b) The spin dependent CP μs and its ballistic
part μb, as well as the spin accumulation δm derived from CPs shown
in the top panel.

FIG. 3. (Color online) Spin injection through a tunnel barrier into
a weak scattering NM layer where we choose l0/λ = 2 and pJ = 0.5.
All CPs and spin accumulation are plotted in units of ρjepJ λ. (a) The
directional and spin dependence of chemical potentials in the NM
layer for left-going, right-going, spin-up, and spin-down electrons.
(b) The spin dependent CP μs and its ballistic part μb, as well as the
spin accumulation δm. The dotted line shows δm0 = ρjepJ λe−x/λ.

FIG. 4. (Color online) The enhancement factor of spin accumula-
tion as a function of the ratio of the mean free path and spin dephasing
length for various transmission coefficients. The other parameters
are ρF λF = 5, ρFσ lFσ = 2, pF = 0.5, ρl0 = 1, (h/e2N ) = 2, where
ρFσ (lFσ ) is the resistivity (mean free path) in the FM layer for spin
channel σ , pF = (ρF↓ − ρF↑)/(ρF↓ + ρF↑), λF is the spin diffusion
length of the FM layer, and ρF = ρF↑ρF↓/(ρF↓ + ρF↑).

On comparison with the conventional result for δm0 one
immediately sees that the SA is greatly enhanced.

The enhancement of the SA originates from the existence
of the ballistic CP, i.e., the second term of Eq. (11). By
recalling that μb characterizes the difference in the number of
electron spins moving to the left and right, we may loosely
consider μb as a source of spin current. The divergence
of the spin current generates a spin accumulation, therefore
−l0dμb/dx ∝ (l0/leff)μb is the ballistic contribution to SA.
More quantitatively, when we carry out the detailed algebra in
the limit of a large tunnel resistance (see Appendix B) we find

δm =
(

1 + l2
0

λ2

)
jepJ ρλ exp(−x/λ). (20)

Thus the enhancement factor of the SA, which is defined as
the ratio of SA to the conventional one, η ≡ δm/δm0, in the
limiting case Tσ � 1 is

η = 1 + l2
0/λ

2. (21)

In Fig. 4, we show the SA enhancement factor as a function
of the ratio l0/λ for various tunnel transmission coefficients.
When l0/λ � 1, there is no enhancement, η = 1 for all
transmission coefficients; as l0/λ increases, the enhancement
depends on the transmission coefficient. As T increases η

decreases. Thus we conclude that the large enhancement must
simultaneously satisfy two conditions: a spin dependent barrier
resistance that dominates over the bulk resistance, and a long
mean free path compared to the spin dephasing length. Our
results are consistent with experimental results [4]: η could be
as large as 6 when the temperature is lowered such that the
mean free path exceeds the spin dephasing length in the 2DEG
at a (Al, Ga)As/GaAs interface when a spin current is injected
through a tunnel barrier.

Finally, we wish to emphasize a few points on the role
of the ratio of the mean free path relative to the spin
dephasing length. First, in quantum wells, the D’yakonov-
Perel’ relaxation [18,19] has been well studied theoretically
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and experimentally in both strong and weak scattering
limits [20–23]. One might ask whether the ballistic compo-
nents have to be considered in the weak scattering limit as
well. The answer relies on the initial or boundary conditions;
if the SA is optically injected over a large spatial region,
which is the case for most experiments on semiconductors,
the ballistic chemical potentials remain zero even if l0/λ > 1
because there is no mechanism to introduce a nonzero μb.
Second, the spin-orbit coupling has various forms due to
different growth directions of quantum wells [24,25] or the
coexistence of Rashba and Dresselhaus SOC [23,24], therefore
the resulting spin ballistic-diffusions, Eqs. (8) and (9), would
be modified. In these cases, the solutions become rather tedious
and complex. However, the physics on the spin accumulation
enhancement from the ballistic transport remains the same.

IV. CONCLUSIONS

In summary, we have extended the conventional
spin-diffusion equation to one with both ballistic and
diffusion scattering. In addition to spin dependent chemical
potentials the key physics is the presence of nonzero
directional-dependent chemical potentials. When the
spin-diffusion or spin dephasing length is shorter than the
impurity mean free path, and spin injection is achieved through
quantum-mechanical tunneling, the ballistic component of
the chemical potentials can significantly contribute to the spin
accumulation so that the SA is much larger than that derived
from conventional spin-diffusion theory.
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APPENDIX A

In this Appendix, we show the derivation of Eqs. (8)–(11)
starting from the Boltzmann equation, Eq. (2). We use the
Dresselhaus Hamiltonian to model the SOC. Thus, v̂x = vxÎ +
ασ̂x/�, then Eq. (2) reads

vx

∂F̂

∂x
+ 1

2

α

�

{
σ̂x,

∂F̂

∂x

}
+ eE

m

∂F̂

∂vx

− 1

i�
[ĤSO,F̂ ]

= − F̂ − F̄

τm

− F̄ − (1/2)ÎTr(F̄ )

τsf

. (A1)

Substituting the distribution function with equilibrium and
nonequilibrium parts defined in Eq. (3), we get the equations
for the spin and charge parts distribution functions:

vx

∂f0

∂x
+ eEvx + α

�

∂( f1 · êx)

∂x
= −f0 − f̄0

τm

, (A2)

vx

∂ f1

∂x
− �k × f1 + α

�

∂f0

∂x
êx = − f1 − f̄1

τm

− f̄1

τsf

. (A3)

where the third terms on the left-hand side are the spin charge
couplings (SCCs). The same equations have been derived in
Ref. [12] except that we have taken the distribution function

to be uniform along the ŷ direction. We then neglect the spin-
flip term and assume the spin relaxation is dominated by the
spin-orbit coupling.

Inserting the left and right split CPs defined in Eqs. (6)
and (7), we start to derive our spin transport equations in the
presence of SOC. We only show the detailed derivation for
the spin part, Eq. (A3). For the charge part, the derivation is
similar. With f1 substituted with CPs, Eq. (A3) now reads

vx

∂

∂x
[μ>

1 θ (kx) + μ<
1 θ (−kx) − g1(kx,x)]

−�k × [μ>
1 θ (kx) + μ<

1 θ (−kx) − g1(kx,x)]

+ α

�

∂

∂x
[μ>

0 (x)θ (kx) + μ<
0 (x)θ (−kx) − g0(kx,x)]

= −μ>
1 θ (kx) + μ<

1 θ (−kx) − g1(kx,x)

τm

+ μ>
1 + μ<

1 − 2 ḡ1

2τm

(A4)

where �k = 2α/�(kx,−ky,0).
Following the conventional protocol to establish the corre-

sponding macroscopic equation from the Boltzmann equation,
one needs to relate g1(kx,x) to μ>

1 and μ<
1 . The common choice

is

g0(kx,x) = vxτm

∂

∂x
[μ>

0 θ (kx) + μ<
0 θ (−kx)],

g1(kx,x) = vxτm

∂

∂x
[μ>

1 θ (kx) + μ<
1 θ (−kx)]

− τm�k×[μ>
1 θ (kx) + μ<

1 θ (−kx)]. (A5)

The average over the Fermi circle is

ḡ1 ≈ l0

2

[
∂

∂x
(μ>

1 − μ<
1 ) − 1

λ
êx×(μ>

1 − μ<
1 )

]

= l0

2

(
∂

∂x
μb − 1

λ
êx×μb

)
(A6)

where l0 =
√

v̄2
xτm = vF τm/

√
2 is the mean free path, and

we have approximated ¯|vx | ≈
√

v̄2
x = vF /

√
2 to simplify the

notation without changing essential results obtained below.
We have also introduced the definition of the ballistic spin CP,
μb ≡ μ>

1 − μ<
1 , as explained in the main text.

Inserting the above expression of g1(kx,x) and ḡ1 into
Eq. (A4) and averaging over left (kx < 0) and right (kx > 0)
half Fermi circles separately, we get two equations:

∂2μ>
1

∂x2
− 2

λ
êx × ∂μ>

1

∂x
− 

[
1

l0

∂μ>
0

∂x
− ∂2μ>

0

∂x2

]
êx

= μ>
1

l2
0

− 1

l2
0

[
μs − l0

2

(
∂

∂x
μb − 1

λ
êx×μb

)]
+ �μ>

1 ,

(A7)

∂2μ<
1

∂x2
− 2

λ
êx × ∂μ<

1

∂x
− 

[
1

l0

∂μ<
0

∂x
+ ∂2μ<

0

∂x2

]
êx

= μ<
1

l2
0

− 1

l2
0

[
μs − l0

2

(
∂

∂x
μb − 1

λ
êx×μb

)]
+ �μ<

1

(A8)
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where  = ESO/EF denotes the strength of SCC and � is a
matrix which describes the anisotropic spin relaxation due to
Dresselhaus spin-orbit coupling and

� =
⎛
⎝λ−2 0 0

0 λ−2 0
0 0 2λ−2

⎞
⎠.

Linear combination of the above two equations leads to the
following two differential equations:

∂2

∂x2
μb − 2

λ
êx × ∂

∂x
μb − 

[
∂

l0∂x
μcb − 2

∂2

∂x2
μc

]
êx

=
(

1

l2
0

+ �

)
μb, (A9)

∂2

∂x2
μs − 2

λ
êx × ∂

∂x
μs − 

[
∂

l0∂x
μc − 1

2

∂2

∂x2
μcb

]
êx

= 1

2l0

(
∂

∂x
μb − 1

λ
êx×μb

)
+ �μs . (A10)

The above equations are equivalent to Eqs. (8) and (9) in the
main text when the SCC is neglected ( = 0). Similarly, one
can get

∂2

∂x2
μcb − 

[
∂

l0∂x
μb · êx − 2

∂2

∂x2
μs · êx

]
= μcb

l2
0

, (A11)

∂2

∂x2
μc − 

[
∂

l0∂x
μs · êx − 1

2

∂2

∂x2
μb · êx

]
= 1

2l0

∂

∂x
μcb.

(A12)

The spinor current density is defined as ĵ = e
2

∫ {v̂x,F̂ }d2k,
where F̂ is the spinor distribution function. By separating
the current density into the charge and spin and parts, ĵ =
jeÎ + j s · σ̂ , and by utilizing F̂ defined in Eqs. (7) and (A5),
with v̂x = �kx/meÎ + ασ̂x/�, we obtain the expression for
spin current j s :

j sρ = −∂μs

∂x
+ μb

2l0
+ 1

λ
êx × μs + 

l0
δnêx. (A13)

Similarly for the charge current, je,

jeρ = −∂μc

∂x
+ μcb

2l0
+ 

l0
δm · êx (A14)

where ρ is the Drude conductivity for a 2DEG. Similarly, we
can derive the expression of the charge and spin accumulation
by using the relation δnÎ + δm · σ̂ = ∫

F̂ d2k; we find

δm = μs − l0

2

∂

∂x
μb + l0

2λ
êx × μb, (A15)

δn = μc − l0

2

∂

∂x
μcb. (A16)

Equations (A13) and (A15) are the spin dependent Ohm’s law
used in the main text, Eqs. (10) and (11).

1. The effects of SCC on spin transport

In the main text, we discard the SCC in all equations,
which is valid when  � 1. When  cannot be neglected,
the spin injection into the 2DEG with SOC can still be

evaluated using the above differential equations, Eqs. (A9)–
(A12), and boundary conditions mentioned in the main text,
Eqs. (12)–(14). We redo the calculation and keep up to the
second order of . We find the SCC reduces the spin-relaxation
length:

1

λ′ = 1

λ
+ 2

(
1

λ
+ λ

l2
0

)
(A17)

where λ is the spin-relaxation length defined in the main text
which is merely determined by the spin-orbit coupling. When
injecting spin into a 2DEG across a tunnel barrier, the SCC
modifies the spin accumulation enhancement in the ballistic
regime (l0 � λ):

δm = [
1 + (1 + 32)l2

0/λ
2]ρjepJ λ′e−x/λ′

. (A18)

APPENDIX B

In Appendix B, we first show the solution for a simple case
where the polarization of the spin current is solely determined
by the tunneling barrier between the FM and NM layer. We
then solve the equation for general cases where the resistance
of the layers is comparable to the tunnel resistance.

1. Resistance dominated by the tunnel barrier

If the resistance due to tunneling is much larger than
the impurity scattering induced resistance in the layers, the
injected current density and its spin polarization across the
interface will be entirely determined by tunnel parameters,
independent of the resistance in the layers, i.e.,

js(0) = jepJ (B1)

where

pJ = R
↓
J − R

↑
J

R
↓
J + R

↑
J

(B2)

and Rσ
J = (h/Ne2)(Rσ/Tσ ) ≈ (h/Ne2)(1/Tσ ). From the

boundary condition, Eq. (16),

μb(+0) = jepJ R′ (B3)

where R′ = h/e2N , we may directly obtain the solution of δm

by using Eqs. (10), (11), and (19):

δm = jepJ e−x/λ

[
R′

2

l0λ

l2
eff

+ ρλ

(
1 − R′

2ρl0

)]
. (B4)

The above expression can be simplified by relating the number
of channels to the bulk resistivity and mean free path as we
show below.

For an ideal conductor with N modes per unit cross-section
area which connects two reservoirs, the current density flowing
through the conductor carried by one spin channel is given by
the Landauer formula:

je = e2N

h
(μL − μR) (B5)

where μR/L is the chemical potential of the left or right
reservoir. In our case, the current density is given by

jσ = 1

ρσ

[
−∂μ>

σ

∂x
− ∂μ<

σ

∂x
+ 1

l0
(μ>

σ − μ<
σ )

]
(B6)
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where the last term describes in the same way as the contact
potential from Eq. (B5). Thus, we can easily identify

1

ρσ lσ
= e2N

h
. (B7)

Inserting this relation into Eq. (B4) and taking ρσ = 2ρ,lσ =
l0 for the NM layer, we find

δm = l2
0

l2
eff

jeρλpJ e−x/λ, (B8)

which is the same as Eq. (20) from the main text.

2. General solution and exact calculation

When the tunnel resistance is not much larger than that of
the bulk, or equivalently when the transmission coefficient is
not small (note that Tσ = 1 describes the transparent barrier or
no barrier), one must solve the CPs for the entire bilayer,
including the ferromagnetic layer. In this case, the spin
polarization and spin accumulation depend on the detailed
parameters of all layers in addition to the barrier transmission
coefficients. We first write down the general solution of CPs
according to Eqs. (A9)–(A12) (while the SCC terms are
neglected) and then determine the coefficients by using the
boundary conditions from the main text.

In the NM layer (x > 0),

μ>
↑ (x) = γ0 + γ1z + 2ce−x/λ + ae−x/leff , (B9)

μ<
↑ (x) = γ0 + γ1z − ge−x/l0 + 2ce−x/λ + be−x/leff , (B10)

μ>
↓ (x) = γ0 + γ1z − 2ce−x/λ − ae−x/leff , (B11)

μ<
↓ (x) = γ0 + γ1z − ge−x/l0 − 2ce−x/λ − be−x/leff (B12)

where μ>
σ = μ>

0 ± μ>
1 · êx , σ = ↑,↓. Equation (A10) also

requires

a + b = − l0

leff
(a − b). (B13)

For notation simplicity, we assume that the effective mean
free path is the same as the mean free path and the spin-
diffusion length is much longer in the FM layer (x < 0). The
general solution in the FM layer is

μ>
↑ (x) = γ ′

0 + γ ′
1z + ρ

↑
F

ρF

c′ex/λF + a′ex/lF↑ , (B14)

μ<
↑ (x) = γ ′

0 + γ ′
1z + ρ

↑
F

ρF

c′ex/λF , (B15)

μ>
↓ (x) = γ ′

0 + γ ′
1z − ρ

↓
F

ρF

c′ex/λF + b′ex/lF↓ , (B16)

μ<
↓ (x) = γ ′

0 + γ ′
1z − ρ

↓
F

ρF

c′ex/λF (B17)

where ρF = ρF↑ρF↓/(ρF↑ + ρF↓), ρFσ = h
e2

√
2π

kF lFσ
, and the

polarization of the conductivity is

pF = (ρ↓
F − ρ

↑
F )/(ρ↓

F + ρ
↑
F ) = (lF↑ − lF↓)/(lF↑ + lF↓).

(B18)
There are many constants to be determined. γ0 and γ ′

0 are the
voltages on two sides of the interface of which the difference
addresses the voltage drop due to contact resistance. The total
charge current density can be obtained from Eq. (A14):

−γ1/ρF = −γ1/ρ = je/2 (B19)

where je is the injected charge current density and ρF , ρ

are the resistivity of the FM and NM layer, respectively. In
Eq. (B19), we have assumed the cross-section area of the
FM and NM layer to be the same for simplicity. With the
boundary conditions from the main text, one can determine all
the coefficients straightforwardly. The final results for the spin
accumulation and spin polarization are

δm = jeρλe−x/λ

2pF RF

1−p2
F

+ 2R′(T −1
↓ − T −1

↑ ) − RF

1−p2
F

(1 − β2)T (pF + pJ ) + 2R′(1 − β2)
T 2

↓ −T 2
↑

T↑T↓
+ (T↑ − T↓)R′(2 − β − 5β2)

2β2RF

1−p2
F

+ 2β2R′(T −1
↓ + T −1

↑ ) + RN [2 − (1 − β2)(T )] + β(1 + 3β)R′T − 2β(1 + 5β)R′

(B20)

pinj =
2β2pF RF

1−p2
F

+ 2β2R′(T −1
↓ − T −1

↑ ) + [(1 − β2)RN − β(1 + 3β)R′](T↑ − T↓)

2β2RF

1−p2
F

+ 2β2R′(T −1
↓ + T −1

↑ ) + RN [2 − (1 − β2)(T )] + β(1 + 3β)R′T − 2β(1 + 5β)R′
(B21)

where T = T↑ + T↓, RF ≡ ρF λF , RN ≡ ρλ, R′ = 2ρl0, and β ≡ leff/l0. Below we show the results for two limiting cases.

a. Transparent interface

By placing T↑ = T↓ = 1 into Eqs. (B20) and (B21), we have

pinj =
pF RF

1−p2
F

RF

1−p2
F

+ RN

, (B22)

δm = jeρλpJ e−x/λ. (B23)
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Thus, there is no SA enhancement; this is because the transport is purely diffusive and the conventional spin-diffusion theory
applies.

b. Tunneling dominated interface

For the resistance dominated by the tunneling interface, we take Tσ � 1, Rσ
J ≈ h

e2N
1
Tσ

, and R
↓
J ,R

↑
J � RN,R′,RF .

Equations (B20) and (B21) are reduced to

pinj = pJ = R
↓
J − R

↑
J

R
↓
J + R

↑
J

, (B24)

δm = jeρλpJ e−x/λ
(
1 + l2

0/λ
2
)

(B25)

where we used the definition of leff and β−2 = l2
0/l2

eff = 1 + l2
0/λ
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