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Control of mesoscopic transport by modifying transmission channels in opaque media
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While controlling particle diffusion in a confined geometry is a popular approach taken by both natural and
artificial systems, it has not been widely adopted for controlling light transport in random media, where wave
interference effects play a critical role. The transmission eigenchannels determine not only light propagation
through the disordered system but also the energy concentrated inside. Here, we propose and demonstrate an
effective approach to modify these channels, whose structures are considered to be universal in conventional
diffusive waveguides. By adjusting the waveguide geometry, we are able to alter the spatial profiles of the
transmission eigenchannels significantly and deterministically from the universal ones. In addition, evanescent
channels may be converted to propagating channels by gradually increasing the waveguide cross-section. Our
approach allows to control not only the transmitted and reflected light, but also the depth profile of energy
density inside the scattering system. In particular geometries, perfect reflection channels are created, and their
large penetration depth into the turbid medium as well as the complete return of probe light to the input end
would greatly benefit sensing and imaging applications. Absorption along with geometry can be further employed
for tuning the decay length of energy flux inside the random system, which cannot be achieved in a common
waveguide with uniform cross-section. Our approach relies solely on confined geometry and does not require any
modification of intrinsic disorder, thus it is applicable to a variety of systems and also to other types of waves.
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I. INTRODUCTION

The diffusive transport of particles in a confined geometry
can be effectively controlled by varying the boundary shape.
This approach has been widely adopted in natural and
artificial systems including channels in biological membranes,
nanoporous materials, microfluidics, and artificial ion channels
[1–7]. A large variety of quasi one-dimensional (1D) structures
with modulated cross-section have been developed for applica-
tions in controlled drug delivery, biochemical sensing, particle
sorting, Brownian motors, and ion pumps [7–10]. However,
this powerful method has not been extensively applied to
the control of diffusive transport of waves such as light,
microwave, or acoustic waves.

While wave diffusion is often described by the Brownian
motion, it has a fundamental difference from particle diffu-
sion, i.e., the scattered waves interfere and produce many
important phenomena in mesoscopic physics, e.g., Anderson
localization, universal conductance fluctuations, and enhanced
backscattering [11–14]. Our aim is to control the mesoscopic
transport by manipulating wave interference effects in a
confined geometry.

A prominent interference effect in a lossless diffusive
medium is the creation of open and closed channels, which are
eigenvectors of the matrix t†t , where t is the field transmission
matrix (TM). The transmission eigenvalues are close to 1
or 0, leading to a bimodal distribution [15–23]. The open
channels (with transmission eigenvalues τ close to 1) have
dominant contributions to the propagation of waves through
random media, while the closed channels (τ ∼ 0) determine
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the reflected waves. Thus by modifying these channels, one
would be able to control wave transport. The key question is,
then, how to modify these channels.

A recent study has shown that the maximum transmission
channel has a universal spatial profile (inside a diffusive
waveguide with uniform cross section), which cannot be
changed by varying disorder strength or by adjusting the
width or length of the random media [24]. The wavefront
shaping technique has been successfully developed for selec-
tive coupling of light into open channels to enhance the total
transmission or focusing through a random medium [25–29],
but it cannot modify the transmission eigenchannels. Therefore
an efficient method for deterministic tailoring of the spatial
structure of transmission channels is still missing.

In this paper, we propose and demonstrate an effective
approach to manipulate the transmission eigenchannels to
control diffusive wave transport. We show that by varying the
geometry of a random waveguide, the spatial structure of open
channels can be significantly and deterministically altered
from the universal ones. This enables tuning the depth profile
of energy density inside the random medium, thus controlling
how much energy is concentrated inside the sample and where
it is concentrated. By gradually increasing the waveguide
cross-section, we are able to convert evanescent channels to
propagating channels. In addition to controlling transmission,
perfect reflection channels can be created in certain confined
geometries, which do not exist in waveguides with uniform
cross-section. We show that, unlike high-reflection channels in
uniform waveguides that exhibit shallow penetration into the
disordered system, a perfect reflection channel can penetrate
almost through the entire system but does not transmit any
light. Furthermore, in the presence of absorption, we can vary
the decay length of energy flux inside a diffusive waveguide
by modulating the cross-section of the waveguide along its
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axis. This cannot be achieved in a waveguide of uniform
cross-section, as the flux decay length is independent of the
waveguide dimension and is determined only by the intrinsic
disorder and dissipation.

Optical absorption is ubiquitous and it often weakens the
localization effects [30–38], but our approach of using geom-
etry to control wave transport by manipulating the structure
of eigenchannels proves to be effective and robust against
strong absorption. Therefore the confined geometries enable
us to control not only the amount of light being transmitted
or reflected, but also the amount of energy concentrated
inside the random media. Although strong localization effects,
absorption or asymmetric reflection from edges can modify the
universal structure of transmission channels, but such effects
also remove the open channels with perfect transmission
[33,39,40]. Unlike these effects, the approach of varying shape
of confined geometries gives the significant advantage and
freedom to alter the spatial structures of eigenchannels while
retaining the open eigenchannels with perfect transmission.

Aside from the fundamental importance, the ability of
tailoring the spatial distribution of energy density of trans-
mission eigenchannels can be exploited to manipulate light-
matter interactions in highly scattering media, e.g., light
absorption, emission, amplification, and nonlinear optical
processes [24,41]. The potential applications range from laser
surgery, photovoltaics, to random laser and energy-efficient
lighting [42–49]. Our results suggest that the perfect reflection
channels may greatly benefit sensing and imaging applications,
as the light in such a channel would penetrate to a certain
depth and then fully reflected to ensure an efficient collection
of the probe signal. The conversion of evanescent waves to
propagative waves and vice versa may be used to tailor optical
excitations inside the random media. Since the application of
wavefront shaping technique to focusing or imaging through
turbid media as well as enhancing total transmission depends
on the properties of high transmission channels, our approach
of modifying the transmission eigenvalues and eigenvectors by
geometry provides a complementary degree of control. While
the efficiency of wavefront shaping approach is reduced by
incomplete channel control and measurement noise [29,50,51],
our approach is immune to such external factors. Although the
above results are obtained for light, they are also applicable to
other classical and quantum mechanical waves.

II. QUASI-TWO-DIMENSIONAL RANDOM WAVEGUIDE

To manipulate transmission eigenchannels, we design and
fabricate quasi two-dimensional (2D) waveguides of various
geometries. The waveguide structures are fabricated in a
220 nm silicon layer on top of 3 μm buried oxide by electron
beam lithography and reactive ion etching [52]. Figure 1
shows the scanning electron microscope (SEM) images of two
fabricated waveguides. The waveguide contains a 2D random
array of air holes that serve as scatterers for light. The air
hole diameter is 100 nm and the average (center-to-center)
distance of adjacent holes is 390 nm. The waveguide walls are
made of triangle lattice of air holes (lattice constant = 440 nm,
hole radius = 154 nm) that has a complete 2D photonic band
gap for the in-plane confinement of light. The waveguide is

FIG. 1. (Color online) Quasi-two-dimensional random waveg-
uides of different geometry. (a) and (b) Top-view SEM images of
fabricated quasi-2D disordered waveguides with linearly increasing
(a) or decreasing (b) width. The width of waveguide in (a) increases
from W1 = 10 μm to W2 = 60 μm, and in (b) it is opposite. Both
have the same length L = 80 μm. Magnified SEM images show the
air holes distributed randomly in the tapered section of the waveguide
and the triangle lattice of air holes in the reflecting sidewalls. (c) An
optical image of the intensity of scattered light from the disordered
waveguide. The wavelength of the probe light is 1500 nm.

connected to a lead which is an empty waveguide (without any
air holes) with a constant width to couple light in.

A monochromatic beam of light from a tunable CW laser
source (HP 8168F) is focused by an objective lens (numerical
aperture NA = 0.4) onto the lead waveguide. The light
is transverse-electric (TE) polarized, with the electric field
parallel to the plane of the waveguide (y-z plane). After
propagating through the lead, the light is incident onto the
random array of air holes and undergoes multiple scattering in
the 2D plane of waveguide. Some of the light is scattered out
of plane, part of which is collected by a 50× objective lens
(NA = 0.42) and imaged onto an InGaAs camera (Xeva
1.7-320). From the optical image [Fig. 1(c)], the spatial
distribution of light intensity inside the waveguide I (y,z)
is extracted. Ensemble averaging is done by recording the
intensity profile for 50 different wavelengths around λ = 1500
nm and three distinct configurations of air holes. Further
averaging is done by slightly shifting the input beam spot
on the lead waveguide in the transverse direction y to produce
distinct speckle illumination for the random array of air holes,
nevertheless, the incident intensity profile is always kept
uniform across y.

All disordered waveguides studied in this work exhibit
diffusive transport. The relevant parameters for light transport
in the disordered waveguide are the transport mean free path �

and the diffusive dissipation length ξa . The transport mean free
path � depends on the density and diameter of the air holes.
The dissipation results from out-of-plane scattering, since the
silicon absorption at the probe wavelength is negligible. This
vertical leakage of light can be treated similarly as absorption
and described by the diffusive dissipation length ξa = √

Dτa ,
where τa is the ballistic dissipation time and D is the diffusion
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coefficient [52]. The values of � and ξa are 2.2 and 26 μm,
respectively, which were extracted from the measured intensity
distribution inside a waveguide of rectangle shape [52]. Since
these two parameters depend only on the size and density of
the air holes, we keep them the same for all waveguides with
different geometries. This ensures the modification of light
transport is purely due to the change in geometry instead of
structural disorder or dissipation.

III. LINEAR TAPERING OF WAVEGUIDE WIDTH

In Fig. 1, the two waveguides have their width W (z)
increase or decrease linearly along the waveguide axis z. To
illustrate how the transmission channels are modified by the
linear tapering of the waveguide boundary, we first perform
numerical modeling by excluding the effect of dissipation.
This enables us to separate the effect of geometry from that of
dissipation, which will be discussed in the next section. In the
simulation, the wavelength, refractive index, and polarization
of light are the same as in the experiment. However, the
dimension of the waveguide and the transport mean free path
are scaled down to reduce the computing time. This should not
change the conclusion of our results because the systems are
still in the diffusive regime.

The disordered waveguide has perfectly reflecting sidewalls
and is connected to two leads (empty waveguides) at both ends.
The refractive index in the empty waveguide is determined by
the vertical waveguiding in the silicon layer, and its value is
calculated to be n = 2.85. In the disordered waveguide, the
presence of air holes (n = 1, radius = 75 nm, filling fraction
= 0.15) reduces the effective index of refraction to n = 2.62.
The (vacuum) wavelength of the probe light is λ = 1.5 μm,
and the transport mean free path is � = 1.1 μm. The length
of the disordered waveguide L is set to be much larger than
� to ensure multiple scattering and diffusion of light. Since
the localization length ξ is proportional to the width of the
waveguide W , the value of W is chosen to make ξ � L so
that localization effects are negligible.

We calculate the electromagnetic field inside the disor-
dered waveguide by solving the Maxwell’s equations using
the finite difference frequency-domain method (COMSOL
Multiphysics). To construct the transmission matrix t of the
disordered waveguide, we use the guided modes in the leads
as the basis. The input (output) lead waveguide has a constant
width equal to the same width W1 (W2) of the disordered
waveguide at the front (back) end z = 0 (z = L), and it
supports M = W1/λ/2n (N = W2/λ/2n) guided modes. Thus
t is a N × M matrix, and its element tij represents the
field transmission from the input j th mode to the output
ith mode. The reflection matrix is constructed in a similar
way by computing the reflected waves, and its dimension is
M × M .

A singular value decomposition of the transmission matrix
t gives t = U�V †. � is a N × M diagonal matrix with
min[N,M] non-negative real numbers,

√
τm, where τm is the

eigenvalue of t†t and represents the transmittance of the mth

transmission eigenchannel. V is a M × M unitary matrix that
maps the field in the guided modes of the input lead to the
eigenchannels of the disordered waveguide, and U is a N × N

unitary matrix that maps the eigenchannels to the output

FIG. 2. (Color online) Comparison of transmission eigenvalues
and eigenchannels in constant-width and increasing-width random
waveguides. (a) Numerically calculated ensemble-averaged transmis-
sion eigenvalues of random waveguides with constant width (dashed
line with circles) and increasing width (solid line with squares). The
constant-width waveguide (W = 5.1 μm, L = 20 μm) supports 19
transmission eigenchannels of which 17 are propagating channels
and 2 are evanescent channels, whereas the expanding waveguide
(W1 = 5.1 μm, W2 = 10.2 μm, and L = 20 μm) has 19 propagating
channels of higher transmittance. (b) Spatial distribution of electric
field intensity inside the waveguide with increasing width for the
18th and 19th transmission eigenchannels. Both transform from
evanescent waves at the entrance of the waveguide to propagating
waves due to the increase of waveguide width. (c) Cross-section-
averaged intensity, Iv(z), for the 18th (solid line) and 19th (dashed
line) channels shown in (b). The conversion from evanescent wave to
propagating wave causes a sudden change in the decay length of Iv(z)
near the front end of the waveguide. For comparison, Iv(z) for the
10th eigenchannel (dotted line) of the same waveguide is added and it
shows a constant decay length. (d) Comparison of the cross-section-
averaged intensity, Iv(z), of the maximum transmission channel
(m = 1) in the disordered waveguides with constant width (blue
dotted line) and increasing width with two different disorder strengths
(red dashed line and green solid line) and different dimensions (dotted
magenta line). Tapering of the waveguide width breaks the symmetry
of the spatial structure of the open channel and moves the peak of
Iv(z) from the center of the waveguide towards the front end. The
position of the peak does not depend on the disorder strength.

waveguide modes. Each column of V represents an input
singular vector, whose elements are the complex coefficients
for the input waveguide modes that combine to couple light
into a single transmission eigenchannel. The output field of a
single transmission eigenchanel is represented by the column
of U , which is called the output singular vector. Similarly the
reflection eigenvalues ρn can be obtained by singular value
decomposition of the reflection matrix r .

For comparison, we also compute the transmission eigen-
channels in the waveguide of constant width W . For W =
5.1 μm, M = N = 19, and there are 19 transmission eigen-
channels. Figure 2(a) plots the transmission eigenvalues, 2
of which (m = 18 and 19) are many orders of magnitude
smaller than the others and are not shown as they fall below
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the numerical accuracy. This is because the lead waveguide
has larger refractive index than the disordered waveguide and
support more guided modes. The disordered waveguide can
support only N − 2 = 17 propagating modes, thus 2 of the 19
transmission channels cannot propagate inside the disordered
waveguide and become evanescent. Light can be coupled to
these two evanescent channels with the extra modes that can
be supported by the input lead waveguide.

Therefore the eigenchannels of the transmission matrix
can be divided into two categories: propagating channels and
evanescent channels. The propagating channel has a spatial
structure that varies on the scale of the mean free path. The
evanescent channel features an intensity decay on the order of
the wavelength, which is much shorter than the mean free path,
and the corresponding transmission eigenvalue is essentially
zero.

A gradual increase of the waveguide width along its axis in-
creases the number of propagating modes that can be supported
inside the disordered waveguide, converting the evanescent
channels to the propagating channels. This is observed, as an
example, in the tapered waveguide whose width is increased
from W1 = 5.1 μm at z = 0 to W2 = 10.2 μm at z = L

[Fig. 1(a)]. With M = 19 and N = 38, the transmission matrix
t38×19 still supports 19 transmission eigenchannels, but all of
them have nonvanishing τm [Fig. 2(a)].

Figure 2(b) shows the spatial distribution of electric
field intensity inside the tapered waveguide for the 18th
and 19th transmission eigenchannels, which have the lowest
transmittance. Both these channels have been converted from
evanescent channels in a constant-width waveguide with W =
5.1 μm to propagating channels in the tapered waveguide.
I (y,z) exhibits a sharp drop near the front side of the waveg-
uide. For a quantitative analysis, the cross-section-averaged
intensity, Iv(z) = [1/W (z)]

∫
I (y,z)dy, is plotted in Fig. 2(c)

for these two channels. For comparison, Iv(z) for the N = 10
eigenchannel is added to the plot, and it displays an exponential
decay with a constant rate. In contrast, Iv(z) for the 19th
eigenchannel first decays very rapidly at small z/L, and then
changes to a much slower decay at z/L ∼ 0.07. The number
of guided modes in the waveguide is N (z) = 2W (z)/(λ/n),
where W (z) is the waveguide width at depth z, and n is the
effective index of refraction of the disordered waveguide. As
W increases with z, the waveguide becomes wide enough to
support additional modes. For example, at z/L ∼ 0.07, N is
increased from 18 to 19, thus the 19th mode is transformed
from evanescent wave to propagating wave. Consequently, the
decay length of Iv(z) increases from ∼0.14 μm (comparable
to λ/2πn) to ∼1.8 μm (much larger than λ/2πn). Similarly,
the 18th eigenchannel is transformed from evanescent to
propagating at a smaller value of z/L ∼ 0.05, where N is
increased from 17 to 18. Hence, this conversion can be
attributed to the gradual increase of the number of propagating
modes that can be supported by the tapered waveguide at
different depths.

If λ and n are fixed, the spatial position (z/L) inside
the tapered waveguide where the conversion from evanescent
wave to propagating wave takes place is determined by the
width at that position, thus the spatial position where such
conversion occurs can be easily controlled by tuning the
tapering angle. The disorder strength does not affect directly

the location of conversion, however, a change in the disorder
strength is often accompanied by a change in the effective
index of refraction n, which would modify the conversion
depth.

The increase of the waveguide width also enhances the
transmittance of all other transmission eigenchannels (albeit
not as large an enhancement as the above two) which are
also propagating channels in the constant width waveguide.
Consequently, the dimensionless conductance g = ∑

τm is
larger, but the number of input modes remains the same.
This behavior is distinct from the constant-width waveguide,
where the increase of width also enhances g, but the number
of input modes increases simultaneously requiring additional
degree of control of the input field for coupling into a
single eigenchannel. The waveguide with increasing width
can therefore be useful for applications related to enhancing
transmission through random media by wavefront shaping
technique with incomplete degree of control of the input field.

Furthermore, the spatial profiles of open channels are
modified in the tapered waveguide. Figure 2(d) compares
the cross-section-averaged intensity Iv(z) of the maximum
transmission channel in the disordered waveguides with
constant and increasing widths. In the waveguide with uniform
cross-section, Iv(z) exhibits a symmetric profile with peak
in the middle of the waveguide (z = L/2). It corresponds to
the universal structure of the maximum transmission channel
in a constant-width waveguide [24]. In the waveguide with
increasing widths, Iv(z) becomes asymmetric and its peak
shifts from the center towards the front end of the waveguide
(z < L/2). As seen in Fig. 2(d), when the tapering angle of the
waveguide boundary is merely 14◦, the peak of the maximum
transmission channel has already moved significantly from
the center z/L = 0.5 to z/L = 0.35. This shift does not
depend on the disorder strength or the actual dimension of
the diffusive waveguide. As a confirmation, Fig. 2(d) shows
the spatial profiles of the highest transmission channel in two
more tapered waveguides, one has L, W1, W2 all reduced to
half, but k� unchanged (k = 2π/λ/n); the other has the same
L, W1, W2, but k� is doubled. Although their profiles are
slightly different, the peak positions are identical.

Next, we investigate the disordered waveguide with linearly
decreasing width, as shown in Fig. 1(b). This geometry is the
mirror image of the one in Fig. 1(a), thus light injection from
the left end of waveguide in Fig. 1(b) is identical to light
injection from the right end of the waveguide in Fig. 1(a).
The transmission matrix of the waveguide in Fig. 1(b), t19×38,
is the transpose of that in Fig. 1(a), and it also supports 19
transmission eigenchannels with the same transmittance. Thus
the conductance g is identical for the two waveguides in Fig. 1.
However, the spatial structure of the open channels is different.

Figure 3(a) shows the cross-section-averaged intensity Iv(z)
for the maximum transmission channel in the waveguide
with decreasing width. Its peak shifts from the center of the
waveguide towards the output end (z > L/2), opposite to that
of the waveguide with increasing width in Fig. 2(d). The two
profiles are mirror image, and the peak always shifts towards
the narrower section of the tapered waveguide. How much
the peak shifts from the waveguide center depends on the
angle of tapering. By changing the tapering angle, the location
of the intensity peak can be tuned deterministically, as seen
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FIG. 3. (Color online) Transmission eigenchannels in tapered
waveguide of decreasing width. (a) Comparison of cross-section-
averaged intensity, Iv(z), of the maximum transmission channel
(m = 1) in two waveguides with different tapering angles and a
constant-width waveguide. All waveguides have the same length
L = 20 μm. The constant-width waveguide has W1 = W2 = 10.2 μm
(blue dotted line). The two tapered waveguides have W1 = 10.2 μm
and W1/W2 = 2 (red dashed line), 4 (green solid line). The Iv(z)
curves are offset along the y axis for clarity. The intensity peak
shifts from the waveguide center (W1/W2 = 1) towards the output
end (W1/W2 > 1), and the shift is larger for higher tapering angle
(larger W1/W2). (b) Cross-section-averaged intensity, Iv(z), of a
perfect reflection channel for the same tapered waveguides as in (a).
Iv(z) of a high-reflection channel of the constant-width waveguide
(blue solid line) is added for comparison. The insets show the spatial
distribution of electric field intensity for the high-reflection channel
of the constant-width waveguide and the perfect reflection channel
of the tapered waveguide with W1/W2 = 2. The perfect reflection
channel in a tapered waveguide exhibits slower intensity decay inside
the random medium (followed by a sharp drop near the rear end)
and thus can penetrate much deeper into the turbid medium than
the high-reflection channel in the constant-width waveguide. The
penetration length increases with the tapering angle.

in Fig. 3(a). This result illustrates that the maximum of the
energy density can be positioned to different depths inside a
random system by tailoring its geometry.

While the number of the transmission eigenchannels for the
two waveguides in Fig. 1 is identical, the number of reflection
channels differs. In the expanding waveguide [Fig. 1(a)], the
reflection matrix r19×19 has 19 eigenchannels, which have one-
to-one correspondence with the transmission eigenchannels.
However, in the contracting waveguide [Fig. 1(b)], the input
lead waveguide supports 38 guided modes, and the output only
19 modes. Consequently, there are 19 transmission eigenchan-
nels, but 38 reflection channels. While 19 of the reflection
channels have the corresponding transmission channels, the
rest 19 do not. In other words, the reflection matrix r38×38

has 38 eigenvalues, of which 19 of them are equal to unity.
They represent perfect reflection channels with all incident
light being reflected.

The 2-D spatial distribution of field intensity for a perfection
reflection channel in the tapered waveguide with W1/W2 = 2
is shown in the inset of Fig. 3(b). For comparison, a high-
reflection channel in a waveguide of uniform cross-section is
also shown. We can clearly see that the high-reflection channel
in the constant-width waveguide has a uniform decay of
intensity inside the random structure. In contrast, the intensity
of the perfect reflection channel exhibits a much slower decay

almost throughout the entire random structure and then a sharp
drop close to the rear end (z ∼ L).

The main panel of Fig. 3(b) plots the cross-section-averaged
intensity, Iv(z), for one of the perfect reflection channels in
two tapered waveguides with different tapering angles and a
high-reflection channel in the constant-width waveguide. The
high-reflection channel of a constant-width waveguide has
shallow penetration into the random medium due to a rapid
intensity decay. The perfect reflection channel, however, has
a much slower decay and thus a longer penetration depth. A
sharp drop of its intensity near the rear end corresponds to the
cutoff beyond which no light propagates. The cutoff occurs at
the position where the waveguide width is just large enough to
support N + 1 modes (where N is the number of propagating
modes in the output lead). Since the cutoff position depends on
the tapering angle of the random waveguide, both the decay
length of the intensity and the cutoff position in a perfect
reflection channel can be deterministically and effectively
controlled by tuning the tapering angle. For example, by
increasing the tapering angle we are able to increase the
penetration depth by shifting the cutoff position closer to the
output end, as seen in Fig. 3(b).

Since light in the perfect reflection channels can penetrate
deep into the scattering system, such channels can be used for
probing inside turbid media. Despite of the deeper penetration,
all the light exits from the input end, making the collection
efficiency of probe signal 100%, which is extremely useful for
sensing or imaging applications. The penetration depth can
be precisely tuned via tapering the boundary of a confined
random system.

IV. EFFECT OF ABSORPTION

In this section, we study the effect of light dissipation,
which was not included the last section. Previous studies have
shown that loss has a profound impact on the transmission
channels. It not only modifies the statistical distribution of the
transmission eigenvalues [33], but also changes the structure of
eigenchannels [40,53]. In case of passive diffusive waveguides,
the probability density distribution of transmission eigenval-
ues, P (τ ), has two peaks, one at 1 and the other at 0. Thus,
there are many channels (the number is determined by g)
with comparable values of τ ∼ 1. Therefore the total intensity
inside the random medium is the sum of intensities of all these
high transmission eigenchannels.

In case of strongly absorbing waveguides (L � ξa), the
peak at τ = 1 disappears and P (τ ) has a cutoff at τmax which
is determined by L/ξa . In such absorbing waveguides, P (τ )
decays strongly with τ with a faster decay near τmax. This
implies that the τ ’s will be arranged as τ1 > τ2 > τ3 > . . . .
Furthermore, because P (τ ) decays fast toward τmax,τ1 will be
much greater than τ2,τ3,τ4, . . . and the total intensity inside the
random media will therefore be dominated by the eigenchannel
with the maximum transmission.

For the quasi-2D waveguides we fabricate, the dissipation
results from out-of-plane scattering of light, which can be
treated as absorption [52]. We simulate it in the 2D waveguide
by introducing an imaginary part of the refractive index.
The diffusive dissipation length is ξa = √

�la/2, where la is
the ballistic dissipation length. The ratio of L/ξa is set to 3.0,
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FIG. 4. (Color online) Effect of absorption on the maximum
transmission eigenchannel and energy flux decay in the constant-
width and tapered waveguides. (a) Comparison of the cross-section-
averaged intensity, Iv(z), of the maximum transmission channel in
a constant-width (W = 5.1 μm, L = 20 μm) disordered waveguide
with (dashed line) and without (solid line) absorption. In the absorbing
waveguide, L/ξa = 3. Absorption modifies the spatial profile of the
maximum transmission channel. (b) Comparison of spatial decay
of energy flux J (z) in random waveguides with constant widths
W = 5.1 μm (blue solid line) and W = 10.2 μm (dashed magenta
line), increasing width of W1 = 5.1 μm and W2 = 10.2 μm (green
dotted line) and decreasing width of W1 = 10.2 μm and W2 = 5.1 μm
(red dashed line). For all waveguides, L = 20 μm, L/ξa = 3, and
J (z) is normalized to 1 at z = 0. While the flux decay length remains
the same for the two rectangle waveguides of different widths, it
is lengthened in the expanding waveguide and shortened in the
contracting waveguide.

which is close to the value of the fabricated waveguides. At
L/ξa = 3, absorption causes a notable change in the spatial
profile of the maximum transmission channel as seen in
Fig. 4(a). The intensity peak of the maximum transmission
channel, which is located at the middle (z/L ∼ 0.5) of the
passive waveguide, moves to the front end (z/L ∼ 0) due to
absorption.

Although it reduces the throughput, loss allows us to
manipulate the spatial decay of energy flux inside the random
waveguide by geometry. In the absence of loss, the net flux
J (z), integrated over the cross-section of the waveguide, points
in the z direction and its value is constant along z. By tailoring
the boundary shape of the waveguide, the magnitude of J

changes, but it remains invariant with z. With the addition of
loss, J (z) decays exponentially along z. If the waveguide has
a uniform cross-section, the decay length is determined by
ξa , which is independent of the waveguide width or length.
However, the decay length can be varied by tapering the
waveguide width along z. Figure 4(b) plots J (z) in four
waveguides with random input fields. To compare the spatial
profile of J (z), its value at z = 0 is normalized to 1. Two of
the waveguides have uniform width, W = 5.1 μm, 10.2 μm,
and their J (z) overlaps after the normalization. With a linear
increase of W with z, the decay of J (z) becomes slower, while
a linear decrease of the waveguide width accelerates the flux
decay. Hence, by varying the waveguide width along the cross-
section, we can tune the decay of energy flux inside the random
media. Such tuning of flux decay rate by geometry can be
achieved only in the presence of loss, illustrating additional
degree of control enabled by combination of dissipation and
geometry.

FIG. 5. (Color online) Experimentally measured intensity de-
cays inside disordered waveguides in comparison to numerically
calculated spatial profiles of the maximum transmission eigenchan-
nels. (a) and (b) Experimentally measured cross-section-averaged
intensity Iv(z) (a) and cross-section-integrated intensity It (z) (b)
inside quasi-2D waveguides of constant width W = 60 μm (solid
blue line), increasing width with W1 = 10 μm, W2 = 60 μm (dotted
green line), and decreasing width with W1 = 60 μm, W2 = 10 μm
(dashed red line). All the waveguides have L = 80 μm and L/ξa = 3.
The tapering of the waveguide boundary causes an opposite change in
the decay length of Iv(z) and It (z). (c) and (d) Numerically calculated
Iv(z) (c) and It (z) (d) of the maximum transmission eigenchannel in
the disordered waveguides of constant width W = 10.2 μm (solid
blue line), increasing width with W1 = 5.1 μm, W2 = 10.2 μm
(dotted green line), and decreasing width with W1 = 10.2 μm,
W2 = 5.1 μm (dashed red line). All waveguides have L = 20 μm
and L/ξa = 3. Despite of the reduced waveguide dimensions, the
maximum transmission channels exhibit a qualitatively similar
structure to the experimentally measured intensities, indicating the
intensity distribution inside a strongly absorbing random medium is
determined by the structure of the maximum transmission channel.

V. INTENSITY DECAY INSIDE RANDOM MEDIA

Experimentally, we measured the 2D intensity distribution
inside the tapered waveguides shown in Fig. 1(c). From
I (y,z) we obtain the cross-section-averaged intensity Iv(z) and
the cross-section-integrated intensity It (z) = Iv(z) W (z). The
former gives the depth profile of the average energy density
inside the random waveguide, and the latter tells the total
amount of energy concentrated at certain depth z. In the tapered
waveguides, the intensity decay rates become significantly
different as seen in Figs. 5(a) and 5(b). It (z) (total amount
of energy concentrated at certain depth z) decays much slower
inside the expanding waveguide than that in the constant-width
waveguide, while the contracting waveguide leads to a much
faster decay of It (z). Iv(z) (depth profile of the average energy
density), however, displays an opposite behavior: it decays
faster in the expanding waveguide and slower in the contracting
waveguide. Such behavior is attributed to the variation of the
waveguide width along z.

For comparison, we also measure the intensity decay inside
two constant-width waveguides. Despite of a factor of 6
difference in the waveguide width (W = 10 and 60 μm), Iv and
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It decay exponentially in the two waveguides with nearly the
same rate (not shown). This result confirms that the intensity
decay is independent of the waveguide width as long as W is
invariant with z and localization effect is negligible [52].

As mentioned before, the two tapered waveguides with the
same tapering angle are mirror image of each other with respect
to z = L/2. Thus the transport of light with input from one end
(z = 0) of one waveguide is equivalent to that with input from
the opposite end (z = L) of the other waveguide. Hence, the
difference in the intensity decay in the two waveguides with
injection from the same end (z = 0) illustrates asymmetric
transport of light in such tapered waveguides.

Since our fabricated waveguides are in the regime of
strong dissipation (L � ξa), the intensities inside the struc-
tures are dominated by the maximum transmission channel.
The experimentally measured intensities should therefore
reflect qualitatively the intensity profiles of the maximum
transmission channels. In Figs 5(c) and 5(d), we plot the
numerically calculated Iv(z) and It (z) for the maximum
transmission eigenchannels in waveguides of constant widths
and tapered geometries (with reduced dimensions due to
limited computing power). They exhibit qualitatively similar
structures, indicating the intensity distribution inside a strongly
dissipative random system is determined by the maximum
transmission channel whose spatial profile can be tuned by
geometry.

VI. NONMONOTONIC VARIATION OF WAVEGUIDE
CROSS-SECTION

Finally, we change the waveguide width nonmonotonically
along the axis for further control of transmission channels.
Figure 6(a) shows a “bow-tie” waveguide whose width W

decreases linearly in the first half and then increases in the
second half. While the input and output ends have identical
widths, the waveguide has a constriction in the middle that
reduces the energy flow. The total number of transmission
eigenchannels is still determined by the waveguide width at
the input/output. However, only a fraction of these channels
(determined by the width of the constriction) can propagate
through the constriction. The rest are converted to evanescent
waves in the vicinity of the construction due to the reduction
in the number of propagating modes. As the waveguide
width increases after the constriction, the evanescent wave
that can tunnel through the constriction may convert back to
propagating wave. This is seen in the intensity profiles of
the transmission channels in Fig. 6(b). Iv(z) decays gradually
in the first part of the bow-tie waveguide, then suddenly
changes to a must faster decay near the constriction, after the
constriction the decay slows down again. The abrupt changes in
the decay length, from much larger than the evanescent decay
length, λ/2πn, to smaller than λ/2πn and back, indicate the
conversion from propagating wave to evanescent wave and
back. The accelerated decay rate near the constriction differs
from one channel to another [Fig. 6(b)]. Hence evanescent
waves with different decay rates are created inside a diffusive
waveguide by the constriction.

In the bow-tie waveguide, the number of transmission
eigenchannels that diffuse through the constriction without
being converted to evanescent waves is determined by the

FIG. 6. (Color online) Transmission eigenchannels and intensity
decay in a diffusive waveguide of bow-tie geometry. (a) Top-view
SEM image of a fabricated quasi-2D waveguide with bow-tie
geometry. The length of waveguide is L = 80 μm. The width of
waveguide decreases linearly from 60 μm at z = 0 to 10 μm at
z = L/2 and then again increases linearly to 60 μm at z = L.
(b) Numerically calculated cross-section-averaged intensity Iv(z) of
the 19th (solid line) and 20th (dashed line) transmission eigen-
channels of bow-tie waveguide. The length L of the waveguide is
20 μm, the width at z = 0,L is 10.2 μm (35 propagating modes)
and the width of constriction at z = L/2 is 5.1 μm (17 propagating
modes). The abrupt changes in the decay rate of Iv(z) before and
after z = L/2 indicate the conversion from propagating wave to
evanescent wave and back. The evanescent decay rate varies from one
channel to another. (c) Numerically-calculated Iv(z) (green dashed
line) and cross-section-integrated intensity It (z) (blue solid line) for
the maximum transmission channel of the same waveguide as in (b)
but with absorption L/ξa = 3. The constriction causes a significant
change in the intensity distribution of the maximum transmission
channel. (d) Experimentally measured Iv(z) (green dashed line)
and It (z) (blue solid line) inside the disordered waveguide shown
in (a). Both intensity distributions follow those of the maximum
transmission channel.

width of the constriction. When the constriction width Wc

is reduced to below the transport mean free path �, light
propagation in the vicinity of the constriction is changed from
2D diffusion to quasi-1D diffusion. However, the number of
waveguide modes supported by the constriction can still be
much larger than 1, as long as Wc � λ, allowing light diffusion
through the constriction. However, if Wc < λ, light transport
at the constriction changes to evanescent tunneling.

The bow-tie geometry also modifies the high transmission
channels, even in the presence of strong absorption. As shown
in Fig. 6(c), the cross-section-averaged intensity Iv(z) for the
maximum transmission channel exhibits a small bump at the
constriction, while the cross-section-integrated intensity It (z)
has a dip. This is because the reduction in the cross-section
increases the energy density but suppresses the total flux at the
center of the waveguide. Figure 6(d) plots the experimentally
measured intensity of light inside the bow-tie waveguide. Iv(z)
decays slower in the first half (z < L/2) than in the second half
(z > L/2). It (z) exhibits opposite behavior. The qualitative
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FIG. 7. (Color online) Transmission eigenchannels and energy
distribution in a diffusive waveguide of lantern geometry. (a) Top-
view SEM image of a fabricated quasi-2D disordered waveguide
with lantern geometry. The length of waveguide is L = 80 μm. The
width of waveguide increases linearly from 10 μm at z = 0 to 60 μm
at z = L/2 and then again decreases linearly to 10 μm at z = L.
(b) Numerically calculated cross-section-averaged intensity Iv(z) for
the 5th (dashed line) and 19th (solid line) transmission eigenchannels
of lantern geometry. The length L of the waveguide is 20 μm, the
width at z = 0,L is 5.1 μm (17 propagating modes) and width at z =
L/2 is 10.2 μm (35 propagating modes). Iv(z) of the 19th transmission
eigenchannel exhibits the conversion of the evanescent wave to a
propagating wave near the input end and then back to the evanescent
wave near the output end due to the variation of the waveguide width.
In contrast, the 5th channel remains propagating wave across the
entire waveguide. (c) Numerically calculated Iv(z) (green dashed
line) and cross-section-integrated intensity It (z) (blue solid line) for
the maximum transmission channel of the same waveguide as in (b)
but with absorption L/ξa = 3. Both intensity profiles are opposite to
those in the bow-tie waveguide. (d) Experimentally measured Iv(z)
(green dashed line) and It (z) (blue solid line) inside the disordered
waveguide shown in (a). The intensity profiles are similar to those of
the maximum transmission channel shown in (c).

agreement between the measured intensity decay and the
calculated profile of the highest transmission eigenchannel
again confirms that the energy distribution inside the bow-
tie waveguide is determined by the maximum transmission
channel.

The spatial structure of the open channel in the bow-tie
waveguide can be tuned by shifting the constriction away from
the center of the waveguide. Unlike varying the constriction
width which would modify the transmission eigenvalue and
the dimensionless conductance, changing the location of the
constriction only modifies the transmission eigenchannels,
but not the eigenvalues. It thus provides an efficient way of
tailoring the energy distribution inside the diffusive waveguide
while keeping the transmittance constant.

Complementary to the bow-tie waveguide, we fabricate the
“lantern” waveguide whose width W increases linearly in the
first half and decreases in the second half [Fig. 7(a)]. In contrast
to the bow-tie geometry, the number of propagating modes
that can be supported in the lantern waveguide increases in

the middle due to larger cross-section, thus increasing energy
throughput. In particular, a transmission eigenchannel, which
is evanescent at the input end of the random waveguide (due
to the refractive index difference from the lead waveguide),
transforms to propagating wave as the waveguide becomes
wider. However, close to the rear end of the waveguide,
the propagating wave becomes evanescent again due to the
decrease of the waveguide width. Such behavior is shown in
Fig. 7(b), where Iv(z) for the m = 19 eigenchannel exhibits a
fast decay near the front end of the lantern waveguide, then
the decay is slowed down in the middle, but near the back end
the decay becomes fast again. Since light can only tunnel out
of the waveguide, there is a strong buildup of energy inside
the lantern waveguide, especially near the center where the
number of waveguide modes is maximum. For comparison,
Iv(z) of another transmission eigenchannel (m = 5) is also
plotted. Unlike m = 19,Iv(z) for m = 5 eigenchannel does
not display a dip in the intensity at z/L ∼ 0 as it does not start
with an evanescent wave at the front side of the waveguide,
instead it exhibits a uniform decay of intensity across the entire
waveguide.

The high transmission channels also experience a signifi-
cant change in the lantern waveguide. As seen in Fig. 7(c), the
maximum transmission channel displays an opposite behavior
to that of the bow-tie waveguide [Fig. 6(c)]. Iv(z) drops
faster in the first half of the waveguide (z < L/2) than in
the second half (z > L/2), while It (z) is the opposite. The
difference from the bow-tie waveguide is expected because
the cross-section is modulated in opposite manner in the two
waveguides. Consequently, the intensity distribution inside the
lantern waveguide is very different from that in the bow-tie
waveguide. The measured Iv(z) and It (z) in Fig. 6(d) exhibit
distinct decay rates for z < L/2 and z > L/2, which agree
qualitatively to those of the maximum transmission channel.
This confirms the change in energy distribution inside the
lantern waveguide can be very well represented by the change
in the structure of the maximum transmission channel by
geometry.

VII. DISCUSSION AND CONCLUSIONS

To conclude, we have demonstrated an effective approach
to modify transmission eigenchannels of confined disordered
media. Using geometry, we can change the spatial profiles of
the transmission channels significantly and deterministically
from the universal one. It allows us to control the depth profile
of the total energy as well as the energy density inside the
random medium, thus controlling how much energy is con-
centrated inside the sample and where it is concentrated. The
ability to tailor the spatial distribution of energy density can be
exploited to manipulate light-matter interactions in scattering
media, which will be useful for numerous applications.

By gradually increasing the cross-section, we can enhance
the transmittance of all the transmission eigenchannels while
keeping the number of input modes the same. Such geometries
can be useful for applications related to enhancement of
total transmission by shaping the input wavefront, as in such
structures there will be more open channels due to larger
conductance. Moreover, since the waveguide cross-section at
the input end does not change, the number of input channels
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remains the same, and additional degree of control of the
input field is not necessary for coupling into any one of
the open channels. In addition, using geometry we can also
convert evanescent channels to propagating channels and
vice versa. In a waveguide with the output cross-section
smaller than the input one, perfectly reflecting channels are
created. The light injected to such a channel would penetrate
inside the scattering media to a certain depth and then get
fully reflected back to the input end. The penetration depth
of such channels can be further tuned by geometry. Such
channels have potential applications for probing deep inside
turbid media. Since all the light exits from the input end,
the collection efficiency of probe signal would be 100%.
We can further design geometries with opposite taperings
to have the same transmission eigenvalues but very different
eigenchannel profiles. By breaking the reflection symmetry of
confined geometry, the transmission eigenchannels become
asymmetric. In the presence of dissipation, the decay of
energy flux inside the diffusive waveguide can be changed
by modulating the cross-section of the waveguide along its
axis. In a diffusive waveguide with nonmonotonic tapering
boundary such as the lantern geometry, energy can buildup
inside the random medium, which will benefit the applications
of energy harvesting and tailoring of optical excitations inside
scattering media.

Unlike the localization effects which are suppressed by
absorption, our approach of using geometry to control light
transport is effective even in the presence of strong absorption
and does not require any change of structural disorder. Thus
this approach can truly complement the wavefront shaping
technique to control mesoscopic transport of light with an
additional advantage that the efficiency is not reduced by

external factors such as incomplete channel control and
measurement noise [29]. The results discussed in this paper are
also applicable to other waves such as microwaves, acoustics
or matter waves.

Finally, we stress that the confined geometry enables ma-
nipulating the spatial structures of transmission eigenchannels
while retaining the open channels with perfect transmission.
This is advantageous compared to other approaches that rely
on strong localization effects, absorption [40] or asymmetric
surface reflections from edges [39] to modify the transmission
channels as those approaches will also remove the open
channels with perfect transmission. Although in this paper
we have focused only on the maximum transmission channel,
in general using geometry the spatial profiles of the other
low transmission channels can also be deterministically and
significantly modified. Since changing the confined geometry
of a random medium corresponds to modifying its bound-
ary condition, we expect that the Green’s function inside
the random system can also be tailored. This implies that
our approach of manipulating geometry may be applied to
control various mesoscopic effects that depend on the Green’s
functions inside the random media such as nonlocal intensity
correlations, renormalization of the diffusion coefficient, the
density of states etc.
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