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Systems with purely off-diagonal disorder may have peculiar features such as the localization-delocalization
transition and long-range correlations in their wave functions. To motivate possible experimental studies of the
physics of off-diagonal disorder (e.g., in systems with random nearest-neighbor hopping), we study in detail
disordered discrete-time quantum walk in a finite chain. Starting from a transfer matrix approach, we show, both
theoretically and computationally, that the dynamics of the quantum walk with disorder manifests all the main
features of systems with off-diagonal disorder. We also propose how to prepare a remarkable delocalized zero
mode from a localized and easy-to-prepare initial zero mode using an adiabatic protocol that changes the disorder
strength slowly. Numerical experiments are also performed with encouraging results.
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I. INTRODUCTION

Quantum walk (QW) has been a subject of great theoretical
and experimental interests. Among many QW protocols,
discrete-time QW is the simplest [1], where it can be seen
clearly how QW can differ strongly from classical random
walk due to quantum interference effects. For example, an
initially localized state in QW will spread ballistically, which
is much faster than classical random walk whose mean square
displacement is proportional to time. Due to this feature,
one potential application of QW models is towards a fast
search algorithm [2] in quantum computation [3]. It is also
useful as a quantum simulator [4]. As an example of a very
recent direction, QW is shown to be useful in understanding
topological phases of matter in periodically driven systems
[5,6].

On the experimental side, two early QW experiments
in 2005 used either linear optical elements [7] or nuclear-
magnetic resonance systems [8]. Since 2007, a variety of
physical systems have been exploited to realize QW, including
trapped ions [9,10], trapped atoms in a spin-dependent optical
lattice [11], photons in an optical waveguide array [12–15], and
photonic walks with interferometers [16–18]. Very recently, a
photonic quantum walk without interferometers was realized
[19], in which photons walk in the orbital angular momentum
space.

The topic of this work is on QW in the presence of
some disorder. Previously, it was numerically found that
some behavior of disordered QW seems to reflect the physics
of off-diagonal disorder (ODD) [20] in condensed-matter
physics. The so-called ODD was first noticed in studies
of one-dimensional (1D) tight-binding models (TBMs) with
nearest-neighbor random hopping potential and constant on-
site potential [21,22]. Compared with the more familiar dis-
order model where the on-site potential (diagonal term in the
lattice-site representation) is random but the nearest-neighbor
hopping is constant, ODD leads to peculiar physics, such
as delocalization at zero energy, power-law wave-function
correlation, and so on [21–30]. Specifically, the localization
length �(ω) in 1D TBM with pure ODD is related to energy ω

via

�(ω) ∝ | ln ω|. (1)

As the energy ω approaches 0, the localization length �

diverges, indicating a delocalization transition at ω = 0. At the
same time, singularity in the density of states (DOS) emerges
at ω = 0, with the explicit DOS expression given by

ρ(ω) ∝ |ω ln3 ω|−1. (2)

Furthermore, the delocalized eigenstate has an unusual long-
range correlation. It is shown that its ensemble averaged
two-point correlation decays polynomially with the exponent
−3/2 under the condition of strong disorder and large two-
point separation [27,28,31]. It was pointed out earlier that this
is a manifestation of the actual stretched exponential-decay
profile of the wave function [32–35], i.e., ψ(x) ∝ exp(−γ̃ |x −
x0|1/2), where γ̃ is a constant. One may naively say that a wave
function like this is quite localized. However, its Lyapunov
exponent is apparently zero (which indicates that the state is
delocalized [32]) because there is no exponential localization
behavior.

As we have learned from decades of studies, quite a few
theoretical models with disorder can be used to manifest and
digest the physics of ODD. Such models include a special
disordered linear chain of harmonic oscillators investigated
by Dyson [23,36,37], a 1D Dirac model with random mass
and some types of disordered 1D spin chains [27,28,31], 2D
Dirac fermions subject to a random vector potential [38], a 1D
random hopping model consisting of several parallel bipartite
sublattices [39], systems with correlated off-diagonal disorder
[40,41] or random long-range hopping [42], and graphene
with ODD [43]. In contrast to these theoretical developments,
experimental progresses on the physics of ODD have been
rather limited. Doped CuGeO3 is effectively a disordered
spin-Peierls system possessing ODD [44–49]. Phenomena
such as phase transitions and long-range orderings were
believed to be related to the physics of ODD. However, direct
observation of physical properties like the correlation exponent
−3/2 was not possible in such a system. Other than spin-chain
realizations, few experiments concerning ODD were reported.
We note a possible experimental approach based on cold
atoms under the so-called tripod scheme [29,30], but the
actual experiment has not been done. Only very recently,
Keil et al. demonstrated that a chain of optical waveguides
could be used to realize an effective 1D Dirac model with
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random mass [50]. In particular, with coupled series of optical
chains, the authors of Ref. [50] observed the long-range
correlation (in a certain range) characterized by the correlation
exponent −3/2.

To motivate more possible experimental studies of ODD
models and to demonstrate one more promising application of
QW, we consider in this work a discrete-time QW in a finite
chain (for simplicity we refer to it as “QW” throughout the
paper) and reveal theoretically how this problem is closely
connected with the issue of ODD. Our work is inspired by an
early numerical study by Obuse and Kawakami [20], which
showed clear signatures of the physics of ODD in disordered
QW. Specifically, we first analytically demonstrate the explicit
connection between a TBM with ODD and disordered QW.
In so doing we focus on a specific delocalization transition
energy, the zero quasienergy, which was also considered in
Ref. [20]. We then show how some simple adiabatic protocols,
starting from an exponentially localized 0 mode (i.e., the
0 quasienergy eigenstate), can be converted to a peculiar
0 mode possessing the physics of ODD, with satisfactory
fidelity and relatively short duration of the protocol. As
such, we may make use of some existing QW experimental
setups to observe the unique physics of ODD. Indeed, our
numerical experiments indicate that the results agree with the-
oretical predictions very well, including the −3/2 correlation
exponent.

This paper is organized as follows. In Sec. II, we will
introduce a model of disordered QW in a finite chain. Analysis
of the model is based on the transfer matrix formalism.
Sections III is devoted to some formal connections between
our QW model and a TBM with ODD. In Sec. IV we shall
focus on the preparation of special states that best manifest
the peculiarities of ODD. The associated results from our
numerical experiments will be also presented and discussed.
Section V concludes this work.

II. DISORDERED QW IN A FINITE CHAIN

The standard discrete-time QW is defined via a single
particle with two internal degrees of freedom. For convenience,
we refer to its internal states as “spin-up” and “spin-down.”
The QW protocol consists of two operations, a rotation of
spin through operator R, followed by a shift operation by S.
Without loss of generality, we consider a rotation around y

axis by an angle 2θ , such that R = e−iθσy (σy is the standard
Pauli matrix in the y direction):

R(θ ) =
(

cos θ − sin θ

sin θ cos θ

)
. (3)

The operator R rotates the spin at each site, and then the
spin-up component walks to the right, whereas the spin-down
component walks the left. Such spin-dependent shift operation
is implemented via the operator S:

S =
∞∑

n=−∞
(|n + 1〉〈n| ⊗ |↑〉〈↑| + |n − 1〉〈n| ⊗ |↓〉〈↓|),

(4)

where |n〉 refers to a ket state localized at site n, and |↑〉
and |↓〉 denote spin-up and spin-down states. The overall

FIG. 1. (Color online) Set-up of our finite-chain QW with disor-
der, with totally N + 2 sites, where site 0 and N + 1 are the boundary
sites with reflection operators R− and R+. Rotation operators of bulk
sites with n = 1,2 . . . N − 1,N depend on the local angle θn, which
fluctuate from site to site. The red slashes connect spin components
βn and αn+1, as they form the new “spinor” in our transfer matrix
formalism elaborated in our main text.

one-step quantum walk operator (without disorder) is then
given by

UDT ≡ S

(∑
n

|n〉〈n| ⊗ R

)
. (5)

The above described QW can be restricted to a finite regime
[20,51,52] through total-reflection coin operators R± at two
boundaries, with R± defined as

R± =
(

0 ∓1
±1 0

)
=

(
cos(±π

2 ) − sin(±π
2 )

sin(±π
2 ) cos(±π

2 )

)
. (6)

Note that R± conserves the probability inside a finite QW
chain and turns spin-down to spin-up, and vice versa. Since
the coin operators at two boundaries can be either R+ or R−, we
could have four choices of boundaries as [R(θ0),R(θN+1)] =
(R±,R±). In the following we mainly choose (R−,R+) as our
boundary condition. Studies of other boundary conditions can
be found in Appendix B. As depicted in Fig. 1, our QW
model has totally N + 2 sites, with N of them being bulk
sites.

Next we introduce disorder to the QW model, by con-
sidering a perturbation to the local rotation angles θn,
i.e.,

θn = θ̃ + δn for n = 1, 2, . . . ,N. (7)

Here θ̃ is identical for different sites n, while δn ∈ [−,]
may differ from site to site ( is hence seen to be the amplitude
of the box distributed random variable δn), giving rise to a
disordered QW on a finite number of sites.

For such a finite-site QW system with a disordered bulk
specified by θn, we can still define a mapping operator U ,
which can be obtained from the UDT in Eq. (5) [that is, R(θ ) →∏

n R(θn)]. In representation of different QW sites, U can be
expressed explicitly as a 2(N + 2) × 2(N + 2) matrix. As a
mapping operator, U is unitary with eigenvalue eiω:

U |ψ〉 = eiω|ψ〉, (8)

where ω is the quasienergy eigenvalue of U , and |ψ〉 is the
associated eigenstate characterized by

|ψ〉 = (α0 β0 α1 · · · αN+1 βN+1)T, (9)

with (· · · )T being the transpose operation. Because of the
special choices of rotation operators at two boundaries, the first
and last rows and the first and last columns of U have entries
0 only. Upon removing these rows and columns, U becomes a
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2(N + 1) × 2(N + 1) matrix. Correspondingly, the entries α0

and βN+1 in the eigenstate |ψ〉 can be also removed.

A. Transfer matrix formalism

In solving Eq. (8), one obtains the following recursive
relation between the entries of the eigenstate |ψ〉:

αne
iω = αn−1 cos θn−1 − βn−1 sin θn−1,

(10)
βne

iω = αn+1 sin θn+1 + βn+1 cos θn+1,

with n ∈ [1,N ]. Such relations can be expressed in the
following matrix form:(

βn

αn+1

)
= Tn

(
βn−1

αn

)
, (11)

with

Tn =
(

eiω sec θn − tan θn

− tan θn e−iω sec θn

)
. (12)

Here Tn is the transfer matrix [20] at site n.
In Eq. (11), the neighboring spinors’ components βn−1 and

αn form the new “spinors” (See Fig. 1), and they are chained
through local transfer matrices. Disordered parameter θn and
quasienergy ω are contained in these matrices. This allows us
to deal with disorder explicitly. This is one known advantage
of the transfer matrix formalism (TMF) [53,54].

Given the chain relation between entries of the eigenstate
|ψ〉 in Eq. (11), we still need to handle the boundary situations
with care, i.e., (β0

α1
) and ( βN

αN+1
). By setting n in Eq. (10) to be 0

and N , we obtain

α1e
iω = α0 cos θ0 − β0 sin θ0,

βNeiω = αN+1 sin θN+1 + βN+1 cos θN+1,
(13)

which further reduce to(
β0

α1

)
= c0

(
eiω

− sin θ0

)
,

(
βN

αN+1

)
= cN

(
sin θN+1

eiω

)
. (14)

Using the boundary conditions in Eq. (14), the chain relation
in Eq. (11), as well as θ0 = −π/2 and θN+1 = π/2, we finally
obtain the following equation that carries all the information
of Eq. (8):

cN

(
1

eiω

)
= TN · TN−1 · · · · · T2 · T1 · c0

(
eiω

1

)
. (15)

For a specific realization of disorder, only particular values of
the quasienergy ω satisfy Eq. (15). The coefficients cN and c0

can be determined from Eq. (15) and the normalization of |ψ〉.
To conclude, the TMF reduces a matrix equation with

dimension 2(N + 1) × 2(N + 1) [Eq. (8)] to a chained matrix
equation connecting N matrices, each of dimension 2 × 2
[Eq. (15)]. This framework will be used later. Indeed, in the
following we will not return to the original Eq. (8) but just
focus on Eq. (15).

B. Special quasienergies and the implication of ODD

By observing the transfer matrix in Eq. (12), we notice that
ω = 0, ± π/2,π are special quasienergies. For example, when

ω = 0, the transfer matrix reduces to

Tn = sec θn · I − tan θnσx, (16)

where σx is the Pauli matrix along the x direction and I is
defined as the identity 2 × 2 matrix. Such simple transfer
matrices can be exactly diagonalized in the basis of σx , so
that the product of all the transfer matrices can be easily
calculated. This being the case, whether ω = 0, ±π/2, or π

satisfies Eq. (15) can be checked without difficulty. If ω is
not equal to one of these special values, then it is virtually
impossible to analytically check Eq. (15) because the product
of these transfer matrices is hard to evaluate.

If ω assumes one of these special values, the corresponding
eigenstates can be also analyzed in a straightforward manner.
Take again the case of ω = 0 as an example. When ω = 0,
from Eq. (16) we get

N∏
n=1

Tn = 1

2
(λ+ + λ−)I + 1

2
(λ+ − λ−)σx,

(17)

with λ+ = λ−1
− =

N∏
n=1

tan

(
π

4
− θn

2

)
.

The “spinors” at both ends of |ψ〉 are proportional to (1
1), i.e.,

the eigenvector of σx , obtained from Eq. (14). Substituting
Eq. (17) into Eq. (15), we get(

1
1

)
= c0

cN

λ+

(
1
1

)
, (18)

which obviously holds by an appropriate choice of c0/cN .
Therefore, ω = 0 is indeed a quasienergy solution of the
disordered QW system.

In Eq. (17), if θn fluctuates around 0 or π (i.e., θ̃ = 0 or
π ), ln |λ+| will follow unbiased diffusion process around 0, so
|λ+| ≈ 1 for large N , which means that exponential decay of
the eigenstate |ψ〉 does not occur. This quantitative analysis
resembles that of off-diagonal disordered TBM [21,22], so
we suspect that our model also displays the physics of
ODD. Indeed, later in Sec. III we will show that ω = 0
is the localization-delocalization transition quasienergy, and
Dyson’s singularity emerges there, provided that θn takes
values randomly from a box distribution [−,]. If θn

fluctuates around values other than 0 or π , |λ+| will increase or
decrease exponentially, resulting in the localized 0 or π mode,
which we believe is related to those topologically protected
edge states currently being studied [51].

In the rest of this paper, we focus on the quasienergy
ω = 0 and quasienergies in its vicinity. In Appendix C, we
will discuss those cases with quasienergy values other than 0
or π .

III. PHYSICS OF ODD

As introduced in Sec. I, ODD for nearest-neighbor hopping
is quite different from diagonal disorder and leads to peculiar
properties. For our QW model, here we attempt to derive
its DOS and localization length, keeping mind that it is
possible for a delocalization transition to occur at some special
quasienergy values. Here the random angles θn are assumed
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to fluctuate in the interval [−,] (i.e., θ̃ = 0). The situation
for θ̃ = π is very analogous.

A. Analyzing quasienergy values

We start with Eq. (15) by considering its alternative form
after some transformations:(

1
0

)
= c

(
cos ω i sin ω

i sin ω cos ω

)
· P ·

(
1
0

)
, with

(19)

P =
N∏

n=1

[(
tan ϑn 0

0 cot ϑn

)(
cos ω i sin ω

i sin ω cos ω

)]
,

where ϑn = π
4 − θn

2 . The detailed derivation can be found
in Appendix A. Note that if and only if ω takes the actual
quasienergy value, then Eq. (19) will be satisfied. In particular,
it is now obvious to observe from Eq. (19) that ω = 0 is one
quasienergy value. To derive the DOS, we need to analyze
other quasienergy values allowed by Eq. (19). To that end we
first reinterpret Eq. (19), which is inspired by Schmidt’s work
[55] that treats spinors linked by transfer matrices as vectors
in a plane.

Let us consider a complex plane with the x axis denoting
the real part and the y axis denoting the imaginary part. In
Eq. (19), the initial “spinor” (1

0) can be treated as a vector lying
in the real axis with length 1 pointing in the positive direction.
So, from now on, we refer to the “spinor” as a “vector.” Let

R̃ =
(

cos ω i sin ω

i sin ω cos ω

)
and C̃n =

(
tan ϑn 0

0 cot ϑn

)
,

(20)

so R̃ and C̃n do the job of P in Eq. (19). Consider a vector
vn = ( xn

iyn
). Its angle with respect to positive x-axis is φn, and

tan φn = yn/xn. According to Eq. (19), we define

vn+1 = C̃n · R̃ · vn, (21)

with n = 1, 2, . . . ,N and v1 = (1
0). Hence, we can interpret

Eq. (21) [and Eq. (19) thereafter] as the following (see also
Fig. 2): R̃ rotates vector vn counterclockwise by an angle ω,
followed by stretching in the x coordinate by a factor tan ϑn

and in the y coordinate by the factor cot ϑn (due to C̃n), and
then vn+1 is reached with the following relation:

tan φn+1 = tan (φn + ω) cot2 ϑn. (22)

In Eq. (19), the initial vector vi and final vector vf are both

(1
0), and vi = v1, vf = R̃ · vN+1, so tan φ1 = tan(φN+1 + ω) =

0. As such, Eq. (19) presents such a physical picture: a vector
initially located in the positive x axis is rotated and stretched
or contracted, repeatedly, and after a final rotation, it lands
back on the x axis. Therefore,

φN+1 + ω = jπ. (23)

Note that ω has the period of 2π , so we assume ω ∈ [−π,π ].
Through interpreting Eq. (19) this way, we are now ready to
derive the DOS near ω = 0. Without loss of generality, we
consider a small positive quasienergy ω.

(a)
y

x

1.25y
y

0.8y

0.8x x 1.25x

ω

vn+1

vmid
v′

n+1
vn

(b)

y

x

1.25y

y

0.8y

0.8x x1.25x

ω

vn+1

vmid

v′
n+1

vn

FIG. 2. (Color online) The operations in Eq. (19) illustrated via
a complex plane with the x axis denoting the real part (the first
component of the spinor) and the y axis denoting the imaginary part
(the second component of the spinor). In the first quadrant, from top
to bottom, the four vectors are vn+1, vmid, v′

n+1, and vn. C̃n · R̃ acts
on vn to get vn+1 (if contracted) or v′

n+1 (if stretched). Specifically, R̃

rotates vn by angle ω to get vmid; then C̃n will stretch or contract vmid,
In panel (a), vmid’s angle is less than π/4, while in panel (b) its angle
is larger than π/4. Hence the length of vn+1 in panel (a) is smaller
than in panel (b), whereas the opposite is true for v′

n+1.

Regarding the rotating and stretching and contracting
processes, there are two important factors to be noted. First,
φn does not increase monotonically with respect to n. φn+1

could be smaller than φn (see Fig. 2). However, φn has a
tendency to increase because the positive ω forces vn to rotate
counterclockwise. Besides, a vector vn can never cross x and y

axes clockwise. For example, if vn is inside the first quadrant,
then tan φn and cot2 ϑn are positive, so for tan φn+1 in Eq. (22)
to be negative (i.e., crossing the axis), tan(φn + ω) must be
negative. Therefore, only the rotation R̃ can bring a vector from
one quadrant to another, while the stretching and contracting
operation C̃n cannot. The vector vn can only drift away by
crossing the positive y axis. Thus, in Eq. (23), j is always a
positive integer. Second, in a single realization of disorder, the
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following equation holds:

φN+1(ωb) > φN+1(ωa) for ωb > ωa. (24)

To prove this relation, we show that, given φn � φ′
n and ω >

ω′, then φn+1 > φ′
n+1. We assume that φn and φ′

n are quite close
and within the same quadrant, say the first quadrant. Then it is
easy to see that

tan φn+1 − tan φ′
n+1

= [tan(φn + ω) − tan(φ′
n + ω′)] tan2 ϑn > 0, (25)

so we get φn+1 > φ′
n+1. This conclusion can be easily proved

in other quadrants, too. Hence, starting with the same initial
condition φ1 = 0 and same realization of disorder, after N

cycles, the associated φN+1(ω) is a monotonous function of ω.
This feature is checked in our numerical studies.

Given the two factors above, we can now count the number
of states between quasienergies 0 and ω. Suppose that the
corresponding vector of ω sweeps an angle in between jπ and
(j + 1)π , then there exist j quasienergies ω1 · · · ωj that are
the solution of the systems, and their vectors sweep angles
π · · · jπ correspondingly. Therefore, the number of states
between 0 and ω is j , and, specifically,

If j � φN (ω) + ω

π
< j + 1 (26)

and

ω1 < ω2 < · · · < ωk < · · · < ωj−1 < ωj � ω,
(27)

with k = φN+1(ωk) + ωk

π
.

Here k ∈ [1,j ] and it is an integer. Next, we derive the
integrated DOS from the total number of states.

B. Integrated density of states

The general form of the integrated DOS normalized over
the number of sites is

NI (ω) =
∫ ω

−∞
ρ(ω′)dω′. (28)

Here ρ(ω) is the density of state. In QW, due to a symmetry
analyzed previously (see, e.g., [51]), the quasienergy ω is
symmetric with respect to 0. There are an equal number of
positive and negative quasienergy states so that NI (0) = 0.5.

As shown in the previous section, the total number of states
between quasienergies 0 and ω is j , and

j = [(φN+1(ω) + ω)/π ], (29)

where [x] denotes the largest integer less than or equal to x.
So in our case,

NI (ω) − NI (0) = j

N + 1
. (30)

Now we need to evaluate j .
As shown in Eq. (21), vn+1 can be obtained from vn after the

operation C̃n · R̃. The initial vector vi will experience totally
N + 1 operations to reach the final vector vf . To see this, we
add a matrix C̃N+1 with ϑN+1 = 0 to the right of Eq. (19). It
is the identity matrix so that Eq. (19) holds. From vi to vf , the
vector has passed many quadrants. We can define Nq to be the

number of operations required for the vector to leave the qth
quadrant since entering it. Obviously, the summation of all the
Nq equals N + 1:

∑
Nq = N + 1.

From vi to vf , the vector rotates totally by an angle about
jπ after N + 1 operations [see Eq. (29)] so the number of
quadrants passed is 2j and

2j∑
q=1

Nq = 2j

⎛⎝ 1

2j

2j∑
q=1

Nq

⎞⎠ = 2jNq = N + 1. (31)

Hence, we have this formula [22]:

NI (ω) − NI (0) = j/(N + 1) = 1

2Nq

, (32)

and Nq is the average number of operations required to pass one
quadrant since entering it. Equation (32) resembles Eq. (21) in
the paper by Eggarter and Riedinger [22]. Though we approach
the DOS through counting the number of states, similar to what
was done in Ref. [22], we are able to achieve this step by first
introducing the transfer matrix approach when analyzing the
spinors in our QW model. More importantly, because the above
expression for counting the number of states is similar to that
in Ref. [22], we can now analogously derive the DOS near
ω = 0.

C. Derivation of the DOS

In the previous subsection, the integrated DOS is derived in
Eq. (32), but with one parameter Nq to be determined (which
represents the average number of operations required to pass
one quadrant). Without loss of generality, we consider the first
quadrant.

Let zn ≡ cot φn. From Eq. (22) we have

zn+1 = zn

1 − (tan ω)/zn

1 + zn tan ω
tan2 ϑn. (33)

We define un ≡ ln zn for zn �= 0 or ∞. When

tan ω � zn � (tan ω)−1, (34)

one approximately has

un+1 ≈ un + ln(tan2 ϑn). (35)

Since ϑn is taken randomly from this interval [π/4 − ,π/4 +
], we can conclude that un executes a random walk [22].
One may notice that the fraction factor in Eq. (33) is always
smaller than 1 for positive zn, so the random walk in Eq. (35) is
accompanied by a small negative drift. However, if the vector
falls in the second quadrant, the fraction factor will be always
larger than 1, such that the random walk has a small positive
drift. The two drifts cancel each other approximately.

When un approaches the endpoints of the interval in (34),
the approximation in (35) no longer holds. Here we analyze
the situations upon approaching the endpoints to show that
they are similar to the situations analyzed in Ref. [22]. If this
is true, then the derivation there can be adopted here without
much modification.

For zn ≈ (tan ω)−1 (approaching the large zn limit), then
zn+1 ≈ (1/2)zn tan2 ϑn according to Eq. (33). The net shrink-
ing factor (1/2) in this expression indicates that zn+1 will not
keep growing. So umax = − ln tan ω can be considered as the
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reflection barrier as in Ref. [22]. We can also view the reflection
as the manifestation that the vector can never cross the x axis
clockwise (see Sec. III A.).

In the other extreme where zn ≈ tan ω (approaching the
small zn limit), the numerator in Eq. (33) will be much
smaller than 1 so that zn+1 � zn, indicating a sharp decrease
in zn. Once zn gets slightly below tan ω, zn+1 will be
negative, indicating that the vector moves into the second
quadrant. So this boundary umin = ln tan ω can be called an
absorbing barrier [22]. The vector passes the positive y axis
counterclockwise (see Sec. III A).

With all these, a mapping between our disordered QW
model and the TBM with ODD is established regarding
all the system parameters. Specifically, our Eqs. (32), (33)
and (34) resemble Eqs. (21), (18), and (19) in Ref. [22], and
the reflection and absorbing barriers are similar, too. Further
borrowing the method in Sec. III of Ref. [22], we directly find
Nq :

Nq = 4 ln2 tan ω

σ 2
, with σ 2 ≡ 2〈(ln tan2 ϑ)2〉. (36)

Using Eq. (32), we obtain the integrated DOS,

NI (ω) = 1

2

(
1 + σ 2

4 ln2 tan ω

)
, (37)

and then the DOS,

ρ(ω) = dNI

dω
≈ −σ 2

4

1

ω ln3 ω
. (38)

To conclude, we have shown that our disordered QW
model possesses the physics of ODD. It is for this reason
that, quite remarkably, the derivation of DOS for our QW
model resembles that in the original TBM with ODD [21,22].
Making clear this connection between our QW model and
the TBM with ODD is the main contribution of this section.
We highlight the two crucial steps: (i) linking the “spinor”
components of the eigenstate through the transfer matrices
and (ii) the interpretation of the eigenstate as a vector moving
in the complex plane when counting the number of states.

The localization length for quasienergies around 0 can be
derived in a similar way [22], and the result is

�−1(ω) ≈ − σ 2 ln ω

4 ln2 tan ω
≈ − σ 2

4 ln ω
. (39)

Equation (39) shows that the localization length diverges
as ω approaches 0, which is consistent with the previously
mentioned fact that the state with ω = 0 is delocalized.

D. Numerical analysis of the DOS

The derivation of DOS in Sec. III C involves some ap-
proximations, so we need numerical simulations to check the
analytical results. Specifically, we use Eqs. (22), (29), and (30)
to obtain the integrated DOS numerically, and then compare
our numerics with the analytical expression given by Eq. (37).
Given one disorder realization and one quasienergy ω, we use
the recursive relation in Eq. (22) to obtain φN+1, and then it is
substituted into Eq. (29) to obtain j , and finally we get NI (ω)
through Eq. (30). Note that a randomly chosen ω may not be an
actual quasienergy value associated with a particular disorder

−1 0 1 2

−7

−5

−3

−1

ln | ln tanω|

ln
(N

I
(ω

)
−

1/
2)

y = −2.00x − 1.40

y = −2.11x − 1.44

Numerical Data
Linear Fit
Theoretical Curve

FIG. 3. (Color online) Relation between integrated DOS and
quasienergy ω, shown via ln (NI (ω) − 1

2 ) as a function of ln | ln tan ω|.
The QW chain is of size N = 3 × 104. The (red) solid line is from
direct numerical calculations, the (blue) dashed line is a linear fit,
and the (green) dash-doted line is our theoretical curve. The linear
fit is applied to the domain ln | ln tan ω| ∈ [1,2], corresponding to the
quasienergy domain ω ∈ [6.18 × 10−4,6.60 × 10−2].

realization. However, if the system is sufficiently large, the
quasienergy values will cover the vicinity of 0 quite densely.
For this reason, a randomly chosen ω will not cause noticeable
error in terms of the counting of states.

The analytical relation between NI (ω) and ω is given by
Eq. (37). Alternatively,

ln

(
NI (ω) − 1

2

)
= ln

σ 2

8
− 2 ln | ln tan ω|. (40)

Figure 3 depicts ln (NI (ω) − 1
2 ) as a function of ln | ln tan ω| to

check this theoretical prediction. The theoretical intersection
on the y axis is ln σ 2

8 ≈ −1.40 and the slope of the curve
is −2. Our numerical results agree with theory well in
the main domain of our interest. However, for ω larger
than e−e ≈ 0.066 (equivalently, ln | ln tan ω| < 1), theoretical
results deviate from the numerical data, implying the failure
of the analytical approximations made in Sec. III C. This is
expected as a too large ω leads to errors in Eq. (34) and then in
Eq. (35). In the case of ω < e−e2 ≈ 6.18 × 10−4 (equivalently,
ln | ln tan ω| > 2), the system size N is no longer large
enough for a reliable statistical analysis, so the corresponding
numerical results also start to deviate from our theoretical
predictions.

E. A numerical study of the self-correlation
of delocalized states

Here we numerically check whether the average two-
point correlation of a delocalized state with ω = 0 decays
polynomially. We use many realizations of disorder to obtain
an average correlation function. This is different from our
previous calculations where only a single realization of
disorder is needed. Analytically, assuming that a dimensionless
product of disorder strength and two-point separation is much
larger than unity [28], the correlation exponent is shown to be
−3/2. This theoretical prediction is checked here by use of
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FIG. 4. (Color online) Dependence of correlation on the system
size with the disorder strength fixed, as shown by ln 〈|ψ(n)|2|ψ(1)|2〉
vs ln(n − 1), averaging over 1 000 000 disorder realizations. Here
|ψ(n)|2 is the probability of the wave function at site n, and
〈|ψ(n)|2|ψ(1)|2〉 is the averaged two-point correlation, with one point
fixed to be the site 1. From top to bottom, the system size is set to
be N = 50, 100, 400, 2000, and 20 000, respectively, and the linear
fitting curves have slopes −0.89, −1.09, −1.36, −1.47, and −1.50.
The disorder strength is fixed to be  = 0.4.

Eqs. (17) and (18), which depicts the eigenstate structure of
our disordered QW model.

In Fig. 4, the disorder strength is set to be  = 0.4, and
the system size varies from N + 2 = 52 to 20 002. When
the two-point separation increases, the correlation exponent
increases from 0.8 to 1.5 and stays almost stable at 1.5. Figure 5
shows how the correlation varies with the disorder strength.
The general observation is that increasing the disorder strength
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−12
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ln(n− 1)

ln
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)|2
|ψ

(T
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)|2

FIG. 5. (Color online) Dependence of correlation on disorder
strength with the system size fixed, as shown by ln 〈|ψ(n)|2|ψ(1)|2〉 vs
ln(n − 1), averaging over 1 000 000 disorder realizations. |ψ(n)|2 is
the probability of wave function at site n. System size N + 2 = 202.
Symbols (red) circle, (blue) square, (green) polygon star, (magenta)
diamond and (cyan) star represent  = 0.2, 0.4, 1.0, 1.4, and 1.56,
respectively. The associated linear fitting curves (solid, dash-dot,
dash, solid and dash-dot lines) give slopes −0.91, −1.26, −1.50,
−1.42, and −1.46, clearly indicating a saturation behavior at about
−3/2 as the disorder strength increases.

will increase the correlation exponent, but the exponent
again tends to saturate around −3/2. These numerical results
are consistent with the early theoretical prediction of ODD
[27,28]. However, we point out that if N and  are too large,
the statistical fluctuations become more pronounced due to our
finite number of realizations of disorder.

IV. EXPERIMENTAL PREPARATION OF THE 0 MODE
IN DISORDERED QW

It is now clear that when the disordered local rotation angle
variables θn fluctuate around zero [i.e., θ̃ = 0 in Eq. (7)], then
the 0 mode (eigenstate with ω = 0) in our disordered QW
model reflects the physics of ODD. However, if θ̃ �= 0, then
the corresponding 0 mode becomes unrelated to ODD physics.
For example, if θn slightly fluctuates around π/2, then the 0
mode will still be highly localized around the sites 0 and 1,
with negligible proportion in all other sites.

The 0 mode with θ̃ = 0 is in general delocalized and hence
it is hard to prepare in experiments. To address this issue, we
note that the highly localized 0 mode associated with θ̃ = π/2
is a good starting point. We propose to connect this localized
0 mode with our target 0 mode possessing ODD physics by an
adiabatic protocol [56–58]. That is, by slowly tuning the value
of θ̃ from π/2 to 0, we may reach our target 0 mode from the
localized 0 mode.

Consider then a conventional adiabatic evolution protocol,
through which the parameters θn in the QW operator U

are tuned slowly. Note, however, that the boundary rotation
angles θ0 and θN+1 must be fixed to ensure the conservation
of probability inside the QW chain. An adiabatic process
reflecting this constraint is as follows. At first, the system is
set as θ0 = −π/2,θ1 = θN+1 = π/2 and θn = π/2 + δn with
n ∈ [2,N ] and δn being random angle fluctuations. The mean
value of δn over N sites is denoted δ̄. The initial state of the
QW model is prepared with entries β0 = α1 = 1/

√
2 and all

other entries 0. It can be easily checked that this initial state is
precisely the 0 mode of the system (note that θ1 is chosen to be
π/2). Then, we slowly reduce θn during the QW process, until
θn = δn. To be more specific, the proposed adiabatic protocol
can be achieved by introducing a slow time dependence to θ̃

in Eq. (7), i.e.,

θn(t) = θ̃(t) + δn, (41)

with n ∈ [1,N ] denoting the bulk-site index, δ1 = 0, and θ̃ (t)
to be further specified below.

The QW mapping operator U associated with θn(t) is
denoted as U (t). The initial state |ψ(0)〉 is localized at the
first two sites, with U (0)|ψ(0)〉 = |ψ(0)〉. The time-evolving
state at time t is denoted |ψ(t)〉, obtained by

|ψ(t)〉 = U (t) · U (t − 1) · · · · · U (1) · U (0)|ψ(0)〉. (42)

For the sake of comparison between the time evolving state
|ψ(t)〉 and our target 0 mode state, we define the exact zero-
quasienergy eigenstate of U (t) as |ψ0(t)〉 (with U (t)|ψ0(t)〉 =
ei·0|ψ0(t)〉). Numerically we can directly diagonalize U (t) to
get |ψ0(t)〉. Our hope is to reach |ψ0(t)〉 through the time
evolving state |ψ(t)〉 emerging from our adiabatic protocol.
Indeed, the adiabatic theorem [56–58] states that |ψ(t)〉 ≈
|ψ0(t)〉 if the adiabatic conditions are fulfilled.
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FIG. 6. (Color online) Overlap probability between the actual
time evolving state |ψ(t)〉 and instantaneous 0 modes |ψ0(t)〉 for
four realizations of disorder in numerical experiments. The inset is
a magnified view of the tail part. The (red) solid, (pink) dashed,
(blue) dotted, and (green) dash-dotted lines represent four different
realizations of disorder with different δ (shown on the figure panel).
The disordered chain has totally N + 2 = 20 sites, with the disorder
strength given by  = 0.7.

We have numerically simulated the process depicted in
Eq. (42), and then compare |ψ(t)〉 with |ψ0(t)〉. Their overlap
probabilities |〈ψ(t)|ψ0(t)〉|2 vs t are plotted to check the
performance of a certain specific protocol. In the following,
by specifying θ̃ (t) differently, we examine two protocols to
realize the adiabatic process and hence the preparation of the
target 0 mode state that reflects the physics of ODD.

A. Tuning θ̃ at a constant rate

In this case we decrease the bulk θn at a constant rate with
respect to the evolution time. Specifically, θ̃(t) in Eq. (41) is
given by

θ̃(t) = θ̃ (0) − rt, (43)

where t = 0,1,2, . . . ,T is the evolution time, r = θ̃(0)/T is
the constant decreasing rate, and θ̃ (0) = π/2. The obtained
state fidelity |〈ψ(t)|ψ0(t)〉|2 vs t is plotted in Fig. 6.

Figure 6 shows that, for some realizations of disorder,
the fidelity near the final stage of the evolution decreases
significantly. The difference seems to be related to δ̄, the
actual mean value of the random fluctuations δn in particular
realizations of disorder. For example, the realization with
δ ≈ −0.076 (green dash-dotted line) has a final fidelity below
0.6. To understand this, we investigate the gap between the 0
mode and its neighboring mode, which is found to decrease
with t (the gap is calculated by diagonalizing the instantaneous
quantum walk operator U at particular times). When θ̃ (t) gets
close to 0, the 0 mode is not well separated from the bulk
modes, and the gap becomes quite small. Compared with other
three realizations, the realization with δ ≈ −0.076 has a gap
size of approximately half of others from t ≈ 250 to 300, so
this small gap has caused the most pronounced nonadiabatic
transitions. To confirm this, we increase the total evolution
time and indeed a better performance can be obtained (see
Fig. 8 presented later). In contrast, for other realizations in

Fig. 6, the final fidelity is high (above 0.95), an indication of
good performance due to the associated relatively large gaps.
To summarize, the performance of this adiabatic protocol is
determined by the total evolution time T and the gap size in the
final evolution stage. One can always improve the performance
by increasing T . In contrast, the gap size is sensitive to the
details of an actual realization of disorder. As an observation
from our numerical results, cases with a negative δ tend to
have a smaller gap size around the final evolution stage than
cases with a positive δ (note, this seems to be the trend and we
did not check all realizations).

B. Tuning θ̃ exponentially

To understand our motivation of this alternative protocol,
we first discuss the gap size of the clean system, where the
bulk θn is uniform (i.e., θn = θ̃). In this case, two quasienergy
bands emerge and the dispersion relation is given by cos ω =
cos θ̃ cos k [51], where k is the quasimomentum. The gap
between the bands is 2θ̃ at k = 0. The 0 mode sits in the
center of the band gap. We are thus motivated to design
the following protocol by roughly assuming that the gap
between the 0 mode and the bulk spectrum is proportional
to θ̃ :

d

dt
θ̃(t) = −λθ̃ (t). (44)

In this new protocol, the rate of change d
dt

θ̃ (t) ∝ instantaneous
gap ∝ instantaneous θ̃ (t). As the gap decreases, the rate of
change also decreases to keep the process being sufficiently
adiabatic. Therefore θ̃ is an exponential function of t ,

θ̃(t) = θ̃ (0)e−λt , (45)

where λ is the exponential decay rate of θ̃ . Using this protocol,
θn can be explicitly expressed as a function of t :

θn(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−π

2 , n = 0,

θ̃ (t), n = 1,

θ̃ (t) − N
N−1 θ̃ (T ) + δn, n ∈ [2,N ],

π
2 , n = N + 1.

(46)

Here N
N−1 θ̃ (T ) is to make sure that

∑N
n=1 θn(t) = ∑N

n=1 δn at
the final time t = T . Note also that at site n = 1, θ1(0) =
θ̃ (0) = π/2, which ensures that the initial 0 mode is the exact
eigenstate of the QW propagator at time zero.

Figure 7 shows the performance of this protocol. For
positive δ, the overlap probability at final time is quite high
(above 0.998). Interestingly, similar to the previous protocol
in which we sweep θ̃ at a constant rate, the fidelity degrades in
cases of δ < 0. In addition, in some realizations of disorder, the
gap size may be erratic during the last stage of the adiabatic
protocol, especially when δ turns from positive to negative.
This explains the relatively poor performance for the case
with δ = −0.108 in Fig. 7.

Nevertheless, we can further improve the fidelity by
increasing the total evolution time T or decreasing λ in our
exponential protocol. Panel (a) of Fig. 8 shows fidelity changes
with T . As a comparison, in panel (b) of Fig. 8 we show the
parallel fidelity vs T if θ̃ is swept at a constant rate. It is seen
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FIG. 7. (Color online) Overlap probability between the actual
time evolving state |ψ(t)〉 and instantaneous 0 modes |ψ0(t)〉 for two
different types of disorder realization. The chain has N + 2 = 20
sites, total evolution time T = 90, disorder strength  = 0.7, and the
parameter in the exponential protocol is characterized by λ = 0.0562.
(Red) Circles are for a case with the averaged angular disorder
δ = 0.064 being positive, with the overlap probability above 0.998 at
the final time. The inset shows more details. (Blue) Triangles are for
a case with the averaged angle disorder δ = −0.108 being negative.
In this case, the final overlap probability is only around 0.65, which
means that this protocol is still not working well with T = 90.

that, overall, tuning θ̃ exponentially as is done here is much
better than tuning θ̃ at a constant rate.

C. Correlation exponents in numerical experiments

We have shown in the previous subsection how to prepare
the 0 mode state possessing the physics of ODD. Here
we aim to show that states prepared in this manner can
indeed manifest the correlation exponent characteristic of
ODD physics. In doing so we need to perform averaging
over many realizations of disorder. We use the exponential
adiabatic protocol in our numerical experiment. To benchmark
our numerical experiments, we also analyze the correlation
exponent using the exact delocalized 0 mode state obtained
from Eqs. (17) and (18).

Before presenting our results, we first discuss two minor
issues. The first is related to the fact that the spinors represented
in Fig. 1 involve two different sites. That is, In a real
experiment, what is measured is likely the probability at each
site, whereas in our analytical study, we treat (βn−1 αn)T as
one “spinor.” However, we find that this difference has little
effect on the correlation exponent. The other issue is that we
have fixed θ1 to be π/2 (hence not random) (see Sec. IV
for details). Again, it is checked that this does not affect our
analysis.

We also note that the −3/2 correlation exponent was
derived under the assumption that the product of the dimen-
sionless disorder strength and two-point separation is much
larger than unity [28]. In real experiments, the QW chain might
not be long, so we are limited to relatively small two-point
separation. That means we should choose strong disorder
strength to fulfill this assumption. Figure 9 presents our results
from numerical experiments based on an exponential adiabatic
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FIG. 8. (Color online) Overlap probability vs t for different
protocol duration T , for an exponential protocol (a) [Eq. (45)] and
the previous constant-rate protocol (b). In both protocols, the disorder
realization is the same as the one with δ = −0.1083 in Fig. 7, and
N + 2 = 20, = 0.7. (a) From top to bottom, T equals 240, 210,
180, 150, 120, and 90. The corresponding values of λ is chosen to
be λ = − ln[0.01/(π/2)]/T . (b) From top to bottom, T equals 400,
300, 240, 180, and 90. In both panels, a larger T results in a better
fidelity of the final state. However, the exponential protocol in general
requires less time to achieve the same fidelity.

protocol starting from a highly localized state, as compared
with a direct investigation using the exact delocalized 0-mode
states. For two different chain length, the two-point correlation
exponents in our numerical experiments are found to be −1.48
and −1.36, as compared with −1.6 and −1.5 obtained from
pure theory. Certainly, the agreement between these two sets
of data can be further improved if we further increase T .
The conclusion is that our adiabatic protocol applied to our
disordered QW model is also useful in the actual demon-
stration of the two-point correlation characteristic of ODD
physics.

For small systems with weak disorder, the analytical
correlation exponents are not available [28]. To motivate
experimental studies on this matter, below we further exploit
our setup to investigate how the two-point correlation changes
with weak disorder strength  and system size (N + 2).

We choose four different system sizes with a fixed and weak
disorder strength  = 0.4. In particular, we let N + 2 = 12,
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FIG. 9. (Color online) Correlation function ln〈|ψ(T ,n)|2
|ψ(T ,1)|2〉 vs ln(n − 1), averaged over 1000 disorder realizations.
(a) Disorder strength  = 1, system size N + 2 = 32; (b)  = 1,
N + 2 = 42. The total evolution time T is chosen to assure
satisfactory fidelity in the adiabatic preparation of the 0 mode, with
T = 400 in panel (a) and T = 600 in panel (b). In both panels
(red) circles denote results from solving the 0 mode analytically;
whereas (blue) stars denote results obtained from our adiabatic
preparation of the 0 mode with the exponential protocol. Solid line
and dash-dotted line are the associated linear fitting curves over a
regime without much fluctuation. The slopes of the fitting curves
reflect the correlation exponents.

22, 32, and 42. The results are shown in Fig. 10. For each case,
we show statistical results obtained from analytical treatment
of the 0 mode with disorder and from our exponential adiabatic
protocol that starts from an initial localized state. The results
obtained from such two totally different methods agree very
well because they yield almost the same slopes from the fitting
straight lines, for all the four cases shown. The good fitting by
the straight lines indicates a polynomial behavior of the two-
point correlation function, but now with correlation exponents
given by −0.447, −0.588, −0.645, and −0.769, for N = 10,
20, 30, and 40, respectively. These exponents are far from
−3/2, but show a tendency to approach −3/2 as the system
size increases. Further increasing the value of  also increases
the magnitude of the correlation exponent. These results should
be of experimental interest as well and invite further theoretical
developments in studies of the physics of ODD.
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FIG. 10. (Color online) Correlation functions with weak disorder
in a QW model, shown via ln 〈|ψ(T ,n)|2|ψ(T ,1)|2〉 vs ln(n − 1),
averaged over 1000 disorder realizations. The total evolution time T

is chosen to make sure the adiabatic protocol can yield a satisfactory
fidelity of the 0-mode state. For example, if  or N is increased,
T is increased also (See Sec. IV B). Here  = 0.4, and from top to
bottom the system size is N + 2 = 12, 22, 32, and 42 respectively.
The slopes of the curves fitting the results using the exact 0 mode (red
solid line) are −0.45, −0.59, −0.65, and −0.77, whereas the slopes of
the curves fitting the results arising from our adiabatic protocol (blue
dash-dotted line) are −0.42, −0.59, −0.66, and −0.73 respectively.
The symbols and the lines share the same meaning with those in
Fig. 9.

V. SUMMARY

To summarize, we have shown that the physics of ODD can
be investigated by a disordered QW model. The associated
exotic features in the delocalization and in the wave-function
correlation are derived and numerically verified. Because
the physics of ODD is rarely cleanly observed in actual
experiments, our results will possibly motivate ongoing QW
experiments as a new platform to study the physics of ODD.
To facilitate such efforts, we proposed and analyzed adiabatic
protocols to prepare the exotic delocalized 0-mode state
with good fidelity. Our numerical experiments show that the
delocalized 0-mode states thus obtained can directly show
the correlation exponent −3/2 in the regime predicted by
existing theory. Our numerical experiments also show that
much different correlation exponents emerge if the product of
the system size and the disorder strength is relatively small.

APPENDIX A: FROM EQ. (15) TO EQ. (19)

Here we show how to derive Eq. (19) from Eq. (15).
Multiply both sides of Eq. (15) with e−i ω

2 , and decompose
Tn using the identity

Tn =
(

eiω sec θn − tan θn

− tan θn e−iω sec θn

)
≡

(
ei ω

2 0
0 e−i ω

2

)(
sec θn − tan θn

− tan θn sec θn

)(
ei ω

2 0
0 e−i ω

2

)
,

(A1)
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then Eq. (15) becomes(
e−i ω

2

ei ω
2

)
= c

(
ei ω

2 0
0 e−i ω

2

)(
sec θN − tan θN

− tan θN sec θN

)
·
(

eiω 0
0 e−iω

)(
sec θN−1 − tan θN−1

− tan θN−1 sec θN−1

)
...

·
(

sec θ1 − tan θ1

− tan θ1 sec θ1

)(
ei ω

2 0
0 e−i ω

2

)(
ei ω

2

e−i ω
2

)
.

(A2)

Replace (e
−i ω

2

e
i ω

2
) and ( e

i ω
2

e
−i ω

2
) in Eq. (A2) with the identities(

e−i ω
2

ei ω
2

)
≡

(
e−i ω

2 0
0 ei ω

2

)(
1
1

)
,(

ei ω
2

e−i ω
2

)
≡

(
ei ω

2 0
0 e−i ω

2

)(
1
1

)
.

(A3)

Equation (A2) then becomes(
1
1

)
= c

(
eiω 0
0 e−iω

)

·
N∏

n=1

[(
sec θn − tan θn

− tan θn sec θn

)(
eiω 0
0 e−iω

)](
1
1

)
.

(A4)

Multiply matrix P −1 from the left of both sides of Eq. (A4) and
insert the identity I = P −1P between neighboring matrices in
the right-hand side, where P −1 = P = (σx + σz)/

√
2, we will

arrive at Eq. (19) because

P −1

(
eiω 0
0 e−iω

)
P =

(
cos ω i sin ω

i sin ω cos ω

)
,

(A5)

P −1

(
sec θn − tan θn

− tan θn sec θn

)
P =

(
tan ϑn 0

0 tan ϑn

)
,

where ϑn = π
4 − θn

2 .

APPENDIX B: MORE ON THE BOUNDARY CONDITIONS

Previously we employ one specific boundary condition to
study the physics of ODD, but leave three other boundary
conditions unexplored. Here we will briefly summarize the
special quasienergies and the corresponding states [51,52] for
these different boundary conditions.

Given the bulk θn = π/4 + δn with |δn| < π/4, then the
boundary condition (θ0,θN+1) = (−π/2,π/2) [(π/2, − π/2)]
will lead to the edge states with quasienergy ω = 0 or π

localized around the boundary site n = 0 f [n = N + 1]. For
convenience, we assume δn = 0 in our qualitative discussions
below.

Interestingly, the 0 or π quasienergy states are absent under
the boundary conditions (θ0,θN+1) = (π/2,π/2). For the case
of (θ0,θN+1) = (−π/2, − π/2), it can be shown that there
exist localized edge states with quasienergies slightly differing
from 0 or π . These features are also relevant to understand

the topological properties in QW [51,52]. Here we elaborate
these features using the transfer matrix formalism (TMF).
Following the same method in Sec. III, the relation between
two boundaries given by Eq. (15) can be written in the form
analogous to Eq. (19):

(
1
0

)
= ca

(
cos ω i sin ω

i sin ω cos ω

)
· P ·

(
0
i

)
, (B1)(

0
i

)
= cb

(
cos ω i sin ω

i sin ω cos ω

)
· P ·

(
1
0

)
. (B2)

Here ϑn = π
4 − θn

2 and P is given in Eq. (19). Equation (B1)
is for the boundary condition (θ0,θN+1) = (π/2,π/2) and
Eq. (B2) is for (θ0,θN+1) = (−π/2, − π/2).

In the case of Eq. (B1) and using the same language as in
Sec. III A, an actual quasienergy ω needs to bring a vector
initially at the y axis, (0

i), to the x axis, (1
0). For simplicity, we

assume the vector goes from the positive y axis to the negative
x axis. ω = 0 or π certainly cannot accomplish this task since it
will let the vector stay in the y axis. Let us check if a small value
ε which slightly above 0 can be the quasienergy, using Eq. (22)
with θn = π/4, φ1 = π/2, φN = π − ε, and ϑn = π/8. It then
follows that tan φn should approach 0 from −∞ (that is,
after the vector enters the second quadrant). However, this
cannot be true since cot2(π/8) � 1 will prevent tan φn from
approaching 0. Together with other simple considerations, it
is seen that, under the above boundary condition, ω = 0,π

and any value near them cannot be the quasienergies of the
system.

In the case of Eq. (B2), the vector should go from the x axis
to the y axis. For simplicity, we assume the vector goes from
the positive x axis to the positive y axis. This corresponds to
tan φn going from 0 to ∞. It is obvious that ω = 0 or π cannot
achieve this goal. Again we consider a small value ω = ε. Now
the factor cot2(π/8) � 1 in Eq. (22) will speed up this process,
thus indicating that a small ω = ε may satisfy Eq. (B2). In
addition, according to Fig. 2, when φ is smaller than π/4,
the length of the vector tends to decrease exponentially, and
after it passes π/4 the length starts to increase exponentially.
Therefore, the corresponding eigenstate is sharply localized at
both edges. Except for this particular ε, we may expect that a
vector with a slightly larger ω may pass two more quadrants to
reach the negative y axis such that it can be another quasienergy
of the system. But this is not true because the vector cannot go
from the positive y axis to the negative x axis. Hence, this small
quasienergy ε is well separated from other quasienergies. Until
a quasienergy ω becomes large enough to cross the second
quadrant (i.e., from the positive y axis to the negative x axis),
no other ω can satisfy Eq. (B2).

APPENDIX C: OTHER SPECIAL QUASIENERGIES
IN THE DISORDERED QW

Obuse et al. [20] numerically showed that ω = ±π/2 can
be also special quasienergy values with singular DOS, which
hence indicate the presence of ODD in disordered QW. Here
we use the method developed in Sec. III to discuss these special
quasienergy values.
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We start with Eqs. (11) and (14) in Sec. II A. Without loss
of generality, we choose ω = π/2. Then the chain relation
analogous to Eq. (15) will be

cN

(− sin θ0

i

)
=

N∏
n=1

Tn · c0

(
i

sin θN+1

)
with

Tn = iσz sec θn − σx tan θn.

(C1)

Define

Pm ≡ T2m · T2m−1, (C2)

so

Pm = (tan θ2m tan θ2m−1 − sec θ2m sec θ2m−1) · I

+ (sec θ2m tan θ2m−1 − tan θ2m sec θ2m−1) · σy.
(C3)

Expressing Pm in the basis of σy , we have

Pm =
(− cot ϑ2m tan ϑ2m−1 0

0 − tan ϑ2m cot ϑ2m−1

)
, (C4)

where ϑj = π
4 − θj

2 . So in the σy basis for even N ,

N∏
n=1

Tn =
(

λ+ 0
0 λ−

)
(C5)

with

λ+ = λ−1
− = (−1)

N
2 cot ϑN tan ϑN−1 · · · cot ϑ2 tan ϑ1. (C6)

Returning to the σz basis, we have

N∏
n=1

Tn = 1

2
[(λ+ + λ−) · I + (λ+ − λ−) · σy]. (C7)

We substitute Eq. (C7) into Eq. (C1) and find that the boundary
conditions θ0 = θN+1 = ±π/2 will make Eq. (C1) hold, while
θ0 = π/2, θN+1 = −π/2 or θ0 = −π/2, θN+1 = π/2 cannot.
This conclusion is independent of the actual values of θn (n =
1,2, . . . ,N ), so whether ω = π/2 is the quasienergy of the
system is determined by the boundary conditions, as well as
the parity of the number of system sites.

In our setup, N + 2 is the total number of sites in the
disordered QW chain (See Fig. 1). Each bulk site corresponds
to one transfer matrix, and totally N transfer matrices are
involved in the calculation. When N is odd, one transfer mat-
rix will be left if we pair those transfer matrices according to

TABLE I. The existence (Y) or nonexistence (N) of ± π

2 modes
under different boundary conditions. In the bulk, values of θn (1 �
n � N ) are assumed not to satisfy π/4 − θn/2 = j · π/2 (j is an
integer).

Boundary condition ω = ± π

2 , N even ω = ± π

2 , N odd

θ0 = π

2 = θN+1 Y N
θ0 = − π

2 , θN+1 = π

2 N Y
θ0 = π

2 , θN+1 = − π

2 N Y
θ0 = − π

2 = θN+1 Y N

Eq. (C2). This leads to

N∏
n=1

Tn = 1

2
(iσz sec θN − σx tan θN )

· [(λ′
+ + λ′

−) · I + (λ′
+ − λ′

−) · σy], (C8)

where λ′
+ and λ′

− are obtained from Eq. (C6) by substituting
N with N − 1. Different from the case of even N , the
additional σx and σz flip the eigenspinors of σy , resulting in
the opposite conclusions. In particular, boundary conditions
θ0 = π/2, θN+1 = −π/2 or θ0 = −π/2, θN+1 = π/2 will
give rise to ω = π/2, while θ0 = θN+1 = ±π/2 cannot.

We summarize the results in Table I. Those states with
exactly quasienergy ±π/2 are delocalized. For example, in
the case of even N and θ0 = θN+1 = −π/2, we substitute
Eq. (C7) into Eq. (C1) and get

cN

(
1
i

)
= ic0λ+

(
1
i

)
. (C9)

Therefore, the spinors at two boundaries are the eigenspinor of
σy , and they are connected by λ+ in Eq. (C6). In general λ+ ≈ 1
because cot ϑj and tan ϑk (j,k ∈ [1,N ] are arbitrary indices)
will approximately cancel each other given that θj\k are drawn
randomly from a given distribution. This resembles the 0 mode
in Sec. II B. Note that the delocalized 0mode requires θn

to be drawn from a distribution symmetric with respect to
θ = 0 (we choose θn ∈ [−,] in our study), whereas the
delocalized ±π/2 states do not have this constraint. However,
the advantage of a delocalized state at ω = 0 is that it can
be obtained from localized ω = 0 state through an adiabatic
protocol (See Sec. IV). By contrast, the ω = ±π/2 states
cannot be obtained in this manner. The reason is simple. States
with ω = ±π/2 are delocalized regardless of θ , the mean value
of θn; whereas a delocalized ω = 0 state requires θ ≈ 0.
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