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Ballistic to diffusive transition in a two-dimensional quantum dot lattice
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Two-dimensional networks of ordered quantum dots beyond the percolation threshold are studied, as a typical
example of conducting nanostructures with quenched random disorder. Theory predicts anomalous diffusion
with stretched-exponential relaxation at short distances, and computer simulations on lattices of crossing, straight
paths of random length confirm such a behavior. Anomalous diffusion is interpreted as resulting from the higher
probability of taking straight, or ballistic, paths, when the traveled distance is comparable or shorter than the
lattice characteristic length. Diffusion turns over to normal for longer traveled distances, whence all paths tend to
become equiprobable. Such random lattice structures may represent a model for realistic quantum dot networks,
with potential applications in optoelectronics, photovoltaics, or spintronics.
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I. INTRODUCTION

Network-like structures made from one-dimensional (1D)
nanowires, nanorods, or nanotubes as building blocks can func-
tion both as devices and interconnects, and are thus expected
to play a prominent role in next-generation nanotechnology.
Recently, the synthesis of several such structures in two or three
dimensions (2D, 3D) by different techniques was reported for,
e.g., CdS, WO3, InAs, and PbSe nanowires [1–3]. Applications
can range from electronics [4] to electrochemistry [5] to strain
monitoring [6], and so forth. However, very intriguing 2D
networks can also be synthesized by the self-assembly of
arrays of quantum dots into superstructures, thus obtaining
networks that can range from perfectly ordered to quite disor-
dered, over different length scales [7–10]. Such quantum dot
superlattices display peculiar electronic band structures [11],
effectively behaving as arrays of pseudoatoms with discrete
states combined into bands. Electron injection, tunneling, and
hopping through these nanostructures becomes possible, and
such “metamaterials” are predicted to have a strong potential
for optoelectronic, photovoltaic, and spintronic applications.

In this work, I study a general problem of determining
the conductivity of carriers (“electrons”) hopping between
sites occupied by a disordered array of conducting reservoirs
(“quantum dots”), distributed over a planar region. The
treatment is semiclassical, by defining a temperature and
density range for which quantum correlation and conductance
quantization effects can be ignored. From a more funda-
mental viewpoint, such structures are also good candidates
for studying anomalous diffusion, because of the mixing
of transport pathways with largely different probabilities.
Non-Fickian diffusion and stretched-exponential correlation
functions often arise as a characteristic feature of transport
in strongly inhomogeneous media, in such diverse systems
ranging from cell membranes to groundwater flow [12–15].
The underlying physics may be reduced to the random walk
over a two-dimensional, multiply connected lattice containing
traps at some sites, although in our case (see below) the role
of “traps” must not be taken literally. In the following, I will
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first derive an analytic approximation for the probability of
traveling a path of given length, based on the diffusion over a
set of broken domains. Then, a computer model is formulated
for the random walk on a superpercolating 2D lattice, by
constructing random networks of crossing segments with
variable aspect ratio. Computer simulations of the traveled
path length and traveled straight distance allow one to deduce
the asymptotic behavior of the hopping current in such
disordered networks, supporting the theoretical prediction
of stretched-exponential anomalous diffusion over distances
shorter or comparable to the lattice characteristic correlation
length, indicating ballistic transport, while diffusion turns over
to normal at larger distances.

II. THEORETICAL MODEL

Let us start from a simple N × N square lattice with
z-fold connectivity. Each site, described by a position r and
nearest-neighbor distance d = r − r′, can be occupied by
a quantum reservoir, which may be charged by a variable
number of carriers. To fix the ideas, the reservoir could be
identified with a semiconductor quantum dot and the carriers
with electrons. The carrier density is taken to be not high, such
that correlated diffusion of several electrons through adjacent
paths is negligible; i.e., we consider a single-particle diffusion
picture in which quantum correlation effects can be ignored.
The energy scale for charging a dot with a single electron can
be simply estimated as Ec = e2

4πεε0d
∼ 1.44

εd
eV, with d in nm,

and ε typical values ranging from 4, e.g., in CdSe quantum dot
films [16], to ∼12–13 in silicon or GaAs heterostructures.

The site occupation rate of such a lattice must be beyond
the percolation threshold to permit long-range diffusion of the
carriers. However, the presence of geometrical correlations
between the sites (i.e., crossing straight paths of variable
length Q < N) makes the percolation threshold depend on the
“aspect ratio,” i.e., the average length of straight paths for a
given occupation density. Note that, besides dots hopping, this
setup is also representative of the transport across a 2D network
of randomly dispersed conducting nanowires or nanotubes,
with average sizes smaller than the characteristic length (∼√

A

for an occupied surface area A).
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At very low temperatures, the process of single-electron
hopping was predicted by Mott to go beyond the simplistic
nearest-neighbor jump between localized sites: diffusing
electrons rather look for the best compromise between the
lowest activation energy and the shortest jump distance. Mott’s
variable-range hopping gives an exponential relationship
between conductance and temperature, G ∝ exp(−B/T 1/3)
in two dimensions (in 3D the temperature exponent changes
to 1/4). At higher temperatures, however, the jump activation
energy becomes significantly smaller than the dot charging
energy, and the network conductance starts following an
Arrhenius-like diffusive behavior [17,18], thereby signaling
the prevalence of simple nearest-neighbor hopping (i.e.,
finding the shortest path becomes the rule). For a generic
assembly of dense quantum dots, the transition temperature
can be estimated as

T0 =
(

a

4d

)2

T ∗ (1)

and T ∗ � 2.8(Ec/kB)(d/a). The quantity a is the localization
length, which is typically a factor of 2–5 smaller than the
dot size d. For d in the range of a few nm, the charging
energy is a few tens of meV, and the transition temperature is
T0 ∼ 10–100 K, depending on the material and dot size d (the
smaller the dot, the higher the T0). Therefore, at about room
temperature nearest-neighbor hopping dominates the physics
of carrier transport, and single-particle random hopping across
the filled lattice sites will be the only mechanism considered
in this work. Also note that at low temperatures, quantum
effects such as Coulomb blockade can be observed, while at
room temperature electrons thermally overcome the Coulomb
barrier between dots (except for extremely small dots, for
which discrete conductance may still be observed up to near
room temperature [19]).

As said, the density of electrons is assumed to be small, so
that also direct e-e collision or dot saturation can be neglected.
Therefore, one may focus on the random walk of a single
particle. As usual in this kind of problem [20,21], we look
for the probability W (r,t) that after t steps the walker is
found at the lattice position r. The equation of motion for the
probability is

W (r,t + 1) =
∑

r′
p(r − r′)(1 − δr′)W (r′,t) + δrW (r,t).

(2)
p(r − r′) is the (geometric) probability of transition from a site
r′ to a neighboring site r in the dense lattice (without traps, or
dead ends); for a fixed lattice geometry and connectivity it is
just a constant, equal to some effective “diffusion coefficient”
D, the p are inversely proportional to the lattice coordination z,
and the sum of all the p must equal unity. The switch function
δr is 0, except at those sites r representing a trap, where it is
equal to 1 (therefore arresting the random walk); in practice,
it is the matrix of lattice sites occupied by a dot (=0) or empty
(=1). The last term in the equation is the (final) contribution of
a trapped particle to the equation of motion. From this writing,
it is seen that the probability W (r,t) is indeed independent
of the time (conservation of the norm). By assuming a finite
mobility, the time variable can be made to correspond with a
traveled path length Q = vt at constant velocity v.

As noted above, the meaning of “traps” for our lattice is
not just that of a zero-mobility site where, in the absence
of recombination, charge would accumulate. In this picture,
an electron starts from a dot, and keeps hopping randomly
to neighboring dots, until it attempts jumping to an empty
site, representing a dead end for the walking electron. In
disordered systems momentum is conserved only on average,
and it can be considered that at each hop the electron linear
momentum is randomized. In fact, the hopping carrier behaves
as a Brownian particle, which chooses at each step a new
value of momentum. However, when reaching a “trap,” its
choice becomes obligatory; it can only reflect k into −k thus
inducing an unwanted correlation in the statistics. From the
practical point of view of computing statistical path-length
distributions of various kinds (to be defined later on), it can
be considered as a “new” electron: its trajectory is interrupted
and restarted at another random site. Only in this sense, dead
ends represent a trap.

In fact, we are interested only in knowing the values of
the probability W (r,t) for the sites with δr = 0, i.e., for
the probability of a walker not falling into a trap. Then, by
summing up over all the paths not ending in a trap, an estimate
can be obtained of the probability for an electron to travel over
a distance, as a function of the lattice connectivity. Therefore,
it is useful to introduce the auxiliary probability:

W (r,t) = (1 − δr)W (r,t). (3)

This coincides with W at the filled sites, and vanishes at trap
(empty) sites. By following [20,21], its equation of motion is
obtained by multiplying the (1) by 1 − δr:

W (r,t + 1) = D
∑

ρ

η(r,r + ρ)W (r + ρ,t), (4)

where η(r,r + ρ) = 1, if both r and ρ are occupied, and 0
otherwise. It is a standard procedure to obtain the formal
solution to the (3) above by setting it as an eigenvalue problem:

D
∑

r′
η(r,r′)W (r + ρ,t)φn(r′) = λnφn(r). (5)

As shown in [21], the general solution is expressed in terms
of the initial distribution W0(r) as

W (r,t) =
∑

n

Anφn(r)λt
n, (6)

An =
∑

r

φ∗
n(r)W0(r). (7)

Note that at t = 0 the (6) becomes an identity because of
the orthonormality of the φn. Balagurov and Vaks presented
a general solution for this problem by a spectral method, first
introduced by Lifshitz [22].

However, an easier way to understand the behavior of
the solutions is to first note that Eq. (4) in one dimension
reduces to the ordinary diffusion equation over a piecewise
connected domain of total length L. The traps are represented
by i randomly distributed empty sites, corresponding to a
concentration c. Each trap i delimits a portion on the segment
of length li = |xi − xi−1|, with x0 the origin and xc+1 = L. The
lengths li can be arbitrarily distributed to reflect the presence
(or absence) of spatial correlations in the lattice (1D domain
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in this case). The probability is subject to W (xi,t) = 0 for
i = 0, . . . ,c + 1 at any t , and W (0 < x < L,t = 0) = 1/L. In
this case, the general solution would be the well-known [23]

W (xi,t) = (4/L)
∑

n

exp
(−k2

nDt/2
) sin kn(x − xi)

knli
(8)

for kn = (2n + 1)π/li .
The probability of traveling freely over a time t (or a total

path length Q = vt) is the average of integrals of W (x,t) over
the segment lengths delimited by the random distribution of
traps:

P (t) =
∑

i

〈 ∫ xi+1

xi

W (x,t)dx

〉
, (9)

the 〈. . .〉 indicating averaging of all possible distributions of
the segment lengths li .

The term k0 in the sum (8) defines the smallest wave number
of the walker, whose inverse length defines the largest size,
surface area, or volume (in 1D, 2D, or 3D) within which the
walker will not be captured by a trap. One can exploit the
analogy between the 1D solution of the diffusion equation
on a piecewise continuous domain (8), and its 2D (or 3D)
analogs, by replacing the limiting segment by a limiting circle
(or sphere).

By restricting the discussion to k0 = π/l, and taking
a Poisson distribution of traps, p(S) = c exp(−cS), with
concentration c, over a circle of surface S = 4/k2

0 = 4πl2,
the average of W is given by

P (t) =
∫ ∞

0 p(S)W (S,t)dS∫ ∞
0 p(S)dS

∝
∫ ∞

0
ce−cSe−π2Dt/SdS, (10)

that is, an integral of the type

I (t) =
∫ ∞

0
ce−cS−π2Dt/SdS

= 2π (Dct)1/2K1(2π
√

Dct), (11)

with K1 the modified Bessel function. At long times, K1 ∼
exp(−2π

√
Dct)/(Dct)1/4; therefore P (t) decreases as a

stretched exponential:

P (t) ∼ (Dct)1/4e−2π(Dct)1/2
. (12)

On the other hand, for a flat distribution p(S) = 1/c (a “gas-
like” distribution of traps) the long-times solution goes rather
as a standard (diffusion-like) exponential:

P ∗(t) ∼ e−π2Dct . (13)

The above results for the probability of free-travel time
qualitatively coincide, apart from numerical factors of order
1, with the results of Balagurov-Vaks [21] and Ryazanov [20].
Notably, sublinear diffusion near the percolation threshold has
been often invoked to characterize the random walk over a
complex (heterogeneous) configuration space [24–26].

III. NUMERICAL SIMULATIONS

To verify the above asymptotic limits, I set up a simulation
model by filling up a square N × N lattice with straight
segments made up of rows of “dots.” The lattice has a typical

FIG. 1. (Color online) Top row: Schematic representation of a
portion of two-dimensional 500 × 500 square lattices, filled with
straight segments of dots, with aspect ratio ā = 6 (left, in lattice
units), 12 (middle), and 18 (right); the aspect ratio is defined by the
average number of adjacent dots in a random segment. Bottom row:
Plot of the path-length probability P (Q) for the three values of the
segment aspect ratio ā = 6 (left), 12 (center), 18 (right). Continuous
lines represent fits with stretched-exponential law, with exponents
α = 0.8,0.7,0.65, respectively.

size of N = 500. Using an exponential filling probability,
straight segments of dots along the x and y direction can
be built, with variable segment length a. For a short average
segment length ā (or “aspect ratio”) the segment-length
distribution is flat, while it becomes increasingly closer to a
Poissonian as ā approaches the lattice length size. Therefore,
by continuously varying the aspect ratio of the segments, the
range from a flat to a fully Poisson distribution can be explored.
Three examples of lattices built with this procedure are shown
in Fig. 1 (top row): such configurations could be taken as an
idealization of real experimental structures; see, e.g., Fig. 1 of
Ref. [9].

A random walker starts from an occupied site and proceeds
by jumping to neighbor occupied sites, until a move brings
it to an empty site (a “trap”), at which point the walk stops,
and a new walker is launched. Typical simulation runs are
realized with m ∼ 106–107 walkers. Periodic boundaries are
applied throughout. In this way, statistics about the free-travel
time, and therefore the traveled free-path length Q, can
be accumulated, by averaging the contributions pi(Q),i =
1, . . . ,m, for each given occupation density and segment
aspect ratio. In Fig. 1 (bottom row), the results for the
distribution P (Q) = 1

m

∑m
i=1 pi(Q) [hereafter indicated as

〈pi(Q)〉 for brevity] are shown for different aspect ratios ā =
6,12,18 (in units of the lattice mesh), together with stretched-
exponential fits of the type P (Q) = A exp(−BQα). The best fit
for the stretching exponent gives α = 0.8,α = 0.7,α = 0.65,
for the three aspect ratios, respectively. Hence, it appears
that geometrical correlations in the segment length allow one
to numerically span the range of probability distributions
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FIG. 2. (Color online) Plot of the traveled distance probability
P (L) for the three values of the segment aspect ratio ā = 6 (circles),
12 (squares), 18 (triangles). Continuous lines represent exponential
law fits, with coefficients β = 0.9,0.8,0.7, respectively. The inset
shows the difference between the path length Q (red) and the traveled
distance L (blue), which may be measured under the application of
a potential at two points in the lattice. The shape of the electric field
lines is depicted in gray.

analytically determined by the extremes P ∗(t) and P (t),
respectively approaching an exponent of 1 as in Eq. (13) for
the shorter aspect ratio (in the limit of a → 1, the gas-like
random distribution is recovered), and an exponent of 0.5 as
in Eq. (12) for an increasing aspect ratio.

If now, rather than on the total traveled path length, we
focus on the traveled distance, that is, the straight distance L

between the end points of each free path, the plots shown in
Fig. 2 are obtained. This probability distribution is calculated
by adding all the contributions from any path leading to a same
value of L, for a random distribution of starting points. The
distribution P (L) = 〈pi(L)〉 is clearly exponential, P (L) ∼
exp(−βL) with a coefficient proportional to the effective
diffusion coefficient, β = 0.9,0.8,0.7, respectively, for the
aspect ratios ā = 6,12,18.

Note that the traveled distance is the important quantity
when looking at the particle current. For example, in the case
of electrons jumping through charged dots, the driving force
to push the electrons from one point in the lattice to another
one at a distance L would be provided by an electric field.
Experiments of such kind may be performed by placing nano
electrodes at two contact positions separated by L (see inset
in Fig. 2), and shooting a voltage difference between the two
tips [27]. For a fixed polarization voltage V , the electric field
scales as E ∝ L−1. Under such a condition, electrons will flow
by taking all the possible paths of length Q, leading from 0 to
L, and the current will result from a weighted average over all
such paths.

A probability function for electrons traveling the different
paths leading to the same distance under a driving force can
be constructed by observing that the electric field between
two points at distance L, and at different potential, roughly
decreases as L/Q (see again inset to Fig. 2). This probability
PL(Q), proportional to the electron current, can be calculated

FIG. 3. Plot of the ratio of field-weighted probability to traveled
distance probability Pw(L)/P (L) for the values of the segment aspect
ratio ā = 6 (squares), 12 (diamonds), and 18 (triangles). Dashed lines
represent the respective asymptotic constant values at large L. Arrows
indicate the approximate value of Lsat at which saturation to a constant
value occurs. The inset shows the same data on a log-log scale.

by weighting each contribution pL
i (Q) to the statistical distri-

bution P (Q) by the factor L/Q. [The superscript L indicates
that only the paths Q ending at the same straight distance L are
counted in PL(Q).] To normalize the result to one electron, i.e.,
to a current density j , I plot in Fig. 3 the ratio PL(Q)/P (L),
for the different values of aspect ratio ā = 6,12,18. It is easily
seen that this ratio must be proportional to the effective carrier
mobility, since

PL(Q)

P (L)
=

L
〈

1
Qi

× pL
i (Q)

〉
〈pi(L)〉 ∝ j

E
. (14)

For values of L large compared to a, the effective mobility
per electron saturates to a constant value, whereas at shorter
distances (i.e., a closer distance between the tips of the nano
electrodes) it increases faster than linearly. The finite lattice
size does not allow one to estimate the divergence for infinitely
close tips, where the electric field would approach infinity;
however, in real experiments the dots obviously have a finite
size, which here is represented by the lattice unit mesh.

IV. DISCUSSION AND CONCLUSIONS

At short distances, most hopping paths are straight or
nearly straight, i.e., ballistic rather than diffusive. At large
distances, L � ā, the current (flow probability per electron)
becomes constant as it should, in a macroscopic condition.
In the framework of our disordered quantum-dot network it
is understood that, once L is larger than the average segment
length, no straight paths (ballistic) from 0 to L are possible,
while at increasing L all the long electron tunneling paths
with Q � L (diffusive) tend to become equiprobable. It can
be also observed (see the arrows in Fig. 3) that the value of Lsat

at which the saturation to a constant value occurs corresponds
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quite well to the aspect ratio of the segments filling the lattice
(i.e., the average length of the straight segments), Lsat � ā.

In the hopping regime, the Nernst-Einstein equation linearly
relates the conductivity (i.e., the mobility) to the diffusion
coefficient, σ = e2D/kBT . From Fig. 3, it can be seen that the
asymptotic saturation value of the PL/P ratio actually scales
with the inverse of the network aspect ratio; i.e., the effective
mobility in the diffusive regime goes as μ ∝ 1/ā. This is
indeed consistent with the previous observation, according
to which the coefficient β in the exponential distribution of
P (L), proportional to the carrier diffusion coefficient D, was
found to decrease linearly upon increasing ā.

However, as shown in the inset of Fig. 3 where the same
data for PL/P are plotted on a log-log scale, in the path-length
domain L � ā, the mobility turns out to be independent of
the lattice characteristic length ā, and rather takes on a power-
law dependence on the path length, μ ∝ L−ξ , with a weak
exponent ξ � 0.1. Since this transition coincides exactly with
the change of behavior from diffusive to ballistic, as well
as with setting in of the anomalous diffusion with stretched-
exponential decay (see Fig. 1), one should take such a peculiar
power-law behavior of the mobility as characteristic of the
ballistic regime. Indeed, it may still be appropriate to retain
the concept of mobility also in this regime, since in the absence
of a driving force no net transport would occur. However, the
rather small value of the exponent ξ likely suggests that this
regime could be rather a sub-ballistic one [28], for which
the rms diffusion length is intermediate between the purely
diffusive, 〈r2〉 ∝ t , and truly ballistic, or Taylor, regime [29],
whence 〈r2〉 ∝ t2.

In conclusion, in this work I developed a semiclassical
model of carrier hopping through a disordered lattice of
charge reservoirs, or quantum dots, in a temperature and
density regime for which purely quantum effects, such as
correlated multiparticle transport or quantized conductance,
can be ignored. A simplified theoretical formalism shows
that by mapping this problem over that of classical particles

diffusing over a lattice of connected segments of finite length,
stretched-exponential scaling can be observed for the path-
length distribution function. Transition to ordinarily diffusive
hopping transport is recovered when the path length exceeds
the correlation length of the lattice. Numerical simulations
confirm these predictions, and allow one to deduce some
interesting while more general conclusions.

First, the stretched-exponential behavior appears not merely
as a convenient fitting function, but naturally arises from the
distribution of free-path segment lengths. Whenever straight,
or nearly straight, paths connecting two points in a disordered
network of conductors are available to carriers, these will
travel ballistically the distance in a time shorter than the
average classic (Fickian) diffusion time. This leads also to
a slower decay of the distance autocorrelation function, a
phenomenon often observed near the percolation threshold
for various physical systems.

Second, the current measured between two random sites in
a disordered network of conductors can increase faster than
linearly, when the average length of the conducting elements
(such as nanowires, nanotubes, arrays of conducting dots) is
comparable to or larger than the distance between the two
sites. In other words, the conductance between the two points
becomes a nonlinear function of the distance, because of the
relative dominance of ballistic over diffusive pathways at short
distances.
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