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Proton configurations in the hydrogen bonds of KH2PO4 as seen by resonant x-ray diffraction
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KH2PO4 (KDP) belongs to the class of hydrogen-bonded ferroelectrics, whose paraelectric to ferroelectric
phase transition is driven by the ordering of the protons in the hydrogen bonds. We demonstrate that forbidden
reflections of KDP, when measured at an x-ray absorption edge, are highly sensitive to the asymmetry of
proton configurations. The change of average symmetry caused by the “freezing” of the protons during the
phase transition is clearly evidenced. In the paraelectric phase, we identify in the resonant spectra of the
forbidden reflections a contribution related to the transient proton configurations in the hydrogen bonds, which
violates the high average symmetry of the sites of the resonant atoms. The analysis of the temperature
dependence reveals a change of relative probabilities of the different proton configurations. They follow
the Arrhenius law, and the activation energies of polar and Slater configurations are 18.6 and 7.3 meV,
respectively.
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I. INTRODUCTION

Although potassium dihydrogenphosphate (KH2PO4, here-
after KDP) was one of the first discovered ferroelectric
materials [1], the microscopic mechanism at play during its
ferroelectric phase transition has been one of the most difficult
to understand. The crystals of the KDP family belong to the
class of hydrogen-bonded ferroelectrics, in which protons play
an important role: their PO4 molecular units are linked by
hydrogen bonds, and ferroelectricity appears to be connected
to the behavior of the protons in these bonds. The generic
theoretical framework describing the hydrogen-bonded ferro-
electrics was introduced by Slater [2]: the static and dynamic
properties of these systems are described on the basis of
the configuration energy determined by proton configurations
(Fig. 1). In Slater’s model, each proton occupies one of
two possible crystallographic positions in its bond. In the
paraelectric phase, both positions are equivalent and randomly
occupied, while in the ferroelectric phase, one of the positions
is favored, according to the local ferroelectric polarization.
The ferroelectric transition appears thus as a classical order-
disorder phase transition [2–4]. Intensive experimental and
theoretical investigation has confirmed this model [5]. The
proton ordering at the phase transition has been evidenced and
correlated with atomic displacements along the c axis at the
origin of the electric polarization [6]. To explain the large effect
of deuteration on the transition, Blinc suggested that instead
of a static proton disorder, protons are in fact delocalized and
tunnel back and forth between both sites of a double-well
potential [7]. Since then, the nature of the phase transition,
either order-disorder or confinement-deconfinement, has been
much debated (see, e.g., reviews by Schmidt [8], Tokunaga and
Matsubara [9], and Lines and Glass [10]). Geometrical effects
have been suggested as an alternative to tunneling to explain
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the modification of the phase transition of deuteration [11,12].
Nowadays there is growing evidence for a combination of
both effects [13,14]. Indeed, recent ab initio calculations
[15,16] confirm the interplay of geometrical and tunneling
effects, and provide a more accurate view of the tunneling
mechanism, which involves not only protons but larger
clusters including heavy atoms. Experimentally, recent neutron
Compton scattering experiments have shown strong evidence
for the deconfinement of the protons in the paraelectric phase
[17]. While the role of the protons during the phase transition
is now well established, not much attention has been given to
their behavior in the paraelectric phase. In particular, a number
of different proton configurations have been proposed [2,18]
and are expected to coexist with different probabilities, but a
quantitative experimental evaluation of their probabilities is
still lacking.

In the present paper, we report on a spectroscopic study
of the forbidden reflections of KDP with resonant x rays. We
recently demonstrated that such forbidden reflections show
spectacular effects across the phase transition [19]. Here we go
further by carefully modeling the spectra and their temperature
dependence in the paraelectric phase; we determine the relative
probabilities of various proton configurations and show that
they change with temperature. Recently, a similar effect has
been studied in rubidium dihydrogen phosphate (hereafter
RDP), whose structure is isomorphic to that of KDP [20]. Due
to the limited number of data sets and the limited temperature
range, only one particular proton configuration (the so-called
Slater configuration—see below) was evidenced. Here, by
studying two different types of forbidden reflections (the 00l

and hhh reflections) at two different azimuths and over a large
temperature range, we are able to extract the contributions
of all three main proton configurations. To this purpose, we
present a methodology to deal quantitatively with the influence
of defects in resonant elastic x-ray scattering (REXS), the
scope of which goes well beyond the particular case of
KDP.
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FIG. 1. (Color online) Possible proton configurations in the four H bonds of a PO4 group. The central phosphorus atom is shown in yellow,
oxygen atoms are in red, and hydrogen atoms are in light blue. The potassium atoms, situated above and below the phosphorus atoms, are
omitted for clarity. The shading effect denotes a different height perpendicular to the plane of the figure. The average configuration is fully
symmetrical and does not allow E1E1 scattering at the forbidden reflections, but the real configurations do.

II. FORBIDDEN REFLECTIONS IN THE PARA- AND
FERROELECTRIC PHASES

A. General structure factor for the forbidden reflections

The paraelectric-ferroelectric phase transition of KDP
occurs at the Curie temperature Tc = 123 K. The paraelectric
and ferroelectric phases have, respectively, body-centered
tetragonal (I 4̄2d, Z = 4) and face-centered orthorhombic
(Fdd2, Z = 8) systems, and ferroelectricity appears along
the c axis. In the paraelectric (tetragonal) phase of KDP,
each proton tunnels back and forth between two sites of
equal probabilities related by symmetry. The disordered
distribution of each proton between two oxygen atoms of
the hydrogen bond has been confirmed by neutron diffraction
[21]. The description of the paraelectric phase by the I 4̄2d

group corresponds to the structure averaged over the proton
distribution.

The usual settings used for the description of the ferro-
and paraelectric phases differ by a rotation of 45◦ around the
c axis accompanying a doubling of the unit cell. Below we
shall use the settings which correspond to the paraelectric
(disordered) phase.1 In these settings, Bragg reflections with
Miller indices hhl such that 2h + l = 4n + 2 are forbidden
in conventional x-ray diffraction in both phases, due to a
glide-plane symmetry. However, they appear with significant
intensity when the energy of the incoming x rays is tuned close
to an absorption edge, due to the anisotropy of the tensor of
scattering [22]: indeed, we recently reported the observation
of the 002 and 222 reflections at the potassium K edge [19].
We showed that the intensity and the energy spectra of these
reflections undergo huge changes across the phase transition
because the electric dipole-dipole (E1E1) resonant scattering
vanishes in the higher-symmetry (tetragonal) phase.

The general structure factor F of the Bragg reflections with
Miller indices hhl, 2h + l = 4n + 2, is equal to

F = 2
(
f (1) − f (2)

)
, (1)

where f (1) and f (2) are the atomic scattering factors of
two potassium atoms related by a glide-plane symmetry,
for instance those with coordinates (00 1

2 ) and ( 1
2 0 1

4 ). Both
atoms have essentially the same atomic scattering factors

1unlike in Ref. [19].

off-resonance, but they become highly sensitive to the local
anisotropy when the incident x rays excite one of their
electronic transitions, providing a sizable difference of atomic
scattering factors, which in turn allows for the existence of
these pure resonant forbidden reflections.

B. Resonant elastic x-ray scattering

REXS is usually described by a series of electric multipoles.
In the following, Cartesian tensors will be used to describe the
x-ray polarization dependence of the atomic scattering factors
and of their structure factors. The atomic scattering factor,
expanded up to the quadrupolar terms, can be written [23]

f = ε′∗
α εβ

[
f dd

αβ + i

2

(
kγ f

dq

αβγ − k′
γ f

dq∗
βαγ

) + 1

4
k′
γ kδf

qq

αγβδ

]
,

(2)

with the implicit sum over the indices α,β,γ,δ ∈ {x,y,z}.
The tensors f dd , f dq , and f qq stand for the electric dipole-
dipole (E1E1), dipole-quadrupole (E1E2), and quadrupole-
quadrupole (E2E2) resonances, respectively. k and k′, on one
hand, and ε and ε′, on the other hand, are the incident and
scattered wave vectors and polarization states. In the following,
we will use the usual decomposition of the x-ray polarization
onto the basis vectors σ and π , respectively, perpendicular and
parallel to the scattering plane. We shall also use H = k′ − k
and L = k′ + k.

The E1E1 term, described by the second-rank tensor f dd ,
is usually largely dominant. This is the case in the ferroelectric
phase, in which the twofold axial symmetry of the resonant
site allows for a nonvanishing tensor component (f dd

xy ) in the
structure factor. But, in the paraelectric phase, the twofold axis
turns into a pseudofourfold axis (symmetry 4̄), cancelling all
off-diagonal elements of symmetric second-rank tensors such
as f dd : the glide-plane extinction rule still applies [19].

In the absence of E1E1 contribution, weaker terms become
important. The E1E2 and E2E2 terms, described by the third-
rank tensor f dq and the fourth-rank tensor f qq , respectively,
are the most obvious candidates, and a symmetry analysis
shows that they actually do not vanish at the forbidden
reflections considered here. We will nevertheless ignore the
E2E2 term, which is believed to be much weaker than the
E1E2 term in this case, based on spectroscopic calculations
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with the code FDMNES [24,25], and cannot account for the
temperature dependence reported below.

The E1E2 term (as well as the E2E2 term) is essentially
temperature independent, despite the small variation of the
crystal structure in the absence of phase transition [26], and
cannot account for the temperature dependence of forbidden
reflections in Ge, ZnO, and GaN, in which the E1E1 term also
vanishes [27–30]: in these systems, the intensity of forbidden
reflections increases with temperature, despite the Debye-
Waller effect, and the intensity growth is accompanied by a
change of spectrum that can only be explained by interference
with a second scattering process [29,30]. The latter was
ascribed to thermal-motion-induced (TMI) scattering [31].
This mechanism is also expected in KDP. Similarly to what has
been done for Ge, ZnO, and GaN, we will assume that the main
contribution to the TMI term comes from the displacement of
the resonant ion. The TMI structure factor can be written [31]

F TMI
αβ = iHδ

∂fαβ

∂uγ

〈uγ uδ〉 ≡ iHγ

∂fαβ

∂uγ

〈
u2

γ

〉
, (3)

where u is the displacement of the resonant atom (potassium in
our case), and the implicit sum over indices γ and δ is assumed.
The right part of (3) is valid for (at least) orthorhombic
point symmetry, which is the case here. The mean-square
components 〈u2

γ 〉 provide the temperature dependence of this
term. We define for the following the TMI third-rank tensor
f TMI

αβγ as

f TMI
αβγ = i

∂fαβ

∂uγ

〈
u2

γ

〉
, (4)

such that f TMI
αβγ is intrinsic to the material and couples with the

beam according to F TMI
αβ = Hγ f TMI

αβγ .
It will be shown below that the E1E2 and TMI terms alone

cannot explain the experimental results in KDP. We need to
consider an additional contribution to the resonant atomic
factor, which is provided by transient proton configurations
[20,32]: protons occupy only half of their crystallographic
positions and, in the paraelectric phase, each of them tunnels
back and forth between both sites of a double-well potential at
a jump rate of the order of 1012 s−1 [33]. Because the waiting
time between jumps is larger by several orders of magnitude
than the typical time of x-ray resonant scattering (∼10−15 s),
x rays “see” the crystal as a series of snapshots, producing an
effect similar to thermal motion and static disorder [31]. Each
transient proton configuration violates the crystal symmetry,
but the space symmetry restores after averaging over all
possible proton configurations. A given proton configuration C
induces a relaxation of the structure. The displacement u(C) of
the resonant atom from its high-symmetry site is accompanied
by a correction to the resonant scattering factor which is
dominated by the E1E1 contribution 
fαβ(C). Similarly to
the case of TMI scattering [31], it contributes to the resonant
structure factor with the partial contribution f C

αβγ :

f C
αβγ = 
fαβ(C)uγ (C). (5)

We can consider the global contribution of transient proton
configurations f PC as the coherent sum of the configurations

C with probabilities p(C),

f PC =
∑
C

p(C) f C . (6)

Let us note that a given configuration C yields a nonzero
contribution f C only if it induces a local structure relaxation
which displaces the resonant atom from its high-symmetry
site.

In the following, we will consider only three asymmetric
proton configurations, which were proposed by Slater [2]
and Takagi [18]: the polar (P), Slater (S), and Takagi (T )
configurations (Fig. 1). In the polar and Slater configurations,
there are two protons near each PO4 group, filling half of
the four available sites. In the Takagi configurations, three
protons are attached to one PO4 group and only one proton
is attached to a neighbor group. In fact, each of these three
configurations may be decomposed into two similar and
equiprobable configurations (P1 and P2, S1 and S2, T1 and
T2) whose sum entirely fills the crystallographic sites of the
protons. In the following, we consider their contribution by
pairs, i.e., f P = f P1 + f P2 , etc. Additionally, one should also
consider the case of fully symmetrical configurations, when a
PO4 group is surrounded by either 0 or 4 protons. Due to
their high symmetry, these configurations contribute to the
dipole-quadrupole term only, and not to any extra term.

Altogether, the third-rank resonant atomic factor in the
paraelectric phase of KDP can thus be considered as the sum
of five terms:

f = f dq + f TMI + p(P) f P + p(S) f S + p(T ) f T . (7)

C. Formalism of the structure factor in the paraelectric phase

The formalism below applies only to the paraelectric phase
of KDP, when the resonant atoms occupy the crystallographic
sites with 4̄ symmetry, i.e., the potassium (the experimental
case presented here) or the phosphorus atoms.

Any third-rank tensor with 4̄ point group symmetry admits
six independent tensor components [34], but only three of them
change sign under the glide-plane symmetry and contribute to
the structure factor (1) of the forbidden reflections of the type
hhl with 2h + l = 4n + 2: fxxz = −fyyz, fxzx = −fyzy , and
fzxx = −fzyy . It has been demonstrated [32] that the structure
factor (1) of the dipole-quadrupole resonant scattering as well
as those of the other resonant contributions considered in this
paper can be written in the following matrix form:

F ≡ Fεε′

= ε′
⎛
⎝ fxxzHz 0 fsHx + faLx

0 −fxxzHz fsHy + faLy

fsHx − faLx fsHy − faLy 0

⎞
⎠ε,

(8)

where fs = 1
2 (fxzx + fzxx), fa = 1

2 (fxzx − fzxx).
Except for the dipole-quadrupole term, all terms of Eq. (7)

are of E1E1 resonance origin and are thus symmetric over per-
mutation of the polarization indices (αβ): thus only the dipole-
quadrupole term may contribute to the antisymmetric part fa .

It follows from Eq. (8) that different forbidden reflections
can have different energy spectra, since several independent
tensor components are involved in the structure factor. In more
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FIG. 2. (Color online) Temperature dependence of the spectra of the 002 and 222 forbidden reflections at two azimuths each. Intensities
were corrected for the fluorescent background, normalized by the incident beam intensity, and corrected for the varying ratio between integrated
intensity and peak intensity of the rocking curve. Color bars show the temperature scale.

detail, reflections 00l,l = 4n + 2 are provided by the fxxz

component and the antisymmetric component fa , while reflec-
tions hh0,h = 2n + 1 are determined by the components fs

and fa (i.e., fxzx and fzxx). All three components contribute to
the structure factor of hhh,h = 4n + 2 forbidden reflections.

III. EXPERIMENT

A single crystal of KDP was grown and cut with surface
normal 001 at the Institute of Crystallography (Moscow).
REXS was measured at beam line BM28 (XMaS) of the
European Synchrotron Radiation Facility, with preliminary
measurements and fluorescence measurements performed at
beam line I16 of Diamond Light Source [35]. The sample
was enclosed in a closed-cycle cryofurnace and the tem-
perature varied between 15 and 320 K. The 002 and 222
forbidden reflections were measured at the potassium K edge
(∼3.608 keV). The measurements were performed in vertical
scattering geometry with the natural linear (σ ) polarization of
the incoming beam and without polarization analysis of the
scattered beam. The azimuthal reference is the 100 axis and
the azimuth ψ is zero when the azimuthal reference is in the

scattering plane. KDP is known to suffer from radiation dam-
age, and so great care was taken to ensure the reproducibility
of the results presented here. Indeed, we observed radiation
damage during the preliminary measurements at beam line
I16 when the incident beam was insufficiently attenuated.

Rocking curves were recorded at 3.6095 keV and showed
a Lorentzian shape with a varying width as a function of
the temperature [19]. Energy spectra were recorded in the
same temperature loop and were corrected for the fluorescence
background and for the varying ratio between integrated
intensity and peak intensity of the rocking curves. The
corrected spectra Iexp(hkl,ψ) are shown in Fig. 2.

As reported in [19], a spectacular change of spectrum and
intensity can be seen across the phase transition (Tc ≈ 123 K),
due to the switching on/off of the pure electric dipole (E1E1)
component: the latter vanishes in the tetragonal phase for
symmetry reasons [19,32]. In this paper, we focus on the
tetragonal phase, whose energy spectra show interesting
features in their temperature dependence. Looking at the
002 reflection, we see that (1) the spectrum changes with
azimuth, meaning that more than one independent component
contributes to the structure factor, in agreement with the
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symmetry analysis presented in Sec. II; (2) the spectra at both
azimuths change with temperature, revealing the contribution
of more than one scattering process, with different temperature
dependences (presumably one of them is independent of the
temperature); and (3) the change of spectrum is stronger at
ψ = −83◦ than at ψ = −48◦. The case of the 222 reflection
is less spectacular but essentially shows the same features. We
note that both reflections have very different spectra, pointing
at a very different mix of the contributing amplitudes.

IV. DATA ANALYSIS

An analysis of the ferroelectric phase can be found in
Appendix B. Here we deal only with the paraelectric phase.

The structure amplitude (8) of forbidden reflections in-
volves three independent complex tensor components: they
interfere in the intensity and it is thus impossible to extract
them directly from the four measurements (two reflections at
two azimuths). The analysis of the experimental spectra is
therefore based on modeling with the FDMNES code [24,25].
The latter calculates resonant scattering amplitudes based on
an input crystallographic configuration. One should thus be
able to evaluate several parameters of the crystallographic
configuration, such as thermal motion and the relative proba-
bilities of the various proton configurations, by trying to fit the
experimental spectra.

In more detail, we calculate the amplitudes Fσσ and Fσπ ,
which are the values of the structure factor (8) for incident
polarization σ and scattered polarization σ and π , respectively.
The calculations are performed with the multiple scattering
method of FDMNES [36], using the convolution parameters
obtained from the fits of the absorption spectra (see Appendix
A).

A. Self-absorption correction

In the kinematical theory of diffraction, the integrated
intensity I measured in Bragg geometry from a thick sample,
with incident polarization σ and no polarization analysis of
the scattered beam, is proportional to

I =
[ |Fσσ |2
μσ + gμ′

σ

+ |Fσπ |2
μσ + gμ′

π

]
e−2M, (9)

where μ and μ′ are the polarization-dependent absorption
coefficients of the incident and outgoing beams, respectively,
g = sin η

sin η′ is a geometrical factor given by the incident angle
η and exit angle η′ with respect to the sample surface, and
e−2M is the Debye-Waller factor. This expression takes into
account the anisotropic absorption of the material, provided
it is small enough so that the polarization of x rays is not
modified along the propagation. In the following, we will use
a single absorption coefficient μ̃ instead of three distinct ones,
leading to the simplified expression

I ≈ |Fσσ |2 + |Fσπ |2
μ̃(1 + g)

e−2M. (10)

The anisotropic character of the material is reflected by
the choice of μ̃, which is chosen differently for different
reflections and different azimuths. For instance, for the 002
reflection, which is parallel to the tetragonal axis, μ̃ = μ⊥,

where μ⊥ is the absorption coefficient for a beam with
polarization perpendicular to the tetragonal axis, is a good
approximation (for all azimuths), since in this particular case
μσ = μ′

σ = μ⊥. On the other hand, for the 222 reflection at
the azimuths reported here, it turns out that μ̃ = μiso, where
μiso is the isotropic part of the linear absorption coefficient, is
a reasonable approximation.

The experimental spectra Iexp(E) were fitted against
Eq. (10), where e−2M is taken from the literature [37] and
the spectra Fσσ (E) and Fσπ (E) are calculated according to a
procedure detailed below.

B. Model of the resonant scattering amplitudes

According to the model described in Sec. II, the resonant
scattering factor is the sum of the dipole-quadrupole, TMI,
and various PC contributions [Eq. (7)]. Methods to calculate
the various contributions to the atomic scattering factor were
developed in previous works [20,38]. It is, however, easier to
work directly on the structure amplitudes, which are a linear
function of the tensor components of the atomic scattering
factor [Eq. (8)]. We can write

Fεε′(hkl,ψ,E,T ) =
∑
X

aX(T )FX
εε′(hkl,ψ,E), (11)

where the FX
εε′ (X ∈ {dq,T MI,P,S,T }, (ε,ε′) ∈ {σ,π}) are

the structure factors of the various contributions projected onto
the polarization states according to Eq. (8). We will justify
below that the temperature dependence can be fully accounted
for in the aX coefficients, which in turn are independent of
the other parameters. In the case of the contributions of the
proton configurations, the aX coefficients are proportional to
the probability of the corresponding configurations.

The dipole-quadrupole (E1E2) contribution can be calcu-
lated directly from the average crystal structure with FDMNES,
while preliminary modeling is required for the other terms. Ab
initio calculations showed that its spectrum in the wurtzites
is essentially temperature independent [26]. In the case of
KDP, we find the same result, using the temperature-dependent
structure proposed in Ref. [21]. Nevertheless, we allow for
a global temperature-dependent scaling factor adq , which
accounts for a small dependence of the E1E2 term on atomic
positions.

C. Model of TMI scattering

The TMI contribution to the resonant structure factor was
calculated with the same method as that developed for Ge
and the wurtzites [38,39], which has been validated by ab
initio calculations [26]. We simulated a 2 × 2 × 2 supercell
in which all atoms were randomly displaced from their
average positions. The displacement amplitudes were chosen
according to the data given in Ref. [21] for 125 K. This
model neglects the correlations between the displacements
of the various atoms. Therefore, it yields similar results to a
model taking into account the displacements of the resonant
atoms alone. In this approximation, the TMI contribution to
the atomic factor depends linearly on the displacements of the
resonant atom, which are supposed to be isotropic. Moreover,
the calculations of the TMI spectrum show that its line shape
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FIG. 3. (Color online) Contributions of the various scattering processes to the intensity of the forbidden reflections 002 and 222, for the
measured azimuthal angles, at 300 K. See text for details.

does not change with temperature, so that the temperature plays
only as a global scalar on the spectrum. This point has been
demonstrated with ab initio calculations in the case of ZnO
and GaN [26]. We can thus consider the TMI contribution as
the product of a temperature-independent spectrum F TMI

εε′ (E)
and a temperature-dependent scalar coefficient aTMI(T ).

D. Model for the contribution of the proton configurations

A method to calculate the PC contributions has been
reported [20]: it consists of calculating the various tensor
components f C

αβγ for each configuration according to Eq. (5)
after relaxing the structure in the chosen configuration. After
the calculation of the f C

αβγ , phenomenological expressions
describing the azimuthal dependence of the reflections are
derived and used to fit the experimental data. This approach
gives satisfactory fits to the experimental data.

In order to improve the spectra description we present
here another method to simulate the energy spectra, which
we believe is more reliable because all calculations are made
in the same FDMNES calculation and there is no necessity to
use phenomenological expressions. Instead of modeling the
Cartesian components f C

αβγ , we directly calculate the structure

amplitudes Fεε′ of the forbidden reflections as a sum of several
contributions. Similarly to the method applied in Ref. [38], we
suppose that each contribution to the scattering amplitude may
be considered as a temperature-independent spectrum FX

εε′(E)
(X ∈ {P,S,T }) multiplied by a temperature-dependent co-
efficient aX(T ). To calculate the PC contributions, we have
constructed supercells, where all protons occupy the same
configuration chosen among the P , S, and T configurations.
Here we consider the proton configurations as independent
static defects. The ab initio code VASP [40,41] was used
to compute the relaxation of the structure for the chosen
proton configuration and obtain new atomic coordinates. The
resulting coordinates are slightly different inside each pair
of configurations. Of particular interest is the displacement
u(C) of the resonant atom. These calculations were made for
each temperature, taking into account the change of lattice
parameters and of the spacing δ between the two proton sites
of the H bond, in correspondence with the data given in
Ref. [21]. The variation of u(C) obtained in the 125–300 K
range does not exceed 5% for the three types of proton
configurations considered here and provides similarly weak
variations of 
fαβ (C). The variation is essentially a global
scaler of the spectrum with a linear dependence in temperature.
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FIG. 4. (Color online) Left: Temperature dependence of the various contributions to forbidden reflections. Right: Arrhenius plots of the
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It supports our model, in which each contribution FX
εε′(E) is

assumed to be independent of the temperature, provided the
global dependence is included in the coefficient aX(T ). Then
the spectra FX

εε′(E) corresponding to each configuration are
calculated with FDMNES, using the relaxed structures. The
coefficients aX(T ) are obtained by fitting the experimental
data at each recorded temperature.

E. Spectral contributions and fits

For each temperature, we have four experimental energy
spectra: two reflections at two different azimuths each. The
four scalar parameters of the model can thus be reliably
determined by fitting the experimental spectra. The task is
simplified because all contributions possess different energy
dependences: it is more or less obvious which contribution
is responsible for different parts of the energy spectra.
This is shown in Fig. 3, which presents the contributions
IX(E) = [|FX

σπ (E)|2 + |FX
σσ (E)|2]/μ̃(E) for the 002 and 222

reflections each for two azimuthal angles at 300 K. We see
that the dipole-quadrupole, TMI, and Takagi configurations
contribute in the structure factor mainly in the lower part of
the energy spectra, while the higher-energy side is mainly
provided by the polar and Slater configurations. Moreover,
the dipole-quadrupole and TMI contributions predominate in
the 002 reflection, while the PC contributions become more
important in the 222 reflection.

Nevertheless, the intensity spectra of the forbidden reflec-
tions are not simple sums of these partial intensity spectra,
but are determined by the interference between the com-
plex amplitudes. By fitting the experimental spectra against
Eqs. (10) and (11), we obtained the coefficients aX.

In Ref. [20], only the Slater configurations were evidenced:
the polar configurations were found to contribute to the
experimental spectra and the Takagi configurations were
neglected due to their higher energy. In the case of KDP, it turns
out that all three types of configurations are needed to explain

the experimental spectra, which are much more complex
than those of RDP. However, the line shape of the Takagi
configurations cannot easily be disentangled from that of the
TMI and polar configurations. While they provide a sensible
improvement of the fits, their coefficient aT lacks reliability.

F. Results

The fits were performed at each measured temperature,
providing the temperature dependence of the coefficients
aX(T ) (Fig. 4).

We see that the spectra are dominated by the TMI amplitude
at all temperatures. However, its thermal growth is rather weak
compared to previously reported cases [28–30]. Nelmes et al.
found a doubling of the thermal parameters of the potassium
atoms between the phase transition and room temperature
[21], while the TMI growth that we observed in the same
temperature range is much weaker. This can be explained by
the fact that only part of the optical vibration modes contributes
to the TMI effect. We fit the TMI growth with the usual phonon
statistics model, assuming a single optical mode [27]:

aTMI(T ) = aTMI
0 coth

(
ETMI

kBT

)
. (12)

We find ETMI = 32 meV ≡ 258 cm−1. This value does not cor-
respond to any reported vibration mode of KDP, but there are
several modes between 150 and 500 cm−1 [42], such that our
single-mode model is a too crude approximation in this case.

The dipole-quadrupole term also slightly grows with
temperature, like in Ge [43].

It is more interesting to explain the temperature dependence
of the PC contributions. In accordance with Eq. (6), we believe
that aPC scales with the number of defects, which presumably
follows the Arrhenius law:

ln[aX(T )] = − EX

kBT
+ ln

(
aX

0

)
, (13)
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FIG. 5. (Color online) Energy spectra of the 002 and 222 reflections at the two measured azimuths, at various temperatures. Open circles:
experimental data; solid lines: calculations.

where EX is the activation energy and aX
0 is a constant. This

constant contains various scaling factors related to the scatter-
ing measurements. Figure 4 shows that the polar and Slater
configurations indeed follow this law. From the linear fits,
we extract their activation energies: EP = 18.6 ± 0.5 meV
and ES = 7.3 ± 0.2 meV. The determination of the aT is
not reliable enough to allow further analysis of the Takagi
configurations.

In KDP, the polar configuration is usually considered as the
ground state because it corresponds to the low-temperature
ferroelectric phase. The Slater and Takagi configurations are
considered as first and second excited states, respectively
[44,45]. The situation is reversed, for instance, in ammonium
dihydrogen phosphate (ADP), in which the antiferroelectric
order is stabilized by the Slater configurations [46–48].
Our results are therefore inconsistent with the usual model.
It is clear that this result must be taken carefully since
the best fits reproduce only roughly the measured spectra
(Fig. 5) and that some spectroscopic features are inaccurate.
The quality of the fits is nevertheless standard for REXS
spectra. The discrepancy is likely to originate from the
evaluation of the contributing spectra, for two main reasons.
First, the structural model of each proton configuration is rather

simple: each configuration is simulated as a crystal of identical
configurations, thus ignoring the possible interplay between
different neighbor configurations. Moreover, correlations are
also ignored in the simulation of the thermal effects. Second,
the spectroscopic calculations of forbidden reflections are
never very accurate, even in simple cases, because they involve
complicated quantum calculations, such as the convolution
with the width of the excited state, which is unknown. For
these two reasons, it is not impossible that the contribution of
the polar configurations is not well evaluated. Nevertheless, we
found, maybe fortuitously, a value of the activation energy of
Slater configurations (7.3 meV) that is in fair agreement with
the values reported in the literature. The activation energy of
Slater configurations with respect to the polar configurations
has been evaluated to 5.2 meV by Fairall and Reese [44],
based on a phenomenological model and experimental polar-
ization curves. Recent ab initio calculations yielded values of
16.9 meV for uncorrelated Slater defects and 5.0 meV for
Slater defects correlated in chains [45]. The better agreement
of the latter with the value of Fairall and Reese suggests the
occurrence of correlated Slater clusters. Our value (7.3 meV)
is also in better agreement with the correlated model, although
significantly different. Rakvin and Dalal [49] and Hukuda
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[50] independently found a much higher activation energy
(190 meV) from electronic spin resonance measurements,
but their measurements cannot attribute it to a particular
configuration.

V. DISCUSSION AND CONCLUSION

The results presented above show very clearly that forbid-
den reflections are sensitive to proton configurations in hydro-
gen bonds. We have presented above a method to quantitatively
analyze their spectra and extract the relative probabilities of the
configurations. We find that the concentration of the polar and
Slater configurations in KDP has a strong temperature depen-
dence which follows the Arrhenius law. The resulting activa-
tion energies for polar and Slater configurations are in a reason-
able order of magnitude, but are in reversed order compared to
the usually accepted model. This suggests that the quantitative
analysis of the spectra requires further development.

By comparison with the results obtained from the 006
and 550 forbidden reflections of RDP [20], whose crystal
symmetry is isomorphic to KDP, the temperature effects are
stronger in KDP. First, the phase transition from the para-
to ferroelectric phase provides a much stronger intensity
jump at the 002 reflection of KDP [19] than at the 006
reflection of RDP. Second, the energy spectra of the forbidden
reflections are more complicated in KDP than in RDP and their
variation with temperature is also stronger. This spectroscopic
difference is the result of a structural difference: while both
materials have the same symmetry, Rb atoms are heavier than
potassium atoms and the lattice is possibly more rigid.

Moreover, we evidenced in KDP the contributions of the
polar proton configurations, while in RDP only the presence
of the Slater configurations had been observed (in the 550
reflection). This could be achieved by collecting a larger
set of experimental data in KDP, i.e., two reflections at two
azimuths each, using the same simple theoretical framework.
Moreover, measuring the spectra of the forbidden reflections
at various azimuthal angles over a large temperature range
gives additional information, which is very important for
fitting the spectra. Nevertheless, the method has a limited
accuracy, which is illustrated by the quality of the fits in
Fig. 5. A number of simplifying assumptions contribute to this
discrepancy: (a) In the calculation of the TMI term, we neglect
the correlation of atomic displacements, which is equivalent
to considering that only the resonant atoms vibrate; (b) proton
distributions in a double-well potential are considered as
static configurations of defects and the structure amplitude
is considered to be a sum of coherent contributions from the
supercells with different kinds of defects; and (c) the various
contributions to the resonant amplitude were calculated using
the multiple scattering approach (as opposed to the finite-
difference method) with a limited number of atoms involved in
the multiple scattering model. Nevertheless, this simple model
provides a description of the main features of the forbidden
reflections, their energy spectra, and temperature dependence.

As such, this study raises questions about the physics of
hydrogen-bonded materials and provides a method to investi-
gate them. We should point out that while the potassium K edge
provides a convenient resonance edge to apply the technique,
the phosphorus K edge could be even more sensitive. Indeed,

the potassium atoms are not directly related to the hydrogen
bonds, while the phosphorus atoms are located at the center
of the hydrogen-bonded oxygen tetrahedra. The phosphorus
K edge could possibly provide more accurate results and
more detailed information about the proton configuration.
REXS at this edge would nevertheless imply experimental
complications, due to the low energy (2.1455 keV).

Finally, we point out that the mechanism contributing
to forbidden resonant reflections presented here, i.e., the
proton disorder, is a realization of the point-defect-induced
scattering predicted in Ref. [31], which had not been evidenced
experimentally prior to the studies of RDP and KDP. While
it had been predicted as an effect of static disorder, here the
protons are not static, but they are seen as such during the
resonant x-ray scattering process.
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APPENDIX A: ABSORPTION SPECTRA

The spectra recorded in Bragg geometry are strongly
modified by self-absorption [51]. In order to properly analyze
these spectra, the absorption spectrum must first be well
characterized.

The absorption cross section of noncubic crystals is
anisotropic. Tetragonal crystals, such as the paraelectric phase
of KDP, display linear dichroism (in the electric dipole
approximation) [52] and the absorption cross section can
be decomposed into an isotropic part and an anisotropic
(dichroic) part. Though the polarization vector is generally
not an eigenstate of the optical system, we can make this
approximation if the anisotropy is not too strong compared to
the isotropic absorption. Within this approximation, the linear
absorption coefficient μ is proportional to the absorption cross
section. According to Brouder’s formalism [52], μ can be
written as

μ(E,η) = μiso(E) − 3 cos2 η − 1√
2

μdic(E), (A1)

where η is the angle between the beam polarization and the
tetragonal axis, μiso is the isotropic part, and μdic is the dichroic
part.

Two sets of fluorescence spectra with various incidence
angles were recorded at beam line I16 of Diamond Light
Source, at room temperature, the first one with the polarization
parallel to the tetragonal axis and the second one with
the polarization perpendicular to it. The fluorescence was
measured in reflection geometry with the detector at 100◦ from
the incident beam from a crystal with a (110) cut (Fig. 6). The
isotropic part and anisotropic parts of the absorption spectrum
were extracted following a similar procedure to that detailed
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FIG. 6. (Color online) Fluorescence. Left: Tetragonal axis coplanar with the polarization of the incident beam. Right: Tetragonal axis
perpendicular to the polarization of the incident beam. The data are recorded for various incident angles α, with the detector at 100◦ from the
incident beam. In both panels, the dots show the data and the lines show the fits obtained with the absorption spectra shown in Fig. 7.

in Ref. [51]. The results are shown in Fig. 7 and reveal a rather
strong linear dichroism.

The experimental absorption spectra obtained with this
procedure were then modeled with FDMNES [24,25]. The
calculations were made with the finite-difference method with
a cluster of 7.5 Å (145 atoms), and the simulated spectra were
convoluted with the width of the excited state, described by an
arctangent model. Figure 7 shows the isotropic and anisotropic
parts of the calculated absorption in comparison with the exper-
imental results. The agreement between FDMNES calculations
and experimental spectra is rather good for both spectra.

APPENDIX B: ANALYSIS OF THE FERROELECTRIC
PHASE

In the ferroelectric phase, the resonant scattering factor
is largely dominated by the electric dipole-dipole (E1E1)
contribution, whose appearance explains the sudden changes
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FIG. 7. (Color online) Isotropic and dichroic parts of the absorp-
tion coefficient, as determined from the fluorescence data (expt) and
FDMNES calculations (cal).

of intensity and spectrum across the phase transition [19]. It has
no strong temperature dependence as long as it remains below
the phase transition: the lattice contraction has very little effect
on the resonant scattering if we consider only the static perfect
structure [26]. The variation of the forbidden reflections inten-
sity observed below the phase transition in the experimental
data is ascribed to the rotation of orthorhombic domains. A
single E1E1 component contributes to the forbidden reflec-
tions, so that the 002 and 222 reflections show nearly identical
spectra, independently of the azimuth [19]. Figure 8 shows
the comparison of the calculated and experimental energy
spectra of the 002 and 222 reflections (each for two azimuthal
angles). The calculated spectra are in good agreement with the
experimental data. A small hkl and azimuthal dependence of
the calculated energy spectra can be noticed between 3.612
and 3.616 keV and is ascribed to a minor contribution of the
electric dipole-quadrupole (E1E2) resonance.

FIG. 8. (Color online) Energy spectra normalized to their maxi-
mum of the 002 reflection at azimuths −83◦ and −48◦, and of the
222 reflection at azimuths 62◦ and 74◦, at 80 K. Dots: measurements;
solid lines: calculations.
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