
PHYSICAL REVIEW B 92, 214112 (2015)

Quantum properties of charged ferroelectric domain walls
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We consider the properties of charged domain walls in ferroelectrics as a quantum problem. This includes
determination of self-consistent attracting 1D potential for compensating charge carriers, the number and positions
of discrete energy levels in this potential, dependencies on the ferroelectric characteristics, as well as the spatial
structure and formation energy of the wall. Our description is based on the Hartree and Thomas-Fermi methods
and Landau theory for the ferroelectric transitions. Changeover from a few to many quantum levels (with the
electron binding energies ∼1 eV) is controlled by a single characteristic parameter. The quantum models well
describe the core of the wall, whose width is typically ∼10 nm. Additionally, the walls possess pronounced
long-range tails which are due to trap recharging. For the trap concentration Nt = (1017–1018) cm−3, the tail
length � is of the μm scale. On the distances much larger than � the walls are electrically uncoupled from each
other and the crystal faces.
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I. INTRODUCTION

Interfaces between two distinct materials or material states
are quasi-two-dimensional objects which display uniquely
distorted electronic structures and ionic displacements. Prop-
erties of such interfaces can therefore be entirely different
from those of the parent materials. Among the systems
of this kind that have recently attracted the attention of
researchers are heterointerfaces between metal oxides [1,2]
and compositionally homogeneous interfaces such as ferroic
domain walls [3–7].

The anomalous properties of the material modified by the
presence of domain walls in ferroics are especially attractive
for their variability. The walls can change positions, shapes,
and thereby also intrinsic properties in a controlled way so that
they can be used as a rearrangeable functional element [8].

The charged domain walls (CDWs), where the normal
component of the spontaneous polarization shows a strong
jump, are of special interest. It was believed for a long time
that CDWs cannot exist in ferroelectrics because the electric
fields of the bound polarization charge destabilize the system.
Nevertheless, CDWs were occasionally documented in the
past [9–13]. Their existence is due to a strong screening of
the bound charge by free carriers. Owing to such screening,
CDWs can serve as reconfigurable quasidopant [7], leading
to the formation of a sheet of degenerate electronic gas
with a local conductivity enhancement up to nine orders of
magnitude [6]. This phenomenon justifies a growing interest to
CDWs. Recently, they were identified and studied in many ma-
terials: Pb(Zr,Ti)O3 [4,14–16], PbTiO3 [17], BaTiO3 [6,18,19],
LiNbO3 [20–22], improper ferroelectric manganites [5,23,24],
hybrid improper ferroelectric (Ca,Sr)3Ti2O7 [25], and organic
ferroelectrics [26].

On the theoretical side, the attention to CDWs was paid
more 40 yr ago [27] with the prediction of the quasidopant
effect. Later, an appreciable work was done on the properties
of CDWs and the effects associated with them [28–34]. At the
same time, no attention was paid to the quantum structure
of CWDs which can actually be viewed as rearrangeable

quantum wells. Specifically, in all publications, the electronic
gas at CWDs was treated either using the Thomas-Fermi
approximation or the Boltzmann statistics, and the electron
spectrum of the wall was missing from the considerations.
Besides, recharging of localized states in the forbidden gap,
typical of realistic ferroelectrics, was ignored. This led to
nonvanishing electrostatic potential far from CDWs [30].

The goal of this paper is to fill the aforementioned gaps
in the theoretical treatment of CDWs. Proceeded by general
relations (Sec. II), the main results are presented in two
subsequent sections.

In Sec. III we treat CDWs as multielectron 1D atoms
within the Hartree and Thomas-Fermi methods [35]. This
includes a self-consistent determination of the polarization
profile P (z), the electrostatic wall potential ϕ(z), the electronic
energy levels and wave functions in this potential, and the
occupation numbers for the subbands caused by free transverse
electron movement. The whole system is controlled by a single
parameter Q combining the ferroelectric characteristics and
the electron mass. For 0 < Q � 3, there is one or a few energy
levels, and the electron charge density ρ cannot be treated as a
function of ϕ. With increasing Q, we have a quick changeover
to the Thomas-Fermi physical pattern, where the number of
levels is big and ρ = ρ(ϕ). The binding energies of screening
electrons are typically well above the thermal energy.

Section IV is devoted to the impact of localized states (traps)
in the forbidden gap on the CDW properties. This impact,
considered via the density of electronic states, is crucial: For
an arbitrary position of the Fermi level EF in the forbidden
gap, the electrostatic potential ϕ decays outside CDW because
of trap recharging. Without this process, the locality of CDWs
is missing. For the trap concentration Nt � 1018 cm−3, the
results of Sec. III well describe the core of the wall, whereas
the localized states are responsible for pronounced long-range
tails. For Nt > 1019 cm−3, the whole charge screening is due
the localized electrons. Also we show a strong impact of
the localized states on the wall energies. This issue includes
generalization of the known thermodynamic relations for
dielectrics [36].
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FIG. 1. (Color online) Geometrical schemes for positively
charged head-to-head 180◦ (a) and 90◦ (b) domain walls. For
negatively charged tail-to-tail walls the vectors P have to be inverted.
The longitudinal z axis is perpendicular to the wall plane x,y.

The results of the paper, including estimates for experimen-
tally valuable situations, are summarized in Sec. V.

II. GENERAL RELATIONS AND ASSUMPTIONS

Our subsequent considerations are relevant to the cases of
180◦ and 90◦ CDWs depicted in Fig. 1. The walls can be of
the head-to-head or tail-to-tail type. In both cases the problem
is one-dimensional (1D); all polarization components depend
only on the longitudinal (across the wall) coordinate z. The
basic case for us is 180◦ walls. The results for 90◦ walls can
be obtained by a renormalization procedure; see below.

Let Pz ≡ P = P (z), ϕ = ϕ(z), and ρ = ρ(z) be the spon-
taneous polarization, the electrostatic potential, and the bulk
charge density of the compensating carriers. The functions
ϕ(z) and ρ(z) tend to zero for |z| → ∞. Without loss of
generality we consider the head-to-head configuration when
the bound polarization charge is positive and the compensating
charge carriers are electrons. Here we have P (z) → ±P0,
for z → ∓∞, where P0 > 0 is the value of spontaneous
polarization in the absence of electric fields. Correspondingly,
the total bound charge is 2P0; it has the dimension of surface
charge density.

According to Landau theory of the second-order ferroelec-
tric transitions, the electrostatic field −dϕ/dz is linked to P

by the equation of state [28,36],

−dϕ

dz
= αP + βP 3, (1)

where α < 0 and β > 0 in the ferroelectric state. The quantity
εf = 2π/|α| is the contribution of the ferroelectric subsystem
to the dielectric permittivity. Smallness of |α| ensures large
values of εf . According to Eq. (1), P0 = √|α|/β. For the
temperature T close to the Curie temperature Tc we have
α ∝ |T − Tc| and P0 ∝ |T − Tc|1/2.

Often, an additional “correlation” term −κd2P/dz2 is
present on the right-hand side of Eq. (1). It provides the
wall thickness ∼√

κ/|α| and is important for neutral domain
walls. For CDWs, strong electron screening prevents such fast
polarization changes, so that, similar to [28], we disregard this
term.

The second basic equation follows from the general relation
of electrostatics dD/dz = 4πρ, where D = −εbdϕ/dz +
4πP is the electric displacement and εb is the background
dielectric permittivity. Owing to the smallness of εb/εf =
αεb/2π , the first term in the expression for D is negligible,

and we have with a good accuracy

dP

dz
= ρ. (2)

If the charge density ρ is a function of ϕ, Eqs. (1) and (2)
form a closed set of ordinary differential equations. Using this
set and the boundary conditions ϕ(∞) = 0 and P 2(∞) = P 2

0 ,
one can check the conservation law

|α|P 2
0

4

(
1 − P 2

P 2
0

)2

+
∫ ϕ

0
ρ(ϕ′)dϕ′ = 0. (3)

This relation allows one to express ϕ by P (or vice verse)
for any particular dependence ρ(ϕ) and obtain a first-order
differential equation for P or ϕ.

Generally, the charge density ρ cannot be treated as a
function of ϕ. In the general case, ρ(z) is expressed by the wave
functions of electrons, and the latter obey the Schrödinger
equation in the self-consistent potential ϕ(z). Equations (1)
and (2) do not form here a closed set. However, under certain
restrictions on the crystal parameters, when the number of
contributing wave functions is big enough, the charge density
can be approximated by a function ρ(ϕ) with a good accuracy.

Last, we consider in some detail what happens when
changing to the case of 90◦ CDWs [see Fig. 1(b)], as applied
to the tetragonal phase of BaTiO3 crystals. The equation of
state (1) can be generalized here to include the transverse
polarization component. It is shown [37] that this component
can be expressed by P ≡ Pz, so that we return to the 1D
equation of state Eq. (1) with some effective coefficients α

and β. Thus, our theory is applicable also to the case of
90◦ CDWs. A specific feature of BaTiO3 crystals is that the
effective coefficients α and β are anomalously small, owing to
the large anisotropy of the dielectric susceptibility [37].

III. CDWs AS 1D ATOMS

A. Formulation of quantum problem

Generally, the multielectron quantum problems are ex-
tremely complicated. The simplest theoretical tools for them,
which are widely used in physics, are the Hartree and
Thomas-Fermi methods [35]. They account for self-consistent
electron potential, but neglect the exchange interaction and
the correlation effects. Usually, it is sufficient to reproduce the
main physical tendencies. More accurate Hartree-Fock and
density-functional methods [38] are much more complicated.
Below we restrict ourselves to the above two simplest methods.

Let 
j = 
j (z) be the electron wave function for the
energy level Ej (j = 0,1, . . .) in the electrostatic potential
ϕ(z). This function describes a finite electron movement in
the longitudinal z direction, so that 
j (z) → 0 for z → ±∞.
In the 1D case, the functions 
j (z) can be treated as real
quantities; they are normalized such that

∫ ∞
−∞ 
2

j (z)dz = 1.
The potential energy for electrons is −eϕ, where e > 0 is
the elementary charge. Within the Hartree method, the wave
functions 
j (z) obey the Schrödinger equation [35],

d2
j

dz2
= −2me

�2
(eϕ + Ej )
j, (4)

where me is the effective electron mass.
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The total wave functions for j th level must account also
for free electron movement in the transverse x,y directions.
They are given by the product 
j (z)
k(r), where r = (x,y)
and k = (kx,ky) is the transverse wave vector. Employing the
L periodic in x,y boundary conditions and the plane-wave ap-
proximation, we have 
k(r) = (1/L) exp(ik · r), where kx,y =
2πnx,y/L,nx,y are independent integers, and

∫ |
k(r)|2 dr =
1. Owing to the transverse movement, the total electron energy
in the j th subband is Ej + k2

�
2/2me.

Each quantum state (j,k) can be occupied by no more
than two electrons with opposite spins. The total number of
electrons in the subband j , divided by the transverse cross
section L2, we denote Nj . Correspondingly, the bulk charge
density of electrons is

ρ = −e
∑

j

Nj

2
j , (5)

and the sum N = ∑
j Nj is the total density of electrons per

unit surface element. Since the charge compensation for CDWs
must be almost total to prevent destabilization of the system,
we have N = 2P0/e with a high accuracy.

Generally, the choice of the occupation numbers Nj is
restricted only by the sum condition

∑
j Nj = 2P0/e. This

corresponds to arbitrary excited states of our multielectron sys-
tem. However, for the ground state of our multielectron system,
possessing the lowest energy, strong additional constraints on
Nj have to be imposed. It is evident that each subband j

has to be filled up to the same boundary electron energy EB .
This quantity is analogous to the maximum energy of bound
electrons in multielectron atoms. Transferring from summa-
tion to integration over k, we have Nj = 2

∫
sj

dkxdky/(2π )2,
where 2 is the spin factor and sj is a 2D sphere of the
radius k2

j = 2me(EB − Ej )/�
2. Performing the integration in

the polar coordinate system, we get

Nj = me

π�2
(EB − Ej ). (6)

Substituting Nj into the relation
∑

j Nj = N , we obtain

jmax∑
j=0

Ej = sEB − π�
2N/me, (7)

where s = jmax + 1 is the total number of levels (subbands).
Thus, the boundary electron energy EB is expressed by N =
2P0/e and the sum of Ej .

Now it is easy to see that Eqs. (1), (2), and (4) to (7),
supplemented by the normalization condition for 
j (z), form
a closed system for determination of 
j, Ej , EB, P, ρ, ϕ,
and Nj . This system combines quantum behavior of electrons
with classical behavior of P and ϕ. Within this description
scheme, the charge density ρ is certainly not a function of ϕ.

The above closed set of equations can be substantially
simplified after a proper normalization. To make it, we
introduce the length parameter

d = (2�
2/mee|α|P0)1/3 (8)

and the dimensionless quantities of the coordinate ζ , the
polarization p, the wave functions ψj , the potential u, and

the energies Ej and EB :

ζ = z/d, p = P/P0, ψ =
√

d 
,
(9)

u = −med
2 eϕ/�

2, Ej,B = med
2Ej,B/�

2.

After this normalization, we have

dp

dζ
= −2

∑
j

Nj

N
ψ2

j ,

d2ψj

dζ 2
= 2(u − Ej )ψj , (10)

du

dζ
= −2p(1 − p2).

Owing to Eqs. (6) and (7), this set includes the only
external variable parameter N . The boundary conditions read
u(±∞) = ψ(±∞) = 0 and p(±∞) = ∓1. Obviously, the
profiles u(ζ ) and p(ζ ) must be even and odd, respectively. As
concern the wave functions ψj (ζ ), they must be either even or
odd. Last, we indicate that set (10) possesses the conservation
law

p2 − p4

2
+

∑
j

Nj

N

(
dψj

dζ

)2

− 2
∑

j

(u − Ej )
Nj

N
ψ2

j = 1

2
.

(11)

The above properties simplify the subsequent analysis. In
particular, it can be restricted to the range 0 � ζ < ∞.

Next we have to normalize Eq. (6). Using Eqs. (8) and (9),
we rewrite it in the form

Nj

N
= 2

Q
(EB − Ej ), (12)

where

Q = 4πP0d
2

e
≡ 4πP

1/3
0

e5/3

(
2�

2

|α|me

)2/3

(13)

is the only variable dimensionless parameter of our quantum
problem. As we will see, this parameter characterizes the depth
of the potential well and the number of localized levels s. In
the terms of Q, Eq. (7) simplifies to∑

j

Ej = sEB − Q/2. (14)

Using Eqs. (12) and (14), one can express explicitly the ratio
Nj/N in set (10) by {Ej } and Q.

Let us make numerical estimates. Here and later on we use
the input material parameters

P0 = 30 μC/cm2, |α| = 10−2, me = 0.2m0, (15)

where m0 is the naked electron mass. The chosen values of
P0 and |α| are representative for perovskites. The effective
masses are badly known for ferroelectrics, but it is known
that me is often noticeably smaller than m0 in semiconductors.
For the chosen parameters we have d ≈ 2 nm, Q ≈ 102, and
N ≈ 4×1014 cm−2. Substantially smaller values of Q can be
obtained for larger values of |α| and me and smaller values
of P0.
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FIG. 2. (Color online) Ground-state screening. The spatial pro-
files of the normalized polarization p, wave function ψ , and potential
u according to Eqs. (16).

B. CDWs for Hartree screening

1. Ground-state screening

Let us assume that CDW possesses a single localized level
E0. In this case, one can check that Eqs. (10) admit the
following solitonlike solution:

p = −thζ, u= − 1

ch2ζ
, ψ = 1√

2chζ
, E0 = −1

2
. (16)

It is illustrated by Fig. 2. All necessary conditions are
fulfilled. The width of the domain wall w, determined as the
distance between the points with p = ±1/2, is w � d ln 3 �
1.1d. The width of the potential profile is slightly larger
than d.

Next we obtain from Eq. (14) for the normalized boundary
electron energy: EB = −(1 − Q)/2. It grows linearly with Q

starting from the ground-state energy −1/2. Since EB cannot
be positive, the ground-state screening is restricted to the
region 0 < Q � 1. For Q > 1 the number of levels s must
exceed 1.

It is worthy of mentioning that the potential −u0/ch2ζ

admits full investigation of discrete energy levels [35]. The
actual value u0 = 1 is the boundary one between the cases of
one and two levels.

2. Several localized levels

For the number of levels s > 1, we rely on numerical
treatment of Eqs. (10). Solutions of these equations were
found by the fixed-point iteration method. In each iteration
we calculate a new potential unew(ζ ) from an old one uold(ζ ),
employing the following procedure. First, using the second
equation of the set, we find the localized states ψj (ζ ) with
their occupations Nj according to Eqs. (12) and (14). From
these, using the first equation, we find P (ζ ). Then the new
potential unew(ζ ) is found from the third equation. For better
convergence the iterations uold → unew are damped, the result
of an iteration is (1 − c)uold + cunew, with 0 < c � 1. Without
damping the iterations could be not converging. A typical value
of c was 0.1; near the threshold values of Q (see below) we

FIG. 3. (Color online) The normalized energies Ej , the boundary
electron energy EB , and the ratios Nj/N versus parameter Q.

used smaller values like 0.01 or even 0.001. The conservation
law (11) was fulfilled with a high accuracy.

Dependencies of the normalized energies Ej , of the nor-
malized boundary energy EB , and of the ratios Nj/N on
Q are presented in Fig. 3. The quantities E0 and N0/N

stay constant up to the first threshold, 0 < Q � Qth
1 = 1. At

Q = 1 the localized level 1 appears and the energy E1(Q)
decreases starting from zero with a finite initial slope. Both
functions E0(Q) and EB(Q) experience pronounced breaks of
the first derivative at Qth

1 , the energy EB becomes negative
again, while the ratio N1/N grows quadratically from zero for
Q − Qth

1 > 0. Similar, but much less pronounced, breaks of
derivatives for Ej (Q) and EB(Q) occur at each new threshold
Qth

2,3,.... The boundary electron energy stays negative and shows
decreasing oscillations near zero. The decreasing ratio N0/N

exceeds substantially the ratios N1,2,3/N in the whole shown
range of Q, while the ground-state energy E0 is well separated
from the higher normalized energies.

As expected, the wave functions ψj (ζ ) are even for j =
0,2, . . . and odd for j = 1,3, . . .. The smaller |Ej |, the weaker
is the localization of ψj (ζ ). For Q > 1, the profile u(ζ )
possesses a 1/ch2(ζ )-like core and a relatively long tail related
to the states with smallest energies Ej . The widths of the
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FIG. 4. (Color online) The normalized potential u(ζ ) and the
wave functions ψ0,1,2(ζ ) for Q = 2.5. The limiting values of the
wave functions for |ζ | → ∞ correspond to the energies E0,1,2. The
dotted line gives a 1/ch2(ζ )-like fit for u(ζ ).

profiles p(ζ ) and u(ζ ) grow gradually with increasing Q; see
also below. The mentioned properties of u(ζ ) and ψj (ζ ) are
illustrated by Fig. 4 for Q = 2.5.

Consider numerical estimates for the above quantum cases.
The values Q ∼ 1 require much larger values of |α| and
smaller values of P0 compared to those given by Eq. (15) and
representative for perovskites. Setting, e.g., α = 1/2, me =
m0, and P0 = 2 μC/cm2, we obtain Q ≈ 2, the wall width
w ≈ 1.3 nm, and the binding energy |E0| ≈ 0.04 eV. The
conditions of validity of our theory, as formulated in Sec. II,
are fulfilled.

C. Thomas-Fermi screening

The case of many discrete levels, Q  1, can be described
within the Thomas-Fermi (TF) quasiclassical method [35].
Here the compensating charge density ρ is directly expressed
by the electrostatic potential ϕ,

ρ = −e(2meeϕ)3/2

3π2 �3
, (17)

and ϕ > 0 for head-to-head domain walls. Substituting this
value into Eq. (3) and transferring to the normalized variables
u, p, and ζ given by Eqs. (9), we get

u = −c1Q
2/5 (1 − p2)4/5,

dp

dζ
= − c2

Q2/5
(1 − p2)6/5, (18)

where c1 = (15π/32
√

2)2/5 �1.016 and c2 =8
√

2 c
3/2
1 /3π �

1.23. Despite the different quantum approach, the only
dimensionless variable parameter in Eqs. (18) is again Q.

Now the functions p(ζ ) and u(ζ ) can be found readily.
Setting p = −th f , we have u = −c1Q

2/5/ch8/5f , and f is
expressed by ζ from the relation

c2ζ/Q2/5 =
∫ f

0
ch2/5xdx. (19)

The scaling properties in Q are obvious.
The solid lines in Fig. 5 exhibit the shapes of the polarization

and the potential; these shape functions are applicable to

FIG. 5. (Color online) Thomas-Fermi dependencies p(ζ ) and
u(ζ ) (the solid lines). The dotted lines show fitting functions
th(1.23ζ/Q2/5) and −1/ch2(1.23ζ/Q2/5).

any Q. The dotted lines correspond to the fitting functions
th(1.23ζ/Q) and −1/ch2(1.23ζ/Q) inherent in the single-
level Hartree case. One sees a noticeable broadening (with
pronounced tails) of the potential profile compared to the fit.

Now we proceed to physical consequences of the above
general TF relations.

The energy of the ground state E0 is an important
characteristic. Since our case is quasiclassical, it is close to
eϕ(0). The latter can be found from the above normalization
relation for u(ζ ) and the relation u(0) = −c1Q

2/5 that follows
from Eq. (18). Thus, we arrive at an important relation for the
binding energy of screening electrons:

|E0| � |eϕ(0)| � (
2π |α|P 2

0

)2/5 × (�2/me)3/5. (20)

For parameters (15) we have |E0| ≈ 0.6 eV. With realistic
values of P0, α, and me, the binding energies ∼1 eV are
available. Such energies strongly exceed the room-temperature
thermal energy kBT . Correspondingly, the temperature effects,
like the Debye screening, are weak. At the same time, we
have |E0| ∝ |T − Tc|4/5 → 0 and Q ∝ |T − Tc|−1/2 → ∞
for T → Tc. Thus, the potential well for electrons becomes
very broad and shallow in the close vicinity of the Curie point.

The case of 90◦ CDWs in trigonal BaTiO3 crystals [6,30]
requires an additional remark. Our estimate P0 = 30 μC/cm2

is valid here, but the value of |α| is smaller compared to the
used one by a factor of ≈15 [37]. This leads to an additional
factor of ≈1/4 in the estimate of |E0|. This binding energy is
still well above kBT .

Since the function p(ζ ) is known, we can determine the
width of the domain wall w. It is given by

w � 0.91×d Q2/5 (21)

and grows as Q2/5 with increasing Q. Using Eqs. (17) and (20),
it is not difficult to express by w the maximum concentration
of compensating electrons in the wall, |ρ(0)|/e ≈ 2P0/ew.
For P0 = 30 μC/cm2 and w = 10 nm, we have |ρ(0)|/e ≈
4×1020 cm−3. It should be noted that the above solution for
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FIG. 6. (Color online) Crossover from Hartree to the TF case
with increasing Q. The circles indicate the values calculated nu-
merically from Eqs. (10), while the solid lines correspond to the TF
method. (a) The data for u(0) and E0. (b) The data for the normalized
wall width w/d; the dotted line is a fit.

P (z) and the estimates of w and |ρ(0)|/e differ from the
corresponding relations of [28] only by notation.

Next we estimate the number of discrete energy levels in
the potential −eϕ(z) using the quasiclassical approach of [35].
It is given by s ≈ Q3/5, which corresponds to s ≈ 15 for
Q ≈ 102. Discreteness of the energy spectrum is thus well
pronounced for CDWs. Also, it is useful to estimate the ratio
E1/E0 characterizing the position of the second energy level.
With our potential profile u(ζ ), we have found numerically
that this ratio does not exceed 1/2 for Q � 102. Thus, the
second level is well separated from the ground one. Since the
momentum dependence of the electron energy (k2

�
2/2me) is

the same in all subbands, the mentioned properties may have
clear manifestations for IR light-induced transitions.

The above results on the wall properties can be easily
transferred to the case of tail-to-tail walls, where the screening
species are holes. It is sufficient to replace me by the hole mass
mh in the relevant expressions.

Finally, we consider an important issue about crossover
from the Hartree to the TF physical pattern with increasing
Q. This crossover is expected for sufficiently large Q, but
details are far from obvious. To quantify them, we superimpose
the Q dependencies of the main wall characteristics obtained
numerically and analytically for the Hartree and TF screening,
respectively.

The solid line in Fig. 6(a) shows the TF dependence of u(0),
while the circles correspond to the Hartree values of u(0) and
E0. One sees an excellent and fast convergence to the TF case

with increasing Q. In essence, the TF results for u(0) become
valid already for Q � 3. The same is valid for the boundary
electron energy EB : It is about zero within the TF method
and it is very close to zero for Q � 3 according to Fig. 3(b).
The solid line in Fig. 6(b) gives the TF dependence of the
normalized wall width w/d according to Eq. (21), while the
circles give the numerical Hartree dependence. The relative
difference becomes small for Q � 3. Note that a slightly
improved fitting function 0.91(Q + 0.3)2/5 gives an almost
perfect agreement already for Q > 2.

Also, it is possible to compare the shapes of u(ζ ) calculated
numerically and analytically for Q � 4 within the Hartree and
TF methods, respectively. For Q > 3 they coincide practically
within the line thickness.

Thus, the crossover to the TF screening occurs very fast
and there is no gap in Q between the Hartree and TF physical
patterns.

IV. IMPACT OF LOCALIZED ELECTRONS

Above we treated the CDWs as 1D atoms where the
necessary amount of compensating electrons was granted.
What happens when such a 1D atom is embedded into a real
crystal matrix? The answer greatly depends on the electronic
properties of this matrix.

It is well known that, in addition to delocalized band
electrons, localized charge carriers populating the energy
levels in the forbidden gap are present in any real dielectric
or semiconductive material. Moreover, the localized states
determine the position of the Fermi level in the forbidden
gap. In wide-band-gap ferroelectrics, the concentration of the
localized electrons is roughly of the order of 1017 cm−3 [39].
In doped ferroelectrics, it can reach 1020 cm−3. Spatial
redistribution of electrons over populated and empty localized
states (trap recharging) contributes to the charge screening
processes.

The effect of trap recharging on CDW properties was
ignored so far. This led to distinct physical peculiarities: The
electrostatic potential did not vanish far away from CDWs,
so that any wall was coupled either to the sample faces or
to neighboring walls (for periodic structures). In other words,
CDWs were not local physical objects. We show below that
account for trap recharging yields CDW locality and modifies
the estimates of the wall energy. In what follows we restrict
ourselves to the most important quasiclassical case where the
compensating charge density can be treated as a function of
the electrostatic potential, ρ = ρ(ϕ).

A. Formalism of the density of electronic states

The electronic properties of material can be described by the
energy density of electronic states N (E) taken at ϕ = 0. This
is a general characteristic of solid-state physics incorporating
uniformly both the localized (trapped) and delocalized (band)
electrons [40]. Being integrated over the energies −∞ < E �
EF , it gives the spatially homogeneous initial distribution
of electrons in the low-temperature range. Owing to the
charge neutrality of the medium, the corresponding negative
electronic charge density is compensated by the positive
background.
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FIG. 7. (Color online) Schematic behavior of the density of
empty electronic statesN (E). Curve 0 corresponds to the CB density,
while curves 1 and 2 illustrate cases 1 and 2 for the localized states
in the forbidden gap, considered in the text. Line 3 illustrates the tail
of localized states near the bottom of the CB.

For ϕ �= 0, it is necessary to replace E with E − eϕ(z) in
the argument of N to account for the ϕ-induced energy shifts.
Integrating −eN (E − eϕ) over E up to EF and subtracting
the background density, −e

∫ EF

−∞ N (E)dE, we arrive at the
expression for the charge density of compensating electrons:

ρ = −e

∫ eϕ

0
N (EF + E′) dE′. (22)

It is a generalization of the TF dependence ρ(ϕ) given by
Eq. (6).

For a conduction band (CB) with the edge EC and the
parabolic dispersion law, we have N (E) = (2me)3/2(E −
EC)1/2/2π2

�
3 for E > EC and zero for E < EC , as illustrated

by curve 0 in Fig. 7. Generalizations of the band section of
N (E) for anisotropic and/or nonparabolic dispersion laws of
electrons are available [40].

Within the energy range EF � E � EC , the functionN (E)
is nonzero only due to localized states. Its shape incorporates
a great deal of information about the energy distribution
of empty traps. The total empty-trap concentration Nt =∫ EC

EF
N (E) dE is one of the simplest characteristics. Another

useful characteristic is the density of states at the Fermi level
N (EF ); generally, it is nonzero.

Let ϕ(z) be the CDW potential profile. As follows from
Eq. (22), the CB electrons contribute to ρ(z) only within the
spatial region where eϕ(z) > C = EC − EF . Outside this
region, the charge density would be zero in the absence of
localized carriers leading to a linear growth of ϕ(z) with
increasing |z|. Accounting for localized carriers changes the
situation. The charge density ρ(ϕ) �= 0 in the whole range of
ϕ(z) providing decay of the potential far away from the wall.

Details of the decay of ϕ(z) depend on the shape ofN (E) in
the forbidden gap. One of the most playable shapes is Gaussian
density of states centered at the Fermi level,

N = 2Nt√
π γ

exp

[
− (E − EF )2

γ 2

]
, (23)

where γ is the energy-width parameter; see also line 1 in
Fig. 7. The empty and filled-trap concentrations are the same
here and equal to Nt . At ϕ = 0 the electron charge density
−eNt is fully compensated by a positive background. For
γ → 0, the Gaussian shape can be approximated by the Dirac
δ function, N (E) � Ntδ(E − EF ). This case is relevant to
the model of doped semiconductor. Another simple case is
a constant density of states, N (E) = Nt/C ; see curve 2 in
Fig. 7. Often the band section of N (E), shown by curve 0
in the same figure, continuously turns into a tail of localized
states [41], shown schematically by dotted line 3.

The general scheme for calculation of the profiles
ϕ(z), P (z), and ρ(z) within the formalism of the density
of electronic states is as follows. First, using Eq. (22) and
any particular model for N (E), we calculate analytically the
charge density ρ(ϕ) and the integral

∫ ϕ

0 ρ(ϕ′) dϕ′. Next, using
the conservation law (3) we express algebraically p = P/P0

and 1 − p2 with ϕ. Substituting these expressions into Eq. (1),
we arrive at an ordinary first-order differential equation for ϕ.
This equation can be integrated analytically or numerically to
get ϕ(z) and, consequently, p(z) and ρ(z).

Note that the value ϕmax = ϕ(0), which is an important
CDW characteristic, can be calculated even more easily: Since
the maximum potential occurs at the head-to-head wall center,
it is sufficient to set P = 0 in Eq. (3) and take into account
Eq. (22); see also Sec. IV C.

B. Core and tails of CDW

Let us consider the structure of CDWs within the above
formalism of the density of electronic states for sufficiently
small values of the trap concentration.

We start from particular examples using the representative
values of P0, |α|, and me given by Eq. (15), the energy
difference C = EC − EF = 1 eV, and Eq. (23) for N (E)
with γ � C .

Lines 1 and 2 in Fig. 8(a) show the profile EC − eϕ(z) for
Nt = 1017 and 1018 cm−3, respectively. It consists of a narrow
core part lying below EF and a wide tail part above EF . The
same lines in Fig. 8(b) show the cores in more detail. Apart
from a close vicinity of EF , lines 1 and 2 coincide with each
other and also with the function EF − eϕ(z), where ϕ(z) is the
TF profile of Sec. III C. The width and depth of the core, w

and EF − eϕ(0), respectively, coincide with the corresponding
parameters of the TF model. The tail part possesses a much
larger spatial scale �, and this scale substantially depends on
Nt . For lines 1 and 2, the ratio 2�/w is as large as �132 and
44. The energy span of the tail is C . The screening charge
is predominantly concentrated in the core; the profile P (z)
coincides here with the TF polarization profile.

Now we proceed to a more general description of the CDW
structure. The properties of the tails admit a simple analytical
description predicting important features. First of all, we obtain
a general equation for ϕ in the range |z| � (1 − 2)w, where
P (z) is already close to P0 or −P0. Setting P = ±P0 + δP ,
we get from Eqs. (1) and (2) in the linear approximation in
δP :

d2ϕ

dz2
+ 2|α|ρ(ϕ) = 0. (24)
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FIG. 8. (Color online) The CB edge EC − eϕ(z) versus z/w for
C = 1 eV, the Gaussian density of localized states, and different
values of Nt . Curves 1 and 2 in (a) show the core and tails for
Nt = 1017 and 1018 cm−3, respectively; � is the tail length. Panel (b)
shows in detail the effect of Nt on the core.

This equation is nonlinear in the general case. Next, we
indicate that the asymptotic decay of ϕ(z) for |z|  w is
fully determined by the behavior of N (E) near the Fermi
level. SinceN (EF ) �= 0, we have ρ � −e2N (EF )ϕ for ϕ → 0
from Eq. (22). Equation (24) gives here an exponential decay
ϕ ∝ exp(∓qz) with the decay constant

q = e
√

2|α|N (EF ). (25)

The same decay law is inherent indeed in δP (z). The smaller
are N (EF ) and |α|, the weaker is the decay.

Let us consider particular analytical solutions for the tails.
In the case of Gaussian density of states given by Eq. (23),
the charge density can be approximated by ρ � −eNt for
γ � eϕ < C . Here we have from Eq. (24)

eϕ = C (|z|/� − 1)2, (26)

with the tail length

� =
√

C/e2|α|Nt . (27)

The potential turns to zero at z = ±� according to Eq. (26).
In reality, this relation breaks for eϕ � γ , and the quadratic
decay turns to a quick exponential one. The found solution for
ϕ corresponds to Fig. 8(a).

In the case of constant density of states in the forbidden
gap, N (E) = Nt/C , we have ρ = −e2Ntϕ/C . The shape
of the tail is expressed here by

eϕ = C exp(−
√

2|z|/�), (28)

where � is given again by Eq. (27) and represents the half-
width of the potential profile. For the same value of �, the
tail is substantially broader here compared to that presented in
Fig. 8(a).

Dependence of � on the key parameters is clear from
Eq. (27): It decreases gradually with decreasing C = EC −
EF and increasing Nt . To make a numerical estimate, we set
Nt = 1017 cm−3, which is representative for undoped ferro-
electrics. Using the former values of |α| and C , we obtain
� ≈ 1 μm. This is indeed much larger than the wall width w,
indicating a pronounced two-scale screening behavior of the
wall.

Next we estimate how small is the quantity 1 − |p(zs)|
at the points zs separating the core and tails and satisfying
eϕ(zs) = C ; see also Fig. 8. It is fully determined by the
properties of localized electrons and can be easily calculated
from Eqs. (3) and (22) for any particular model of N (E). For
the Gaussian density of states with the width γ � C [see
Eq. (23)] we have

1 − |p(zs)| �
√

NtC/|α|P 2
0 . (29)

For Nt = 1017 cm−3 and parameters (15), we obtain 1 −
|p(zs)| � 0.05. In the case of constant density of states,
N (E) = Nt/C , we have a

√
2 times smaller value of

1 − |p(zs)|.
Transfer to the case of tail-to-tail walls, where the screening

species are holes, presents no difficulties. It is necessary to
replace C with V = EF − EV in Eq. (27) for �, to change
the sign of ϕ, and to consider Nt as the filled-trap concentration.
The core of the wall in Fig. 8 would lie here above EF , and the
valence band (VB) edge EV − eϕ(z) would tend to EV with
increasing |z|/�.

Until now we dealt with rather small values of the trap
concentration. Lines 3 and 4 in Fig. 8(b) illustrate what
happens with increasing Nt . For Nt = 1019 cm−3, the core
is already noticeably distorted, and for Nt = 4×1019 cm−3 the
TF screening regime greatly fails.

C. Screening by localized electrons

An entirely different situation occurs when the concentra-
tion of localized levels in the forbidden gap is large enough. In
this case, which can be realized in heavily doped crystals, the
whole screening is due to redistribution of electrons among the
localized states. Here the band carriers are of no importance
and adjustment of the band edges to the Fermi level is absent.
Only a single spatial scale—the wall width—is present in this
case.

Let us employ again the Gaussian shape of N (E) given
by Eq. (23). For ϕ �= 0, we have from Eq. (22) for the charge
density of compensating electrons,

ρ = −eNt Erf(eϕ/γ ), (30)

where Erf(x) = (2/
√

π )
∫ x

0 exp(−y2) dy is the error function.
Using next Eq. (3), we express p2 = P 2/P 2

0 by ϕ,

p2 = 1 − S(eϕ/γ )/
√

g, (31)
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where g = |α|P 2
0 /4γNt is a dimensionless parameter and

S2(x) =
∫ x

0
Erf(x ′) dx ′ ≡ x Erf(x) − (1 − e−x2

)/
√

π.

The maximum value of ϕ(z) occurs at the wall center where
p = 0. Thus, we have an explicit relation for ϕ(0),

S2[eϕ(0)/γ ] = g. (32)

In the most important case of narrow peak of N (E), when the
potential well depth eϕ(0)  γ , we have

eϕ(0) � gγ = |α|P 2
0 /4Nt (33)

and g  1. The well depth does not depend here on the width
parameter γ .

If eϕ(0) < C , then the CB edge is above the Fermi level, so
that the TF screening is not involved. Setting C = 1 eV, |α| =
0.01, and P0 = 30 μC/cm2, we have the inequality Nt > 5 ×
1019 cm−3. It can be realized in heavily doped ferroelectrics.
For substantially smaller values of Nt we return to the TF
screening regime.

Let us consider the spatial structure of the wall. Combining
Eqs. (1) and (31), we obtain∫ eϕ(0)/γ

eϕ/γ

√
g dx

S(x)[1 − S(x)/
√

g]1/2
= e|α|P0 z

γ
. (34)

It gives the dependencies ϕ(z) and S[eϕ(z)/γ ]. Employing
again Eq. (31) for p2, we get the profile p(z).

The expressions for ϕ(z) and p(z) can be strongly simplified
if we restrict ourselves to the region where eϕ(z)  γ , i.e.,
exclude the far tail areas. Here we have S(x) = √

x with a
high accuracy and, consequently,

ϕ(z)

ϕ(0)
=

(
1 − z2

z2
0

)2

,
P

P0
= − z

z0
, (35)

where z0 = P0/eNt is a new characteristic spatial scale
representing the wall width. It is well above 1 nm for typical
values of P0. For P0 = 30 μC/cm2 and Nt ≈ 1020 cm−3, the
wall width can be estimated as z0 ≈ 18 nm.

FIG. 9. (Color online) Dependencies ϕ(z)/ϕ(0) and P (z)/P0 for
g = 100 (solid lines). The dotted line corresponds to Eq. (35) for ϕ.

The solid lines in Fig. 9 show the spatial profiles ϕ(z)
and p(z) for g = eϕ(0)/γ = 100, which correspond a narrow
distribution of the localized states near the Fermi level. The
dotted line corresponds to the above approximation for ϕ(z).
One sees that the tails are very weak, so that the use of Eqs. (35)
is well justified. With decreasing g, the tails become gradually
more pronounced.

D. Domain wall energies

1. General relations

With the known dependencies P (z), ϕ(z), and ρ(z), we
are able to evaluate the domain-wall formation energy W ,
which is the difference between the energies of the crystal
with and without the wall. For dielectrics, the starting point of
consideration would be the expression −(dϕ/dz)dD/4π for
the differential of the energy density [36]. Being supplemented
by the equation of state (1), it gives two known contributions
to W :

W1 = εb

8π

∫ (
dϕ

dz

)2

dz, W2 = |α|P 2
0

4

∫
(1 − p2)2dz. (36)

The first contribution is the electrostatic energy of the total
(bound + free) charge distribution. It is negligible compared to
the second contribution, the lattice energy. The corresponding
smallness parameter is εb/εf = |α|εb/2π � 1.

However, the above basic expression for the energy density
differential does not account for the fact that the charge density
ρ is a function of ϕ such that ρ(0) = 0. This leads to an addi-
tional contribution to W . Employing the general expression for
the electron energy density

∫ EF

−∞ E N (E + eϕ) dE and setting
aside the potential energy of electrons (already included in
W1), we obtain the additional contribution

W3 =
∫∫ eϕ

0
E′ N (EF + E′) dE′ dz. (37)

This expression covers uniformly the cases of localized and
delocalized (band) carriers. The contribution W3 can be
regarded as excess energy of screening electrons. It accounts
for redistribution of electrons caused by the ϕ-induced shifts
of the energy levels. Note that small energy shifts caused by
the polarization changes and elastic strains can, if necessary,
also be included in W3.

As follows from Eq. (37), the differential of the excess
energy density is −ϕdρ ≡ −d(ρϕ) + ρdϕ. Correspondingly,
the differential of the total energy density is given by
−(dϕ/dz)dD/4π − ϕdρ. This relation generalizes the known
thermodynamic relation for dielectrics [36].

Next, using the above relation for −ϕdρ we represent the
excess energy density as −ρϕ + ∫ ϕ

0 ρ(ϕ′)dϕ′. The integral
term in this relation can be expressed by the lattice energy
density using Eq. (3). After that, we get readily for the total
wall energy

W � W2 + W3 = −
∫

ρ(z)ϕ(z)dz. (38)

Whereas both contributions W2,3 are of nonelectrostatic origin,
their sum is nothing but the sign-inverted potential energy of
the compensating electrons in the potential ϕ(z). This quantity

214112-9



B. STURMAN et al. PHYSICAL REVIEW B 92, 214112 (2015)

is indeed positive. Furthermore, it is sensitive to both short-
and long-range features of the potential profile.

2. Particular results

In the case of TF screening, the main contribution to W

comes from the core of the wall, where eϕ � C + eϕcore(z)
and ϕcore is as in Sec. III. Using Eq. (38), we obtain in the
head-to-head case,

We � (C + 0.7|E0|) × 2P0/e, (39)

where |E0| � eϕcore(0) represents the binding energy of
electrons [see Eq. (20)] and the number 0.7 accounts for
the shape of the TF core. The second factor in this relation
is the bound charge density. The limit C ≡ EC − EF → 0
corresponds to the case of 1D atom. To obtain the energy Wh

of the tail-to-tail wall, it is sufficient to replace here C by
V = EF − EV and to treat |E0| as the binding energy of
holes.

If the binding energies are substantially smaller than the
forbidden gap Eg , we have for the sum We + Wh � Eg ×
2|P0|/e. This corresponds to the result of [28].

In the case of wall screening by localized carriers, we have
using Eqs. (30), (35), and (38):

We � 8

15
× eϕ(0) × 2P0/e � 4|α|P 3

0

eNt

. (40)

Since eϕ(0) < C , it is smaller than the value given by
Eq. (39). To get an expression for Wh, one should treat Nt

as the filled-trap concentration.
Strictly speaking, the use of Eq. (38) for a single CDW

is not quite correct because the bound charges at the crystal
faces are different in the initial and final states; see Fig. 1(a).
Consideration of wall pairs is correct in this sense. However,
owing to the locality of the wall properties, the total energy
can be presented as the sum We + Wh.

V. SUMMARY

The results of this paper break up into two parts supple-
menting each other. In the first part, we give a new view on
the properties of CDWs in ferroelectrics, including 180◦ and
90◦ walls. The wall is treated as a neutral 1D multielectron
quantum system, where the electron charge density ρ is
not generally a function of the electrostatic potential ϕ. On
the contrary, the potential ϕ(z) harbors a set of localized
electronic states with energies Ej and wave functions 
j (z),
so that the charge density ρ(z) is a result of filling these
states with electrons which are confined in z and free in x,y.
The key physical quantities—P (z), ϕ(z), 
j (z), Ej , and the
occupation numbers of the states—are found self-consistently.
The basis for our analysis is the Hartree and TF methods and
the Landau theory of the ferroelectric state. A close analogy
for our quantum system is neutral multielectron atoms.

Despite an apparent complexity, our quantum system shows
a fairly simple behavior. This system is controlled by a
single dimensionless parameter Q combining the ferroelectric
characteristics and the effective electron mass. It ranges from
Q ∼ 1 to ∼102 (ordinary ferroelectrics with P0 ∼ 30 μC/cm2

and |α| = 2π/εf ∼ 10−2). Also, it controls the number of

localized levels in the wall, the binding energies of electrons,
and the CDW width. The range 0 < Q � 4 is covered
analytically and numerically with the Hartree method. Here
the number of localized states ranges from 1 to 4, the binding
energies are ∼0.1 eV, and the wall widths are ∼1 nm. Within
this range, we have a nice, without any gaps, convergence
to the quasiclassical TF pattern. On the upper end of the
Q range, the number of levels is ∼15, the binding energies
approach ∼1 eV, and the wall widths are ∼10 nm. Large
binding energies indicate weakness of the thermal effects and
pronounced discreteness of the energy spectrum implies the
presence of IR spectroscopic effects. For Q  1, we have full
agreement with [28] with regard to the polarization profile.

The above numerical estimates have to be modified for the
case of 90◦ CDWs in trigonal BaTiO3 [6]. Because of a strong
dielectric anisotropy, the effective coefficients α and β acquire
here, compared to Eq. (15), an additional smallness factor
≈1/15 [37]. This results in an increase of the wall thickness
by a factor of ≈5 and a decrease of the electron binding energy
by a factor of ≈4.

In the second part, we consider what happens when
our quantum system is embedded into a real solid-state
environment. This consideration is based on the formalism
of the density of electronic states. It accounts for recharging
of filled and empty localized states (traps) with the energies
in the forbidden gap lying below and above the Fermi level
EF . This recharging was never considered before as applied to
domain walls. Its impact is crucial. The electrostatic potential
ϕ(z) acquires the property of locality: It decays far away
from an individual CDW, so that the wall becomes electrically
uncoupled from the crystal faces and neighboring walls.

The spatial structure of a CDW depends on the trap
concentration Nt . If this concentration is not very high, Nt =
(1017–1018) cm−3, the wall shows a pronounced two-scale
behavior; it consists of a short-range core and long-range
tails. The core obeys the relations of the first part. In the
tail regions, the potential ϕ(z) changes slowly and strongly in
such a way to adjust the band edges (CB or VB) to the Fermi
level near the core and disappear far from the wall. The tail
length � lies in the μm range. For the trap concentrations Nt

well above 1019 cm−3, the results of the first part become
unapplicable. Here the wall screening is fully due to the
localized charge carriers and the separation into core and tails
is absent. At Nt ≈ 1020 cm−3, the CDW thickness for ordinary
ferroelectrics can be estimated as w ≈ 20 nm.

The impact of trap recharging concerns also the formation
energy of CDWs. Using formalism of the density of electronic
states, we have generalized the known thermodynamic relation
for the energy of dielectric to include the contribution of
compensating electrons. With this generalization, we have
derived simple relations for the wall energies. In the overlap
regions, they agree with the relations of [28].
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