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Enhanced piezoelectricity and modified dielectric screening of two-dimensional group-IV
monochalcogenides

Lı́dia C. Gomes, A. Carvalho, and A. H. Castro Neto
Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, 117546, Singapore

(Received 14 September 2015; revised manuscript received 16 November 2015; published 8 December 2015)

We use first-principles calculations to investigate the lattice properties of group-IV monochalcogenides.
These include static dielectric permittivity, elastic and piezoelectric tensors. For the monolayer, it is found that
the static permittivity, besides acquiring a dependence on the interlayer distance, is comparatively higher than
in the 3D system. In contrast, it is found that elastic properties are little changed by the lower dimensionality.
Poisson ratios relating in-plane deformations are close to zero, and the existence of a negative Poisson ratio is
also predicted for the GeS compound. Finally, the monolayer shows piezoelectricity, with piezoelectric constants
higher than those recently predicted to occur in other 2D systems, such as hexagonal BN and transition-metal
dichalcogenide monolayers.
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I. INTRODUCTION

Piezoelectric materials are used in very diverse fields of
application as sensors, actuators, electric field generators,
and in general, any other applications requiring a conversion
between electrical and mechanical energy. Recently, the
availability of piezoelectric nanowires and nanobelts inspired
the design of a class of “nanopiezotronic” devices which make
use of both their piezoelectric and semiconducting properties
[1]. These include, for example, nanogenerators, field-effect
transistors, and piezoelectric diodes. Lead-free biocompatible
piezoelectric materials are also sought as components for
biomedical devices.

Piezoelectric crystals can also be found among two-
dimensional (2D) materials. Some of these, like BN and
2H-stacked transition-metal dichalcogenides, are centrosym-
metric in bulk form, but lose the inversion symmetry if
the number of layers is odd. Exfoliation of W and Mo
dichalcogenide monolayers thus produces 2D piezoelectric
crystals with strain-induced polarization change in plane.
This has been confirmed experimentally for MoS2 by direct
piezoresponse measurements and electrical characterization
of MoS2 devices under strain [2]. For a few transition-
metal dichalcogenides, the in-plane d11 components of the
piezoelectric tensor have been predicted to be superior to
quartz [3].

Here, we concentrate on yet another family of layered
materials that are piezoelectric in the monolayer form. These
are the group-IV monochalcogenides SnS, GeS, SnSe, and
GeSe [4]. Due to the hingelike structure similar to that of black
phosphorus [5] (Fig. 1), group-IV monochalcogenides are
very ductile along the direction perpendicular to the zigzags,
stretching in that direction when out-of-plane strain is applied.
Since the direction perpendicular to the zigzags is also the
main polar direction, this results in a very large piezoelectric
coefficient, exceeding by at least 1 order of magnitude that of
other known 2D piezoelectrics.

In addition, group-IV monochalcogenides present a nearly
vanishing or negative Poisson ratio. This is also a consequence
of their anisotropic structure, as was recently reported [6] that a
monolayer of black phosphorus (phosphorene) also possesses
a negative Poisson ratio.

In this article, we use first-principles calculations to predict
the lattice response properties of this family of materials, com-
prising a static dielectric constant, and elastic and piezoelectric
constants.

A. Computational details

We use first-principles calculations to obtain the structural
properties of monochalcogenides. We employ a first-principles
approach based on Kohn-Sham density functional theory (KS-
DFT) [7], as implemented in the Vienna ab initio simulation
package (VASP) [8,9], which was used for calculation of
elastic, piezoelectric, and static dielectric tensors. The core
and valence electrons are treated with the projector-augmented
wave (PAW) method [10].

The exchange correlation energy was described by the
generalized gradient approximation (GGA) using the GGA–
Perdew-Burke-Ernzerhof (PBE) [11] functional. For all ma-
terials, van der Waals interactions are taken into account by
the method proposed by Tkatchenko and Scheffler [12] (TS),
which presents a charge-density dependence of the dispersion
coefficients and damping function. The Kohn-Sham orbitals
were expanded in a plane-wave basis with a cutoff energy
of 550 eV. The Brillouin zone (BZ) was sampled using a
�-centered 1 × 20 × 20 grid for the monolayers, following
the scheme proposed by Monkhorst-Pack [13]. The results for
bulk were obtained with a 6 × 16 × 16 grid. Structural opti-
mization has been performed with a very stringent tolerance
of 0.001 eV/Å.

For comparison, we also performed calculations with the
QUANTUM EXPRESSO code [14], in that case using Troullier-
Martins pseudopotentials [15]. There was good agreement
between the two codes whenever direct comparison could be
established. All results shown were obtained with VASP, with
the exception of the Poisson ratio calculations, which were
performed with QUANTUM EXPRESSO to take advantage of the
implementation of geometry optimization constraints.

The supercells are periodic in the monolayer plane, and
large vacuum regions (>17 Å) are included to impose periodic
boundary conditions in the perpendicular direction. Conver-
gence tests with greater vacuum thickness were performed,
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FIG. 1. (Color online) Structure of group-IV monochalco-
genides: (a) top view and (b, c) side views of the monolayer unit
cell, which are repeated along the x direction to obtain the bulk. The
layers sit on the y-z plane, with the y axis parallel to the puckering
direction.

and the values used are enough to avoid spurious interaction
between neighboring images.

II. RESULTS

A. Structure

Bulk group-IV monochalcogenides SnS, SnSe, GeS, and
GeSe have an orthorhombic structure with eight atoms per
unit cell, four of each species. They belong to the space group
Pnma. This structure is also known as the α phase of SnS, a
naturally occurring mineral [16]. The waved structure adopted
by these materials is similar to that of black phosphorus,
with which these compounds are isoelectronic. All atoms
are threefold coordinated and tetrahedral coordination results
from the repulsion of the lone pairs. In the monolayer, the
translational symmetry along the x direction is lost, and with
it the inversion symmetry, and the resulting structure belongs
to the Pmn21 space group. In this work, the axes system is
chosen so that the layers sit on the y-z plane, with the y axis
parallel to the puckering direction, as shown in Fig. 1. The
layers are stacked together along the x axis to form the bulk.

The calculation of the lattice parameters of these materials,
for both bulk and monolayer, have been discussed in previous
theoretical studies [17–19], including our previous work,
which employed the GGA-PBE approximation [4]. Since
bulk group-IV monochalcogenides are van der Waals (vdW)
bonded systems, in the current work we use vdW functionals
as well. Table I presents the optimized lattice parameters for
pure GGA and including vdW effects. Available experimental
data for bulk SnS and SnSe are also included.

As should be expected, the most noticeable effects of vdW
interactions in the structural parameters are on the lattice vector
a, the one perpendicular to the plane of the layers in bulk. The
inclusion of vdW forces results in values for a very close to the
experimental data for bulk SnS and SnSe [20–22], with better
results for the Tkatchenko-Scheffler method. The difference
between GGA-PBE and vdW for monolayers is minor.

B. Static dielectric tensor

The static dielectric tensor ε is calculated from the force
constant (K) and Born dynamical effective charge (BEC) (Z)
tensors [23]:

εij = ε∞
ij + V −1

0 Zmi(K
−1)mnZnj . (1)

TABLE I. Optimized lattice parameters (in Å) for the α phase
of SnS, SnSe, GeS, and GeSe. We present results for GGA-PBE
and including vdW by the Tkatchenko-Scheffler (TS) method.
Experimental data for bulk SnS [20,21] and SnSe [22] are also
presented.

Monolayer Bulk

b c a b c

SnS GGA-PBE 4.07 4.24 11.37 4.02 4.35
vdW-TS 4.08 4.25 11.12 4.00 4.27

Expt. 11.20 3.98 4.33
SnSe GGA-PBE 4.30 4.36 11.81 4.22 4.47

vdW-TS 4.27 4.37 11.58 4.20 4.47
Expt. 11.50 4.15 4.44

GeS GGA-PBE 3.68 4.40 10.81 3.68 4.40
vdW-TS 3.73 4.30 10.41 3.67 4.34

GeSe GGA-PBE 3.99 4.26 11.31 3.91 4.45
vdW-TS 4.00 4.22 10.93 3.90 4.39

The tensors K and Z are second derivative response functions
and are calculated using density functional perturbation theory.

The electronic contribution ε∞
ij , or ion-clamped static

dielectric tensor, has been given in Ref. [4]. Here, we will
concentrate on the lattice contribution, which for static electric
fields, exceeds the electronic contribution.

For orthorhombic materials, the dielectric permittivity
tensor has the form

εij =
⎡
⎣ε1 0 0

0 ε2 0
0 0 ε3

⎤
⎦, (2)

where we have contracted a two-index into a one-index
notation. The values calculated for bulk are given in Table II.
While for the tin chalcogenides the calculated values are in
excellent agreement with estimates obtained from comparing
the LO-TO splitting of the vibrational bands with the dielectric
constants obtained from reflectivity data, for the germanium
chalcogenides there is some discrepancy. This can be due
to many factors, including crystal quality. In particular, the
dielectric response along the x axis is difficult to measure,
explaining the range of variation of the measured values.

For two-dimensional materials, the dielectric constant is not
well defined, depending on the interlayer distance L as [24–26]

εi = δi + 4πχ2D
i

L
, (3)

where the 2D polarizability χ2D (which includes both ionic
and electronic contributions) is a constant and α,β = 2,3, in
accordance with our convention of the layers in the y-z plane.
The 1/L dependence on the interlayer spacing of the electronic
contribution to the susceptibility in the 2D systems has been
verified in previous works [24–26]. In this work, we verified
that the same behavior applies to the ionic contribution. In
practice, this can be calculated using the same method as
bulk [Eq. (1)] but replacing the volume by the area. The ionic
contribution to χ2D for the monolayers is given in Table II.

For comparison, if the interlayer distance L in the mono-
layer is taken to be the same as in bulk, the vdW-TS
calculations for SnS results in static ionic contributions to

214103-2



ENHANCED PIEZOELECTRICITY AND MODIFIED . . . PHYSICAL REVIEW B 92, 214103 (2015)

TABLE II. Ionic contributions to the 2D polarizability χ2D
2 and χ 2D

3 , macroscopic static dielectric tensor components ε2 and ε3 for y and
z directions of the monolayers, and ε1, ε2, and ε3 for x, y, and z directions of bulk. Results for GGA-PBE and taking into account van der
Waals interactions are included. Our calculations for the bulk can be compared to experimental values from previous works: (a) Ref. [27],
(b) Ref. [28], (c) Ref. [29], and (d) Ref. [30].

Bulk

Monolayer Expt.

χ 2D
2 χ 2D

3 ε2 ε3 ε1 ε2 ε3 ε1 ε2 ε3

SnS GGA-PBE 35.8 21.5 78.0 50.1 14.9 31.7 18.3 16 ± 6 32 ± 7 18 ± 6 Ref. (a)
vdW-TS 27.3 17.2 61.7 39.0 27.5 22.6 13.8 18.4 34.5 20.7 Ref. (d)

SnSe GGA-PBE 73.6 26.4 156.5 56.0 21.3 39.1 12.1 26 ± 7 45 ± 8 32 ± 7 Ref. (a)
vdW-TS 76.4 37.7 165.7 82.0 25.7 32.0 15.9 17.5 32.5 18.5 Ref. (d)

GeS GGA-PBE 5.3 3.1 12.4 7.4 6.8 11.8 7.6 20.0 17.5 10.3 Ref. (b)
vdW-TS 7.1 3.6 16.1 8.6 16.7 12.9 8.5 10.6 14.0 10.6 Ref. (d)

GeSe GGA-PBE 24.0 7.7 53.3 17.1 6.9 12.3 5.7 11.3 8.5 3.2 Ref. (c)
vdW-TS 28.6 10.1 65.7 24.3 14.3 15.7 7.7 9.7 12.5 9.6 Ref. (d)

the permittivity, with values 61 and 23, respectively, along the
y direction, and 39 and 14, respectively, along the z direction,
showing an increase of ∼2.5 times when comparing the 2D
and 3D systems. For SnSe and GeSe the ionic contribution to
ε in monolayer reaches values three to four times higher than
in their respective bulk forms. In the other hand, GeS presents
just slightly higher values for ε from bulk to monolayer. The
increase in the screening for SnS, SnSe, and GeSe can be
explained by two factors: (i) increase in Born effective charges
(BEC) and (ii) softening of polar modes due to the absence of
interlayer binding. The increase in the BEC can be as high as
28% for SnS, SnSe, and GeSe, while for GeS Z differs by less
than 3%. To have a better understanding of the contribution of
lattice vibrational mode softening to the increase of the static
dielectric constant, we consider the contribution of different
modes to the components of the static dielectric tensor by
writing εij as in Refs. [31] and [32]:

εij = ε∞
ij + 4π

V0

∑
m

Sm,ij

ω2
m

, (4)

where V0 is the volume of the cell. Sm,ij is called the
mode-oscillator strength of the ωm mode along the i,j (=x,y,z)
directions of the material and it is related to the eigendisplace-
ments Um(κi) and Born effective charge tensors Z∗

κ,ii ′ by

Sm,ij =
(∑

κi ′
Z∗

κ,ii ′U
∗
m,q=0(κi ′)

)⎛
⎝∑

κ ′j ′
Z∗

κ ′,jj ′Um,q=0(κ ′j ′)

⎞
⎠,

(5)
where κ is the index for the ions in the primitive cell. The
ionic contribution to ε is then given by the second term in
the right side of Eq. (4). The expression for Sm,αβ shows
that an increase in the BEC increases the contribution of the
ionic part of ε. However, the dominant contribution comes
from the ωm modes. In Table III we present the frequency
of the modes with a major contribution to the static dielectric
constant for monolayer and bulk monochalcogenides along the
in-plane directions. For all materials, just one mode contributes
significantly to the yy component of ε, while there are two
modes which contribute almost equally to the zz components in
bulk SnS and monolayer and bulk SnSe and GeSe. A significant

softening of the contributing modes occurs when going from
3D to 2D forms, probably due to the lack of interaction with
upper and bottom layers, observed in bulk. SnSe presents the
largest softening in the contributing modes, with ω3D

m /ω2D
m =

1.9 along the y direction up to ω3D
m /ω2D

m = 2.5 along z. GeS,
however, presents the smallest softening of the modes, where
we have ω3D

m /ω2D
m = 1.1 and 1.5 for the contribution to the yy

and zz components of ε.

C. Elastic constants and Poisson ratio

1. Elastic constants

The elastic constant (stiffness) tensor is defined in the linear
regime by Hooke’s law,

σi = Cij εj , (6)

where σ and ε are the stress and strain tensors, respectively, and
Cij are the elastic constants. In this equation, and the following,
there is an implicit sum over repeated indexes. Numerically,
the elastic constants are easily determined using the equation
of state. The change in the total energy E(V0) of a system due
to an external strain (ε) is given by

E(V0,ε) = E(V0) + V0

2
Cij εiεj , (7)

TABLE III. Modes (cm−1) at q = 0 with the largest contribution
to the static dielectric tensors ε2 and ε3 (in Voigt notation), as defined
in Eq. (4), for the y and z directions. For bulk SnS and monolayer and
bulk SnSe and GeSe, the two modes presented in the table contribute
almost equally to the ε3 component. The presented values are obtained
considering vdW interactions and do not take into account LO-TO
splitting effects.

ε2 ε3

Monolayer Bulk Monolayer Bulk

SnS 104 158 62 102/189
SnSe 53 102 56/78 132/86
GeS 180 207 77 116
GeSe 94 145 137/76 184/87
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TABLE IV. Calculated clamped-ion (C-i) and relaxed-ion (R-i) components of the elastic tensor Cij for bulk and monolayer. The elastic
constants for the monolayer assume an effective layer thickness d0 = a/2 to allow direct comparison with bulk. All values are given in
1010 N/m2.

Monolayer

C11 C22 C33 C12 C13 C23 C44 C55 C66

SnS GGA-PBE C-i 9.59 8.81 5.68 5.50
R-i 7.59 3.67 3.19 3.44

vdW-TS C-i 9.65 9.29 5.70 5.25
R-i 7.72 3.85 2.68 2.81

SnSe GGA-PBE C-i 7.90 7.26 4.54 4.81
R-i 6.92 3.32 2.77 2.32

vdW-TS C-i 5.68 5.34 2.96 3.28
R-i 5.04 2.89 1.83 1.80

GeS GGA-PBE C-i 9.51 8.92 6.08 5.41
R-i 8.48 2.82 4.00 3.44

vdW-TS C-i 9.41 9.25 6.17 5.52
R-i 8.26 3.02 3.93 3.49

GeSe GGA-PBE C-i 9.78 8.46 5.34 6.00
R-i 8.87 3.59 3.44 4.10

vdW-TS C-i 10.19 9.37 5.42 6.04
R-i 9.19 4.41 3.40 3.81

Bulk
C11 C22 C33 C12 C13 C23 C44 C55 C66

SnS GGA-PBE C-i 12.12 9.53 8.31 2.45 2.56 5.51 5.29 2.56 2.43
R-i 4.85 7.99 3.42 1.31 1.80 3.16 3.47 1.95 2.00

vdW-TS C-i 12.15 9.68 8.79 2.64 3.07 5.59 5.37 3.15 2.74
R-i 6.59 7.70 3.84 1.86 2.66 2.80 3.24 2.87 2.50

SnSe GGA-PBE C-i 10.99 8.39 7.61 1.76 2.03 5.09 5.20 1.93 1.77
R-i 4.35 6.93 3.48 0.74 1.23 2.99 3.32 1.37 1.07

vdW-TS C-i 11.72 9.30 8.29 1.87 2.44 5.23 5.40 2.44 1.97
R-i 6.09 7.49 4.27 0.99 2.12 2.86 3.29 2.09 1.24

GeS GGA-PBE C-i 12.40 10.47 8.83 2.79 2.67 6.00 5.75 3.18 2.93
R-i 3.71 8.96 3.02 0.97 0.72 3.31 3.65 1.69 1.73

vdW-TS C-i 12.84 10.93 9.48 2.72 2.91 5.94 6.13 3.61 3.35
R-i 5.31 8.94 3.41 1.11 1.44 2.81 3.76 2.90 2.51

GeSe GGA-PBE C-i 12.14 10.47 8.59 1.98 2.05 6.45 6.52 2.43 2.42
R-i 3.20 8.72 3.75 0.29 0.82 3.91 3.93 1.15 0.96

vdW-TS C-i 12.53 10.02 8.63 1.73 2.22 5.64 5.67 2.92 2.44
R-i 4.16 8.06 3.85 0.26 1.38 3.05 3.50 2.08 0.88

where V0 is the volume of the unstrained material. Here, the
electric field term vanishes because of the periodic boundary
conditions (d �E = 0). For the monolayer system, the area (A0)
should figure instead. However, to facilitate the comparison
with 3D systems and previous calculations [33], we use an
effective thickness d0. The most obvious choice is to take d0

to be the distance between the layers in bulk, as is common
practice in graphene [34].

Symmetry imposes restrictions on the number of nonzero
components Cij . Both for bulk and monolayer there are nine
independent nonvanishing elements Cij (in Voigt notation):

Cij =

⎡
⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎤
⎥⎥⎥⎥⎥⎦. (8)

However, we will consider that the monolayers are ideal 2D
systems, with only in-plane stress. This excludes the elastic
constants coupling εi to σ6 and σ5 (this is equivalent to σ12 and
σ13). Since in the absence of an external torque, the σ tensor
is symmetrical and the only relevant elements are (in Voigt
notation) C22, C33, C23, and C44.

The elastic constants for the monolayer were obtained from
Eq. (6), applying finite distortions to the supercell. The stress
components σ2i and σ3i are calculated using the effective
thickness d0 to define the lateral area of the layers. We have
calculated Cij both in clamped-ion and relaxed-ion conditions
by fixing the atomic coordinates or allowing them to relax,
respectively, for each distortion of the lattice vectors. The
results for bulk and monolayer group-IV monochalcogenides
are presented in Table IV for calculations with and without
vdW effects. Using the definition of d0, the elastic constants
are of the same order of magnitude for monolayer and bulk.
In most cases, though, they are slightly higher for the bulk for
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FIG. 2. (Color online) The three-dimensional surface plot of total
energy (in eV) versus uniaxial strain along y and z directions of a
SnSe monolayer. Projections on the ε2 = 0, ε3 = 0, and ε2 = ε3

planes show the quadratic dependence of the energy of the system
to the applied strain, from where the elastic constants can also be
calculated.

both relaxed and clamped-ion coefficients, indicating that the
monolayers are less stiff for in-plane deformations. The main
effects of vdW interactions in bulk are observed in the elastic
constant components related to the x direction of the materials
(those with indices 1j , j = 1,2,3 as well as 55 and 66). The C11

constants are the most affected by the vdW forces, as expected,
and differences of up to 50% are observed when compared to
the GGA-PBE results.

Figure 2 shows the total energy versus strain along the y and
z directions for a SnSe monolayer. The quadratic dependence
of energy to the applied strain and the anisotropy between the
perpendicular in-plane directions of the layer is given by

E(V,ε) = V0

2

(
C22ε

2
2 + C33ε

2
3

) + V0C23ε2ε3, (9)

where E(V,ε) = E(V,ε) − E(V0,ε = 0) and C32 = C23.
The results for SnS, GeS, and GeSe are very similar, differing
only in the ratio between elastic constants.

It is also noteworthy that C22 (the elastic constant for the
zigzag direction) is much lower for group-IV monochalco-
genides than for black phosphorus (18.6 ×1010 N/m2), in
contrast with other elastic constant elements which are little
changed [35].

2. Young modulus and Poisson ratio

The Young modulus and Poisson ratio are derived mechani-
cal properties that can give direct information on how a system
behaves under uniaxial stress, i.e., when σi �= 0 and σj = 0
for all j �= i. Here, we calculate these moduli to highlight the
role of anisotropy on the mechanical response of group-IV
monochalcogenides.

We define the Young modulus as

Y i = ∂σi

∂εi

. (10)

Since the materials in consideration here are orthorhombic
and the choice of principal direction is arbitrary, i can be any
of the principal directions of the crystal. Similarly, we define
multiple Poisson ratios νij , corresponding to the negative ratio
of the strain response at a direction i to the strain applied along
a transversal direction j :

νij = − ∂εi

∂εj

, (11)

for i �= j .
In order to calculate the Poisson ratio and Young’s modulus

of monolayer monochalcogenides, according to Eqs. (10) and
(11), strains from −6% to 6% were applied in the in-plane and
out-of-plane directions of the layers. The results are presented
in Table V, for GGA-PBE calculations and including vdW
effects.

As the elastic constants of single layers are not considerably
modified by introduction of vdW effects (Table IV), we should
also expect small changes in the Poisson ratio, which is
confirmed in the results presented in Table V. Most of the
materials have a positive Poisson ratio, which means that
when a compressive strain is applied along one direction,
the others expand. Conversely, if the material is stretched
along one direction, it will compress along the perpendicular
directions. This due to the materials’ tendency to conserve
their volume. However, since group-IV monochalcogenides
are very anisotropic, the values for the Poisson ratio vary
greatly for different combinations of directions i,j .

This is apparent in Fig. 3, which illustrates the response
of the monolayers under uniaxial stress, including vdW
interactions. First, it is clear that the linear region where the

TABLE V. Poisson’s ratio and Young’s modulus (in GPa) for the monolayer monochalcogenides for GGA-PBE and including vdW effects.
The data for monolayer phosphorene from Refs. [6] and [33] are included for comparison. b/c is the ratio between in-plane lattice parameters.

ε1 ε2 ε3

ν21 ν31 ν12 ν32 ν13 ν23 b/c Y1 Y2 Y3

SnS GGA-PBE 0.097 0.277 0.025 0.861 0.067 0.419 0.97 32.4 15.1 8.7
vdW-TS 0.101 0.284 0.022 0.894 0.075 0.422 0.96 32.4 15.4 7.1

SnSe GGA-PBE 0.120 0.153 0.046 0.733 0.065 0.474 0.99 30.4 16.2 11.3
vdW-TS 0.131 0.173 0.046 0.709 0.069 0.486 0.98 31.2 16.3 11.4

GeS GGA-PBE −0.214 0.940 −0.137 1.512 0.126 0.451 0.84 26.8 7.8 2.2
vdW-TS −0.190 0.987 −0.194 1.590 0.167 0.409 0.87 22.2 8.4 1.8

GeSe GGA-PBE 0.128 0.181 0.051 0.919 0.068 0.389 0.94 30.2 15.9 7.9
vdW-TS 0.126 0.194 0.037 0.980 0.079 0.384 0.95 30.0 15.7 7.5

P GGA-PBE −0.027 0.930 0.046 0.400 0.88 44.0 166.0
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FIG. 3. (Color online) Response of monolayer monochalco-
genides under uniaxial stress along (a) x, (b) y, and (c) z directions
of the layers, including vdW effects. Strain components for the
directions perpendicular to the external force are plotted as a function
of the strain component along the direction of the external force.

Young modulus and Poisson ratio given by Eqs. (10) and (11)
are constant is quite narrow, in some cases less than 2% strain.

In particular, if i = 1 or j = 1, the Poisson ratio is very
close to zero, indicating that distortion along the in-plane
directions and the direction perpendicular to the plane are
practically decoupled. A very interesting exception is found in
GeS: this is the only material in group-IV monochalcogenides
that shows a negative linear Poisson ratio in the out-of-plane
x direction. The calculated value of ν12 = −0.137 for GeS is

FIG. 4. (Color online) Poisson ratio (with vdW correction) ver-
sus the degree of anisotropy, given by the ratio between in-plane lattice
constants b and c, for monolayer crystals. The values for phosphorene
(P) taken from Ref. [6] are also included.

about 5 times larger than the value calculated for phosphorene
in Ref. [6], which reports ν12 = −0.027 for this material.

In contrast, the ratios ν23 and ν32 for the in-plane uniaxial
stress are in the ranges 0.3–0.5 and 0.7–1.6. The Poisson ratio is
intrinsically linked with the anisotropy. In plotting the Poisson
ratio against the anisotropy of the monolayer crystals (b/c),
it becomes evident why GeS departs from the other materials
(Fig. 4). Among all four materials, GeS has the smallest b/c

ratio and is located far away from GeSe, SnS, and SnSe. This
behavior is more evident in the plot of ν21 and ν31 (left panel in
Fig. 4), obtained by applying uniaxial strain in the out-of-plane
x direction.

It is worth commenting on the behavior of monolayer SnS
under tensile strain (ε > 0) along the y direction. Calculations
with vdW interactions show a “discontinuity” in the response
of ε1 at ε2 ∼ 3% [upper-left panel in Fig. 3(b)], an indication
of structural transition. Indeed, an analysis of the optimized
strained structures shows that the initially unbonded Sn and
S atoms along z [Fig. 1(b)] establish ionic bonds for tensile
strain ε2 > 3%, and the structure gains a mirror symmetry in
the x-z plane. The opposite occurs along the y direction, where
alternating Sn and S atoms become unbonded and lose the
mirror symmetry, in response to the external stress. The same
scenario is expected for the other three materials, probably
occurring for strain values out of the range considered in this
paper. A more detailed analysis of structural transitions on
these materials is left for a further work.

D. Piezoelectric tensor

Noncentrosymmetric crystals display a change of polariza-
tion Pi under mechanical stress:

Pi = dijσj . (12)

Equation (12) shows that application of a stress σj along the
j direction of a piezoelectric material induces a change of
polarization of magnitude Pi in its i direction. Pi is related
to σj by a piezoelectric tensor with components dij . This is
known as the direct piezoelectric effect. In the same way, the
converse piezoelectric effect occurs when a strain ε is induced
in a material under an external electric field. The converse
effect can be written:

εj = dijEi, (13)

where Ei is the component of the applied electric field in
the i direction. The piezoelectric coefficients dij in Eqs. (12)
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TABLE VI. Nonzero ion-clamped and relaxed-ion piezoelectric
coefficients (10−10 C/m). The tensor components are calculated
according to e0

ij = − ∂σi

∂Ej
, where the values for the other 2D materials

h-BN, MoS2, and MoTe2 are taken from Ref. [3] and included for
comparison.

Clamped-ion Relaxed-ion

e2D
32 e2D

33 e2D
24 e2D

32 e2D
33 e2D

24

SnS GGA-PBE −4.73 0.29 −4.39 0.76 23.36 15.70
vdW-TS −5.01 0.47 −4.75 2.27 18.94 15.54

SnSe GGA-PBE −4.89 0.53 −4.67 4.42 24.18 28.17
vdW-TS −4.67 0.58 −4.29 6.73 30.25 30.82

GeS GGA-PBE −6.69 −1.25 −7.10 −4.97 7.28 0.37
vdW-TS −6.89 −0.81 −7.08 −4.64 8.83 2.05

GeSe GGA-PBE −7.16 −0.26 −7.37 −3.00 13.26 8.25
vdW-TS −7.11 0.35 −7.20 −1.48 16.95 12.48

h-BN −3.71 3.71 −1.38 1.38
MoS2 −3.06 3.06 −3.64 3.64
MoTe2 −2.98 2.98 −5.43 5.43

and (13) are the same, and the proof of such equality is
based on thermodynamical arguments [36]. In addition, other
piezoelectric coefficients can be defined, for example, eij , that
directly relates E and σ , by

eij = − ∂σi

∂Ej

= ∂Pi

∂εj

. (14)

For a constant electric field, the piezoelectric tensors dij

and eij are related via the elastic tensor Cij as

eij =
6∑

k=1

dikCkj . (15)

However, in the case of a 2D system it is more meaningful to
define a 2D polarization per unit area, P 2D

i . Thus, we redefine
e2D
ij ,

e2D
ij = ∂P 2D

i

∂εj

. (16)

The number of nonzero coefficients e2D
ij is completely

defined by the symmetry of the system. The layered group-IV
monochalcogenides are centrosymmetric in bulk (and even-
numbered layers) and therefore are not piezoelectric. However,
single layers belong to the polar space group Pmn21. In this
space group, there are five nonzero piezoelectric constants,
e2D

15 , e2D
24 , e2D

31 , e2D
32 , and e2D

33 , where we use Voigt notation [36],
with 1, 2, and 3 corresponding to the x, y, and z directions,
respectively [37]. As for the calculation of the elastic constants,
we consider only in-plane strain components for computation
of the e2D

ij constants, which limits our discussion to e2D
32 , e2D

33 ,
and e2D

24 . The calculated values are presented in Table VI.

e2D
ij =

⎡
⎣ 0 0 0 0 e2D

15 0
0 0 0 e2D

24 0 0
e2D

31 e2D
32 e2D

33 0 0 0

⎤
⎦ (17)

To the best of our knowledge, there is still no experimental
data on the piezoelectric properties of few-layers group-IV

monochalcogenides with an odd number of layers. However,
we take for comparison single-layer transition metal
dichalcogenides (TMDCs) and hexagonal boron nitride
(h-BN), of which piezoelectric coefficients have been
theoretically calculated [3], and the object of recent
experimental measurements [2].

Similar to h-BN and TMDC [3], the piezoelectric elements
e32, e33, and e24 of group-IV monochalcogenides are enhanced
as we move downward in the periodic table. The value of e33

(for both the relaxed and clamped-ion case) seems also to be
directly related to the degree of anisotropy of the materials, as
given by the ratio between in-plane lattice parameters b/c.

For SnS and SnSe, e33 is 1 order of magnitude higher
than for other known 2D piezoelectric materials. This element
relates the polarization along the z direction, the polar direction
of the crystal, with the strain along the same direction. Since,
as we have discussed before, this structure is extremely ductile
along the z direction, the corresponding piezoelectric response
is very large.

The very large e33 coefficient found in our calculations is in
line with the result recently reported in Ref. [38], which also
investigates piezoelectric properties of monochalcogenides.
However, there are quantitative differences in some of the
elements, which may be due to the method used and to the
anharmonicity of the material.

It is also instructive to compare the piezoelectric co-
efficients of group-IV monochalcogenides with typical 3D
piezoelectric materials. Employing once again the definition
of an effective thickness d0, we obtain e33 = 4.11, 4.26, 1.36,
and 2.37 C/m2 for SnS, SnSe, GeS, and GeSe, respectively.
These coefficients are 1–2 orders of magnitude higher than
the piezoelectric coefficients of the α quartz and four of its
homeotypes MXO4 (M = Al, Ga, Fe; X = P, As) [39].

III. CONCLUSIONS

The group-VI monochalcogenides SnS, SnSe, GeS, and
GeSe have an orthorhombic structure similar to phosphorene.
This structure results in in-plane anisotropy of the static
permittivity, elastic constants, and piezoelectric coefficients.
In this study, we investigated those properties both for
monolayer and bulk systems by including van der Waals
effects, highlighting the differences resulting from the lower
dimensionality. The electric susceptibility in the 2D systems
is known to have a 1/L dependence on the interlayer spacing
[24]. This has been verified for electronic contribution to the
low-frequency susceptibility [25]. In this work, we verified
numerically that the same applies to the ionic contribution.
However, if we extrapolate the ionic contribution of the 2D
permittivity to L = a/2, where a/2 is the interlayer spacing in
bulk, we notice a great enhancement for SnS, SnSe, and GeSe.
This is mainly due to the larger softening of the modes in the
2D systems, but is also partially accounted for by the effective
Born charges in the 2D material.

In contrast, elastic constants remain nearly unchanged in
monolayer, compared to bulk, if an equivalent volume of
material is considered. The most remarkable among the elastic
properties of group-VI monochalcogenides is the Poisson
ratios. The Poisson ratio ν12 and ν21, relating strain and
uniaxial strain for the direction perpendicular to the plane
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and the armchair in-plane direction, are very small or even
negative for GeS, the most anisotropic among the four
materials.

Finally, while in bulk the presence of inversion symmetry
forbids piezoelectricity, in monolayer there is one polar direc-
tion coinciding with the C2 axis (z). Piezoelectric constants
are higher than those recently predicted to occur in other
2D systems, such as hexagonal BN and transition-metal
dichalcogenide crystals.
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[10] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).
[11] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[12] A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005

(2009).
[13] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
[14] P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009).
[15] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
[16] A. Walsh and G. W. Watson, Phys. Rev. B 70, 235114 (2004).
[17] G. A. Tritsaris, B. D. Malone, and E. Kaxiras, J. Appl. Phys.

113, 233507 (2013).
[18] J. Vidal, S. Lany, M. d’Avezac, A. Zunger, A. Zakutayev, J.

Francis, and J. Tate, Appl. Phys. Lett. 100, 032104 (2012).
[19] S. Alptekin and M. Durandurdu, Solid State Commun. 150, 870

(2010).
[20] H. Wiedemeier and H. G. Schnering, Z. Kristallogr. 156, 143

(1981).
[21] L. Ehm, K. Knorr, P. Dera, A. Krimmel, P. Bouvier, and M.

Mezouar, J. Phys.: Condens. Matter 16, 3545 (2004).
[22] I. Lefebvre, M. A. Szymanski, J. Olivier-Fourcade, and J. C.

Jumas, Phys. Rev. B 58, 1896 (1998).

[23] X. Wu, D. Vanderbilt, and D. R. Hamann, Phys. Rev. B 72,
035105 (2005).

[24] P. Cudazzo, I. V. Tokatly, and A. Rubio, Phys. Rev. B 84, 085406
(2011).

[25] T. C. Berkelbach, M. S. Hybertsen, and D. R. Reichman, Phys.
Rev. B 88, 045318 (2013).

[26] D. Warschauer, J. Appl. Phys. 34, 1853 (1963).
[27] H. R. Chandrasekhar, R. G. Humphreys, U. Zwick, and M.

Cardona, Phys. Rev. B 15, 2177 (1977).
[28] J. D. Wiley, W. J. Buckel, and R. L. Schmidt, Phys. Rev. B 13,

2489 (1976).
[29] H. R. Chandrasekhar and U. Zwick, Solid State Commun. 18,

1509 (1976).
[30] L.-M. Yu, A. Degiovanni, P. A. Thiry, J. Ghijsen, R. Caudano,

and Ph. Lambin, Phys. Rev. B 47, 16222 (1993).
[31] X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).
[32] G.-M. Rignanese, X. Gonze, and A. Pasquarello, Phys. Rev. B

63, 104305 (2001).
[33] Q. Wei and X. Peng, Appl. Phys. Lett. 104, 251915

(2014).
[34] M. Klintenberg, S. Lebegue, C. Ortiz, B. Sanyal, J. Fransson,

and O. Eriksson, J. Phys.: Condens. Matter 21, 335502 (2009).
[35] S. Appalakondaiah, G. Vaitheeswaran, S. Lebègue, N. E.
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81, 045107 (2010).

214103-8

http://dx.doi.org/10.1002/adma.200602918
http://dx.doi.org/10.1002/adma.200602918
http://dx.doi.org/10.1002/adma.200602918
http://dx.doi.org/10.1002/adma.200602918
http://dx.doi.org/10.1038/nature13792
http://dx.doi.org/10.1038/nature13792
http://dx.doi.org/10.1038/nature13792
http://dx.doi.org/10.1038/nature13792
http://dx.doi.org/10.1021/jz3012436
http://dx.doi.org/10.1021/jz3012436
http://dx.doi.org/10.1021/jz3012436
http://dx.doi.org/10.1021/jz3012436
http://dx.doi.org/10.1103/PhysRevB.92.085406
http://dx.doi.org/10.1103/PhysRevB.92.085406
http://dx.doi.org/10.1103/PhysRevB.92.085406
http://dx.doi.org/10.1103/PhysRevB.92.085406
http://dx.doi.org/10.1021/acsnano.5b02742
http://dx.doi.org/10.1021/acsnano.5b02742
http://dx.doi.org/10.1021/acsnano.5b02742
http://dx.doi.org/10.1021/acsnano.5b02742
http://dx.doi.org/10.1038/ncomms5727
http://dx.doi.org/10.1038/ncomms5727
http://dx.doi.org/10.1038/ncomms5727
http://dx.doi.org/10.1038/ncomms5727
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevB.50.17953
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.102.073005
http://dx.doi.org/10.1103/PhysRevLett.102.073005
http://dx.doi.org/10.1103/PhysRevLett.102.073005
http://dx.doi.org/10.1103/PhysRevLett.102.073005
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1103/PhysRevB.13.5188
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://dx.doi.org/10.1103/PhysRevB.43.1993
http://dx.doi.org/10.1103/PhysRevB.43.1993
http://dx.doi.org/10.1103/PhysRevB.43.1993
http://dx.doi.org/10.1103/PhysRevB.43.1993
http://dx.doi.org/10.1103/PhysRevB.70.235114
http://dx.doi.org/10.1103/PhysRevB.70.235114
http://dx.doi.org/10.1103/PhysRevB.70.235114
http://dx.doi.org/10.1103/PhysRevB.70.235114
http://dx.doi.org/10.1063/1.4811455
http://dx.doi.org/10.1063/1.4811455
http://dx.doi.org/10.1063/1.4811455
http://dx.doi.org/10.1063/1.4811455
http://dx.doi.org/10.1063/1.3675880
http://dx.doi.org/10.1063/1.3675880
http://dx.doi.org/10.1063/1.3675880
http://dx.doi.org/10.1063/1.3675880
http://dx.doi.org/10.1016/j.ssc.2010.02.002
http://dx.doi.org/10.1016/j.ssc.2010.02.002
http://dx.doi.org/10.1016/j.ssc.2010.02.002
http://dx.doi.org/10.1016/j.ssc.2010.02.002
http://dx.doi.org/10.1088/0953-8984/16/21/004
http://dx.doi.org/10.1088/0953-8984/16/21/004
http://dx.doi.org/10.1088/0953-8984/16/21/004
http://dx.doi.org/10.1088/0953-8984/16/21/004
http://dx.doi.org/10.1103/PhysRevB.58.1896
http://dx.doi.org/10.1103/PhysRevB.58.1896
http://dx.doi.org/10.1103/PhysRevB.58.1896
http://dx.doi.org/10.1103/PhysRevB.58.1896
http://dx.doi.org/10.1103/PhysRevB.72.035105
http://dx.doi.org/10.1103/PhysRevB.72.035105
http://dx.doi.org/10.1103/PhysRevB.72.035105
http://dx.doi.org/10.1103/PhysRevB.72.035105
http://dx.doi.org/10.1103/PhysRevB.84.085406
http://dx.doi.org/10.1103/PhysRevB.84.085406
http://dx.doi.org/10.1103/PhysRevB.84.085406
http://dx.doi.org/10.1103/PhysRevB.84.085406
http://dx.doi.org/10.1103/PhysRevB.88.045318
http://dx.doi.org/10.1103/PhysRevB.88.045318
http://dx.doi.org/10.1103/PhysRevB.88.045318
http://dx.doi.org/10.1103/PhysRevB.88.045318
http://dx.doi.org/10.1063/1.1729699
http://dx.doi.org/10.1063/1.1729699
http://dx.doi.org/10.1063/1.1729699
http://dx.doi.org/10.1063/1.1729699
http://dx.doi.org/10.1103/PhysRevB.15.2177
http://dx.doi.org/10.1103/PhysRevB.15.2177
http://dx.doi.org/10.1103/PhysRevB.15.2177
http://dx.doi.org/10.1103/PhysRevB.15.2177
http://dx.doi.org/10.1103/PhysRevB.13.2489
http://dx.doi.org/10.1103/PhysRevB.13.2489
http://dx.doi.org/10.1103/PhysRevB.13.2489
http://dx.doi.org/10.1103/PhysRevB.13.2489
http://dx.doi.org/10.1016/0038-1098(76)90381-1
http://dx.doi.org/10.1016/0038-1098(76)90381-1
http://dx.doi.org/10.1016/0038-1098(76)90381-1
http://dx.doi.org/10.1016/0038-1098(76)90381-1
http://dx.doi.org/10.1103/PhysRevB.47.16222
http://dx.doi.org/10.1103/PhysRevB.47.16222
http://dx.doi.org/10.1103/PhysRevB.47.16222
http://dx.doi.org/10.1103/PhysRevB.47.16222
http://dx.doi.org/10.1103/PhysRevB.55.10355
http://dx.doi.org/10.1103/PhysRevB.55.10355
http://dx.doi.org/10.1103/PhysRevB.55.10355
http://dx.doi.org/10.1103/PhysRevB.55.10355
http://dx.doi.org/10.1103/PhysRevB.63.104305
http://dx.doi.org/10.1103/PhysRevB.63.104305
http://dx.doi.org/10.1103/PhysRevB.63.104305
http://dx.doi.org/10.1103/PhysRevB.63.104305
http://dx.doi.org/10.1063/1.4885215
http://dx.doi.org/10.1063/1.4885215
http://dx.doi.org/10.1063/1.4885215
http://dx.doi.org/10.1063/1.4885215
http://dx.doi.org/10.1088/0953-8984/21/33/335502
http://dx.doi.org/10.1088/0953-8984/21/33/335502
http://dx.doi.org/10.1088/0953-8984/21/33/335502
http://dx.doi.org/10.1088/0953-8984/21/33/335502
http://dx.doi.org/10.1103/PhysRevB.86.035105
http://dx.doi.org/10.1103/PhysRevB.86.035105
http://dx.doi.org/10.1103/PhysRevB.86.035105
http://dx.doi.org/10.1103/PhysRevB.86.035105
http://dx.doi.org/10.1063/1.4934750
http://dx.doi.org/10.1063/1.4934750
http://dx.doi.org/10.1063/1.4934750
http://dx.doi.org/10.1063/1.4934750
http://dx.doi.org/10.1103/PhysRevB.81.045107
http://dx.doi.org/10.1103/PhysRevB.81.045107
http://dx.doi.org/10.1103/PhysRevB.81.045107
http://dx.doi.org/10.1103/PhysRevB.81.045107



