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Excitations in a spin-polarized two-dimensional electron gas
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A remarkably long-lived spin plasmon may exist in two-dimensional electron liquids with imbalanced spin-up
and spin-down population. The predictions for this interesting mode by Agarwal et al. [Phys. Rev. B 90, 155409
(2014)] are based on the random phase approximation. Here, we show how to account for spin-dependent
correlations from known ground-state pair correlation functions and study the consequences on the various spin-
dependent longitudinal response functions. The spin-plasmon dispersion relation and its critical wave vector for
Landau damping by minority spins turn out to be significantly lower. We further demonstrate that spin-dependent
effective interactions imply a rich structure in the excitation spectrum of the partially spin-polarized system.
Most notably, we find a “magnetic antiresonance,” where the imaginary part of both, the spin-spin as well as the
density-spin response function vanish. The resulting minimum in the double-differential cross section is awaiting
experimental confirmation.
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I. INTRODUCTION

In nonmagnetic electron layers, (i.e., with vanishing spin-
polarization P ≡ (N↑ − N↓)/N , total number of particles
N = N↑ + N↓, and Nσ being the number of electrons with
spin-up or down), collective spin modes rapidly decay into
electron-hole pairs. For spin-polarized systems, however, as
was convincingly demonstrated by Agarwal et al. [1], the
random phase approximation (RPA) yields an amazingly
long-lived spin plasmon. This “longitudinal magnon” exists,
inside the band of electron-hole pairs with the majority spin,
up to a critical wave vector qmax

spl before decaying rapidly into
electron-hole pairs of the minority spin population.

In this report, we show, among other results, that going
beyond the traditional RPA leads to much lowered critical
wave vectors. For both, the conventional plasmon as well as
the spin plasmon, this effect becomes more pronounced for
dilute systems, where correlations play an important role.

Experiments [2,3] on heterostructures were performed
on the conventional plasmon (i.e., the P = 0 charge
plasmon) for areal densities n = 1.9 × 1013 cm−2 and
n = (0.77 . . . 4) × 109 cm−2. This corresponds to the Wigner-
Seitz radii rs � 2 and rs ≈ 10 . . . 20, respectively, (as usual,
rs ≡ 1/(a∗

B

√
πn) with a∗

B being the material’s effective Bohr
radius). The influence of electron correlations on the dispersion
can be estimated using the simulation based [4] charge-charge
response function from Ref. [5]. At the coupling parameters of
interest, as shown in Table I, the critical wave vector qmax

pl for
Landau damping changes by typically �20%. Only in systems
of sufficiently low rs and for low wave vectors q the mode can
be detected near the RPA result. Possible candidates for such
dense systems could be electron gases near a SrTiO3 surface
[6–10] with a high background dielectric constant εb (however,
anisotropy effects need to be accounted for, too [11]).

For the spin plasmon, we here show that spin-dependent
correlations pull this mode down drastically towards the minor-
ity particle-hole band. Consequently, it appears questionable
whether this excitation can be resolved experimentally, even if
it may stay slightly above the boundary. We also give results
for low densities and predict a new phenomenon.

In Sec. II, we briefly describe the theory. We first introduce
our method to account for spin-dependent correlations via

effective (static) interactions [12], and then study the con-
sequences for the various response functions. In Sec. III, we
critically discuss our results. Special emphasis is put on the
critical wave vector for Landau damping of the charge plasmon
and a detailed investigation of the spin plasmon. Finally, we
present a hitherto unknown valley in the imaginary part of the
longitudinal spin response, the “magnetic antiresonance,” and
summarize our conclusions in Sec. IV.

II. THEORY

A. Spin-dependent effective interactions

In RPA-type approaches, the partial response functions χσσ ′

forming the matrix χ are determined by the equation [13]

χ−1(q,ω) = χ0−1
(q,ω) − V(q). (1)

Here, χ0 contains the spin-resolved parts δσσ ′ χ0
σ of Stern’s

polarizability [14], and V the effective interactions Vσσ ′

between electrons of spin σ and σ ′. [Equation (1) may also be
read as the definition1 of dynamic interactions V(q,ω).] In the
bare RPA studied by Agarwal et al. [1] all Vσσ ′ are replaced
with the Coulomb interaction, v(q) = 2πe2/(εbq).

For a paramagnetic layer, i.e., P = 0, various static approxi-
mations have been presented [15–19]. Commonly, the effective
spin-dependent interactions are expressed via the so-called
“local field corrections,”

Vσσ ′(q) = v(q) (1 − Gσσ ′(q) ) . (2)

We term approaches of type (2) “generalized RPA” (GRPA).
The matrix equation (1) for χ reads explicitly (cf. Eq. (1)

of Ref. [1])(
χ↑↑ χ↑↓
χ↑↓ χ↓↓

)−1

=
(

χ0
↑ 0

0 χ0
↓

)−1

−
(

V↑↑ V↑↓
V↑↓ V↓↓

)
, (3)

where we also invoked the symmetry (↑↓) ←→ (↓↑).

1It remains questionable, however, whether this way of packing all
non-mean-field effects into dynamic effective potentials optimally
elucidates the relevant physics.
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TABLE I. Paramagnetic charge plasmon critical wave vector.
Upper two lines: (bare) RPA value in reduced units and for a GaAs
quantum well. Lower two lines: Percental change due to the local field
corrections of Davoudi et al. [5] and with G(q) = 1 − Vph(q)/v(q)
based on Monte Carlo S(q) from Ref. [12].

rS 2 5 10 20 30 40
nGaAs (109 cm−2) 75.2 12 3 0.75 0.33 0.19

qmax
pl

RPA (k−1
F ) 1.50 2.45 3.55 5.09 6.28 7.29

RPA (105 cm−1) 10.3 6.75 4.88 3.50 2.88 2.51

change from RPA

GRPA, Ref. [5] −25% −40% −52% − − −
GRPA, Eq. (7) −15% −37% −50% −62% −68% −71%

As pointed out by E. Krotscheck [20], an essential require-
ment for a response function is to fulfill the first and zeroth
moment sum rule. The latter invokes the spin-resolved static
structure factors

Sσσ ′(q) ≡ 1√
Nσ Nσ ′

〈δn̂qσ δn̂−qσ ′ 〉 , (4)

with the partial density fluctuation operator δn̂qσ and the
prefactor convention of Gori-Giorgi et al. [12]. Again, for
noninteracting fermions, S0, the matrix of static structure
factors, is diagonal [13]. The full static structure factor is given
by S(q) = ∑

σσ ′ Sσσ ′(q)
√

nσ nσ ′/n.
The pertinent sum rules then read

−
∫ ∞

0

dω

π
Im χσσ ′(q,ω) = √

nσnσ ′ Sσσ ′(q) , (5a)

−
∫ ∞

0

dω

π
ω Im χσσ ′(q,ω) = δσσ ′nσ

� q2

m
, (5b)

(m being the effective electron mass due to the semiconductor
background lattice).

In order to determine Vσσ ′(q) from these conditions we
replace, as a first step, χ0

σσ ′ in Eq. (5) with a single-pole
(also called “collective”) approximation [21]. This allows us to
derive a compact expression relating the effective interactions
with the spatial structure. Introducing the matrix V̄ of spin
weighted interactions via V̄σσ ′(q) ≡ √

nσn′
σ /n Vσσ ′ (q), we

arrive at the matrix equation

V̄(q) = �
2q2

4mn
(S−2(q) − S0−2

(q)). (6)

The result (6) is the analog of the particle-hole potential [20]
defined as

V̄ph(q) = �
2q2

4mn

[
1

S(q)2
− 1

S0(q)2

]
. (7)

The strength of this formula is to contain an approximate
summation of both, ladder and ring diagrams, thus capturing
important long- as well as short-ranged attributes [22]. Spelling

out Eq. (6) explicitly, we obtain

D(q) = S↑↑(q) S↓↓(q) − S2
↑↓(q), (8a)

V̄↑↓(q) = −�
2q2

4mn

S↑↓(q) [S↑↑(q) + S↓↓(q)]

D2(q)
, (8b)

V̄↑↑(q) = �
2q2

4mn

[
S2

↓↓(q) + S2
↑↓(q)

D2(q)
− 1

S0
↑

2
(q)

]
, (8c)

and the analogous expression for V̄↓↓. These interactions can
now be used in Eq. (3) to calculate the response functions from
any given set of spin-resolved static structure factors Sσσ ′(q).

Note that we do not calculate the response functions, neither
the spin plasmon nor any other feature, within the above
plasmon-magnon-pole approximation. The latter only served
the purpose of obtaining suitable effective spin dependent
interactions. As discussed in Ref. [22], Eq. (7) can be seen
as the definition of an optimal static effective interaction if the
ground state structure factor is known.

High-quality spin-resolved ground state structure calcula-
tions were performed by Gori-Giorgi et al. [12]. With reptation
quantum Monte Carlo (QMC) techniques they obtained the
pair-distribution functions gσσ ′(r). A Fourier transform yields
the static structure factors we need:

Sσσ ′(q) = δσσ ′ + √
nσnσ ′

∫
d2r [gσσ ′(r) − 1] eiq·r. (9)

Naturally, all QMC data are limited in real space. Hence an
extension gσσ ′(r → ∞) is necessary in order to establish the
proper long-wavelength behavior. Using reduced units q̄ ≡
q/kF, where kF = √

2πn, and denoting spins opposite to σ as
σ̄ , this limit reads [12]

Sσσ ′(q̄ → 0) = ξ̃σσ ′
q̄

π
+

√
nσnσ ′

n

q̄3/2

23/4 √
rS

+ O(q̄2),

ξ̃σσ ′ = δσσ ′
√

nσ̄ /nσ − δσ σ̄ ′ . (10)

For the spin-summed g(r) at any P , as well as for the partial
gσσ ′(r) at P = 0 and P = 1, analytical expressions are given
in Ref. [12]. These are based on skillful extrapolation to large
r and we follow this procedure for the P = 0.48 data.2 The
delicate behavior of the effective interaction between minority
spins, V↓↓(q), necessitates additional care with respect to
ensuring the high-density (RPA) limit of the fit for all partial
Sσσ ′(q).

With these results for S the effective interactions V are now
obtained from (6). This is then used in the matrix equation (3)
to determine χ .

As a check, we evaluated the sum rules (5) for the
spin-summed charge-charge response function. The f -sum
rule (5b) is excellently fulfilled for all rs, the input S(q) is
reproduced within a few percent of error.

B. Response functions

In an electron liquid subject to an electrostatic external
potential V ext and an uniaxial magnetic field Bext, the induced

2Raw data Monte Carlo data provided by P. Gori-Giorgi.
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partial spin densities δnσ manifest themselves in the fol-
lowing observables: the induced particle density δn = δn↑ +
δn↓, the induced longitudinal magnetization proportional to
δs ≡ δn↑ − δn↓, and transverse magnetization components.
The Pauli spin-flip operators govern the transverse linear
response functions; their eigenmodes are the “conventional”
magnons of condensed matter physics. Longitudinal excita-
tions are fully decoupled [23,24]. Rescaling the magnetic field
by Bohr’s magneton and the g factor, bext ≡ gμB|B|ext/2, we
have (

δn

δs

)
=

(
χnn χns

χns χss

)
·
(

V ext

bext

)
. (11)

Apparently, in electron layers with imbalanced spin population
a longitudinal magnetization can be induced either by a
magnetic field or by an electrostatic potential (or both). The
corresponding longitudinal magnon, i.e., the collective mode
in the spin density δs at vanishing bext and V ext is termed [1]
“spin plasmon.”

Decomposed into their spin-resolved contributions the
relevant susceptibilities read

χnn = χ↑↑ + 2 χ↑↓ + χ↓↓, (12a)

χss = χ↑↑ − 2 χ↑↓ + χ↓↓, (12b)

χns = χ↑↑ − χ↓↓. (12c)

They all share the same denominator 	,

	 = 1 − V↑↑χ0
↑ − V↓↓χ0

↓ + (V↑↑V↓↓ − V 2
↑↓) χ0

↑χ0
↓. (13)

For arbitrary spin-polarization P , all Vσσ ′ differ. In the
paramagnetic case, the symmetry V↑↑ = V↓↓ implies that

	P=0 = 1 − V↑↑ (χ0
↑ + χ0

↓) + (V 2
↑↑ − V 2

↑↓) χ0
↑χ0

↓. (14)

For spin-independent interactions, as in the bare RPA, Eq. (13)
reduces to

	RPA = 1 − v (χ0
↑ + χ0

↓) = εRPA . (15)

Obviously, the effective interactions change the collective
excitations compared to their RPA behavior due to two distinct
causes: The difference between like and unlike spins arising
from the Pauli principle influences systems with arbitrary P ;
from Eq. (14), it is seen that a denominator of the type 1 − V χ0

with some interaction V (q) would require V↑↑ = V↑↓ , also
for P = 0. In addition, the substantially different screening
between minority and majority components, manifest in
V↑↑ �= V↓↓ , gives rise to further modifications for spin-
imbalanced systems.

For completeness, we also list the numerators involved in
Eq. (12),

χnn

ss
= 1

	
(χ0 − [V↑↑ + V↓↓ ∓ 2V↑↓]χ0

↑χ0
↓), (16a)

χns = 1

	
(χ0

↑ − χ0
↓ + [V↑↑ − V↓↓] χ0

↑χ0
↓). (16b)

We now turn to the numerical results of our approach.

III. RESULTS

A. Charge plasmon

We start with studying the critical wave vector qmax
pl of the

P = 0 charge plasmon. This is insensitive to whether using
Eq. (6) or (7). Table I compares our data with those following
from Ref. [5] based on simulations [4] for ω = 0.

Considering that, by contrast, Vph(q) arises from an ω

integration, it is striking how close the values are for
rs ≈ 5 . . . 10 . The discrepancy at small rs is removed if Vph(q)
is determined numerically from the sum rule (5a) without the
single mode approximation. This strongly supports the quality
of our approach. In the following, we prefer to stick to the
analytic relations (8) between the effective interactions and
the static structure factors, in favor of better physical insight.

B. Spin plasmon

Concerning both, charge- and spin response, Fig. 1 com-
pares the real and imaginary parts of the denominator 	(q,ω)
of the susceptibilities (12) with its RPA counterpart, εRPA(q,ω).
The same system parameters and wave vector are chosen as
in Fig. 2(a) of Ref. [1]. In the GRPA, the typical “shark-fin”
structure of the imaginary part is smoothened for the minority
band and enhanced for the majority spins. Like in bare RPA,
also for spin-sensitive effective interactions the real part of
the denominator has an additional zero above the first band
edge. This zero was identified in Ref. [1] as the spin plasmon
and in careful investigations proven to be quite stable against
damping by impurity scattering.

The spin plasmon, if a true collective mode and pole
of χss , can be obtained from either of the two equivalent
requirements:

Re 	(q,ω) = 0 ⇔ −Im χss(q,ω) = max. (17)

Inside the particle-hole band of the minority spins the two
routes do not yield exactly the same result. We follow Ref. [1]

FIG. 1. (Color online) Denominator of the spin response
functions χσσ ′ (q,ω) for rs = 2, q = 0.02 kF, and polarization
P = 0.48 ≈ 0.5 in bare RPA (dotted lines) and our GRPA (full curves).
The upper (lower) panel gives the imaginary (real) part; the vertical
lines mark the zeros of the real part. Terms ∝ χ 0

↑χ 0
↓ as in Eq. (14)

enter both, 	(q,ω) as well as the numerators of the χσσ ′ , changing
the overall height of both. For better comparability, we thus rescale
the curves.
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FIG. 2. (Color online) Spin plasmon dispersion for rs = 2 and
P = 0.48 in bare RPA (blue dotted line), GRPA [with (V̄ )], and
single-pole approximation (green dashed line). All three modes start
in the continuum of the majority spins (light grey area). Our result
enters the minority spin continuum (dark grey area) tangentially
at a much lower qmax

spl /kF than that of the RPA. The inset shows
the dispersion divided by the wave vector, demonstrating that our
approach gives the same initial slope as the RPA.

by determining the dispersion from the roots of Re 	(q,ω).
Figure 2 shows the numerically obtained zeros for rs = 2 and
P = 0.48 in the (q,ω) plane. For comparison, the RPA and
the single-mode result (“Bijl-Feynman type” or “BF”) [13]
are displayed as well. The inset of Fig. 2 confirms that our
spin dependent GRPA recovers the high density (i.e., RPA)
limit.

It is seen that the inclusion of spin effects in the effective po-
tentials Vσσ ′ lowers the spin plasmon’s position significantly.
As the zero of Re 	(q,ω) is shifted towards lower frequencies,
it is simultaneously moved closer to the “fin structure” which
is smeared out by spin-correlation effects (cf. Fig. 1, upper
part). In addition, the relative height of Im 	(q,ω) is larger
in the GRPA, implying that damping [25] of the mode is
stronger everywhere. Both effects, the close vicinity to Landau
damping by minority spins as well as the overall increase of
Im 	(q,ω) heighten the challenge for experimentally verifying
the position of this mode.

Since the spin plasmon, being an acoustic mode, is rather
close to the relevant band edge for all q, its critical wave
vector for Landau damping is much smaller than that of the
charge plasmon. Consequently, while the effective interac-
tions Vσσ ′(q) appear rather unaffected by minor variations
in gσσ ′(r → ∞), the spin plasmon is quite sensitive to
such changes. Reducing these uncertainties would require
the exact q>3/2 expansion coefficients of Sσσ ′(q → 0). In
Fig. 3, we present our results for the critical wave vector
qmax

spl , where the spin plasmon tangentially hits the band
edge ω+↓.

It is evident that exchange-correlation effects lower qmax
spl to

approximately one third of its RPA value. Even if we account
for a substantial spread in the q5/2 coefficient of Sσσ ′(q → 0),
the reduction is still 50%. In order to reduce the uncertainty
in the r → ∞ input data, high-accuracy calculations of S(q)

FIG. 3. (Color online) Critical wave vector qmax
spl (P = 0.48) in

our GRPA (red solid line) and bare RPA (blue dotted line) vs coupling
strength. The shaded area is an estimate of the error induced by the
limited r range of the input Monte Carlo data [12].

in this regime are desirable (e.g., via the so-called “FHNC”
method [26]). Both, the RPA and the GRPA yield a nearly
density independent critical wave vector beyond rs � 10, as it
is typical for static effective interactions. Investigations in the
dynamic many body approach [27] are under way. This holds
the promise of a “charge plasmon revival” [28] at large wave
vectors, as first observed in the pioneering work of Neilson
et al. [17].

C. Fermi liquid paramters

At the densities of interest the Coulomb energy is at least
of similar order as the kinetic energy. Nevertheless, the Fermi
surface is remarkably robust, as captured by Landau’s Fermi
liquid theory [23,29,30]. Low-lying excitations behave like
quasiparticles; their Fourier expanded interaction defines the
Landau parameters (rescaled with the true density of states at
the Fermi surface) [31,32]:

f
σ,σ ′
k,k′ =

∑



f
σ,σ ′

 cos (
θk,k′), (18)

f
σ,σ ′

 ≡ �

2 π

m∗ F
σ,σ ′

 = m

m∗
εF

n
F

σ,σ ′

 . (19)

At P = 0, the spin-symmetric and spin-antisymmetric 
 = 0,1
combinations F

s,a

 ≡ 1

2 (F ↑↑

 ± F

↑↓

 ) yield the effective mass

m∗, the compressibility κ and the spin susceptibility. These
are, in turn, related to the long wavelength behavior of the
effective interactions. An example is [31,33]

κ0

κ
= m

m∗
(
1 + F s

0

) = 1 + F s
0

1 + 1
2F s

1

,

(20)

1 − κ0

κ
= nv(q)

εF
Gs(q → 0),

with the P = 0 local field correction Gs ≡ (G↑↑ + G↑↓)/2,
and κ0 is the compressibility of free Fermions. Detailed studies
of quasiparticles in spin-imbalanced systems are beyond the
scope of this work. It appears interesting, however, to study
the slope of our spin-dependent local field corrections.
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TABLE II. Specific excitation regimes and their requirements.
Figure 4 compares all these loss functions for one characteristic q

value as a function of frequency.

Condition Consequence

Imχ↑↓ = 0 Imχnn = Imχss

Imχ↑↓ = Imχ↑↑=0 Imχnn = Imχss = −Imχns = Imχ↓↓

Imχ↑↑ = Imχ↓↓
Imχnn = 2 Im(χ↑↑ + χ↑↓)
Imχss = 2 Im(χ↑↑ − χ↑↓)
Imχns = 0

Imχ↑↓ =
{

Imχ↑↑
Imχ↓↓

Imχnn = 4 Imχ↑↑
Imχss = 0
Imχns = 0

Following Iwamoto [31] in defining κ0/κ ≡ 1 + F s, we
investigate the Landau-like parameters

Fσσ ′ ≡ − n
εF

lim
q→0

v(q) Gσσ ′(q)

= n
εF

lim
q→0

[Vσσ ′ − v(q)]. (21)

Having ensured the long wave length limit (10) of the static
structure factors, the effective potentials (8) imply

F↑↑ = π2

8 (1 − P )2 − π2

4 , (22a)

F↓↓ = π2

8 (1 + P )2 − π2

4 , (22b)

F↑↓ = π2

8 (P 2 − 1). (22c)

Consequently, the combination F a ≡ F↓↓ + F↑↑ − 2F↑↓ van-
ishes for any P . Thus the initial slope of the spin plasmon is not
altered compared to the RPA result [1], as also evident from
Fig. 2. Without additional knowledge, more accurate values of
Fσσ ′ must remain uncertain.3

D. Magnetic antiresonance

We conclude our studies by presenting results for dilute
systems. Knowing the distinct behavior of the various response
contributions χσσ ′ allows the identification of different (q,ω)
regions of interest for the imaginary parts of χnn, χss and
χns , respectively. Table II shows a comparison of the most
prominent cases.

For vanishing ↑↓ contributions, density-wave excitations
have the same magnitude as spin fluctuations; contributions to
each fluctuating component δnq,σ = χσσV ext arise solely from
identical spins, the two δnσ react quasi-independently. If also
χ↑↑ vanishes, the whole excitation arises from the minority
spins and the system behaves like a ferromagnetic one.

In partially spin-polarized systems, at (q,ω) values with
Im χ↑↑ = Im χ↓↓ , the excitation spectrum is qualitatively the
same as for the paramagnetic case. Furthermore, a totally
new structure emerges in the majority particle-hole band: the
imaginary part of χss vanishes exactly along a line ωmAR(q)
and stays very small in its neighborhood. Before discussing
this in more detail, we compare the imaginary parts of the

3We improved the fit of Ref. [12] by removing an unphysical q ln q

term; ensuring G(q → 0) ∝ q, however, needs further corrections.

FIG. 4. (Color online) Comparison of the various excitation do-
mains (see Table II) for rS = 20, P = 0.48 at q = 1.5 kF. All response
functions are in n/εF. The charge plasmon is outside the shown range,
at �ωpl ≈ 6.5εF. The vertical lines mark equalities of imaginary parts,
the corresponding real parts do not coincide.

various response functions in Fig. 4 to identify the excitation
regimes given in Table II.

First, we observe that all three partial response functions
behave very similar throughout the region �ω � 4.2 εF, lead-
ing, however, to significant differences in the spin summed
response functions. In this range, the imaginary part of the
spin-spin response function, Imχss , dominates over Imχnn and
Imχns . Second, we notice that at three nontrivial points the
scattering response functions for like spins coincide, Imχ↑↑ =
Imχ↓↓. Naturally, this is highly sensitive to the effective
interactions Vσσ ′ ; in Fig. 4, it occurs at �ω/εF ≈ 1.1, � 3,
and 5. At these frequencies Imχns vanishes, the scattering
appears paramagnetic.

Third, at �ω/εF ≈ 4.5, both, Imχ↑↓ and Imχ↑↑ vanish.
Here, the whole excitation spectrum is given by the re-
sponse of the minority spin electrons (red solid line in
Fig. 4). The frequency 5 εF/� is particularly interesting,
as there the imaginary parts of all three partial response
functions become equal. No magnetic resonance is possible,
Imχss = 0 = Imχns . Fig. 4 also shows the smallness and
flatness of Imχss in the vicinity of this zero.

The excitation spectrum for the longitudinal magnetization
resulting from Im χss is shown in Fig. 5 for moderately
high (left) and rather low (right) densities (and, again,
N↑ ≈ 3N↓). For high rS the charge plasmon develops a flat
region at intermediate wave vectors, related to S(q) there being
significantly larger than its RPA counterpart. This implies the
considerably lower qmax

pl reported in Table I.
The longitudinal spin plasmon is too weak to be visible. A

prominent feature in Fig. 5 is the white valley around ωmAR(q)
on the left side of the continua. The physical explanation of this
intriguing effect is currently not yet fully clarified. This gap in
Im χss is different from the “pseudogap” found in Ref. [1] for
Im ε−1 ∝ Im χnn.

The antiresonance gap is also present in the bare RPA; the
usage of the spin dependent effective potentials of Eq. (8),
again, shifts ωmAR(q) towards lower energies. We term it
“magnetic antiresonance” for the following reason: ωmAR(q)
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FIG. 5. (Color online) GRPA imaginary part of the longitudinal
spin density response function, −Im χss(q,ω) (in units π�

2/m),
for two different densities. The grey lines are the characteristic
frequencies of the electron-hole continua; the blue dotted line is the
RPA charge plasmon. The spin polarization is P = 0.48.

does not describe a collective excitation, the real parts of
χss and χns being finite, while the imaginary parts of both
response functions vanish. Therefore, along this line, neither
contributions of spin fluctuations δs nor of density fluctuations
δn to the double-differential cross section are caused by
resonances with a magnetic disturbance bext. [Conversely,
V ext(q,ωmAR(q)) does also not cause spin fluctuations in P �= 0
systems.] The imaginary part of the permeability determines
the magnetic loss in dispersive media [34]. Although in
practical applications transverse precession plays a significant
role, the suppression of any dissipation channel is highly
desirable. The vanishing of the longitudinal Im χss around
ωmAR(q) is therefore very promising. As known for Lorentzian
fits of experiments, the maximum in the imaginary part occurs
at the resonance frequency, where the real part vanishes. This
further supports the name “magnetic antiresonance.”

From Fig. 5, it is obvious that the magnetic antiresonance is
observed in the particle-hole band of the majority spins. This
facilitates the calculation of its dispersion relation. Introducing
the dimensionless potential

V↓+ ≡ n
εF

(V↓↓(q) + V↑↓(q)), (23)

we obtain

�
2ω2

mAR(q)

ε2
F↓

= q2/k2
F↓

V↓+ (q)
(2 + V↓+ (q))2

×
(

V↓+ (q)

1 + V↓+ (q)
+ q2/k2

F↓
V↓+ (q)

)
. (24)

It is straightforward to show that the upper minority spin band
is tangentially hit at

2qc↓
mAR

kF↑
=

V 2
↓+

4(1 + V↓+ )
, (25)

and the upper majority spin band is cut at

2qc↑
mAR

kF↑
=

V 2
↓+ +

√
2P

1−P
(V 2

↓+ + 2V↓+ )

1 + V↓+
. (26)

Both, the spin-spin as well as the density-spin response
function take a very simple form along ωmAR(q) ,

χ ss
(ns)

(q,ωmAR(q)) = +
(−)

1

V↑↓(q)
. (27)

The mAR features of the bare RPA are obtained by replacing
V↓+ (q) with 2nv(q)/εF in Eqs. (24)–(27).

In a realistic scattering experiment spin channels have to
be taken into account in the double-differential cross section,
well explained by Perez [35]. How exactly the magnetic
antiresonance contributes [36] to this cross section depends
on the size of the optical matrix elements.

IV. CONCLUSION

In summary, we have shown that exchange- and correlation
effects substantially alter the response functions of partially
spin-polarized electron layers compared to the bare RPA.
In particular, the spin plasmon is shifted downwards and
its stability region is severely decreased. For the charge
plasmon our results are in good agreement with those obtained
from literature-based local field corrections [5]. Finally,
we predict a new structure in the double-differential cross
section, characterized by a zero in the imaginary part of
the spin-spin response function. Certainly, this interesting
region and the implications of this effect deserve further
research.
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