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Electronic structure of helicoidal graphene: Massless Dirac particles on a curved surface
with a screw symmetry
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Massless Dirac particles on the helicoid are theoretically investigated. With its possible application being
helical graphene, we explore how the peculiarities of Dirac particles appear on the curved, screw-symmetric
surface. Zweibein is used to derive the massless Dirac equation on the helicoid and on general curved surfaces.
We show that bound states of massless Dirac electrons on the helicoid are absent, and thus the system is fully
characterized by the scattering probabilities and the phase shifts. We obtain these quantities from numerically
calculated wave functions. We find the local density of states and the phase shifts behave characteristically around
the axis of the helicoid. Bound states of massive Dirac electrons on the surface are also shown to be absent as
an extension of the above result on massless Dirac electrons. A comparison with the nonrelativistic case is also
made.
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I. INTRODUCTION

Graphene and massless Dirac fermions on it have gained
continued attention over the last few decades as a way of
looking at relativity through condensed matter physics [1].
While there are a number of studies on graphene, only a few
focus on curved graphene and its electronic structures. It is
therefore worth asking the following question: How does the
electronic structure of graphene change if we deform it into
a curved surface? This is interesting in a number of ways.
(i) Nonrelativistic electrons on periodic curved surfaces have
distinctive electronic structures [2], and we expect something
even more interesting with Dirac fermions due to their spinor
wave functions rather than scalar ones. (ii) It is also intriguing
to see how the presence of positive and negative energy states
of Dirac fermions exert its effect on curved surfaces. In other
words, how does the Klein paradox [3], i.e., potential barriers
cannot reflect massless Dirac particles, take its form on curved
surfaces.

These have motivated us to look into Dirac particles on the
helicoid, one of the simplest curved surfaces periodic in one
direction [4]. The surface is also simple in that it is a minimal
surface, i.e., its mean curvature vanishes everywhere—it is
the only ruled minimal surface other than the plane. Possible
applications to physical systems include graphite with a screw
dislocation. Horn, for example, reported spiral growth patterns
on natural graphite as early as 1952 [5], followed by more
recent studies by Rakovan and Jaszczak [6]. There is also a
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theoretical study by Bird and Preston of spiral graphite in terms
of Berry’s phase [7].

The rest of the paper is organized as follows. In Sec. II we
formulate the Dirac equation on general curved surfaces, and
then in Sec. III apply the formalism to the helicoid. In Sec. III C
we show that there are no bound states of massless Dirac
fermions on the helicoid and discuss the scattering amplitudes
and the phase shifts of an electron off the spiral axis in terms
of partial waves. We go on to discuss the local density of
states in Sec. IV. In Sec. V we examine the (non)existence
of bound states of massive Dirac fermions on the helicoid.
In Appendix B a comparison with the nonrelativistic case is
briefly made.

II. DIRAC EQUATION ON CURVED SURFACES

The massless Dirac equation on a flat two-dimensional (2D)
surface,

iσμ∂μψ = Eψ, (1)

describes the low-energy behavior of electrons on graphene
[1]. Here, σμ (μ = 1, 2) are the Pauli matrices, ψ is the spinor
wave function, and E is the eigenenergy.1 Here and hereafter,
repeated indices are implicitly summed over. Following Birrell
and Davies [8], we generalize the Dirac equation to curved
surfaces by replacing derivatives with covariant derivatives
Dμ and by introducing zweibeins e

μ
a :

iσ aeμ
a Dμψ = Eψ (a,μ = 1,2). (2)

We use a convention in which the metric is given by gμν =
ea
μeb

νηab, with ηab = diag(+,−,−) being the Minkowskian

1The massive case with mass m is described by adding a imσ 3φ

term to the left-hand side of the equation.
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metric. The covariant derivatives for spinors are given by
Dμ = ∂μ + �μ, where

�μ = 1
2Sabeν

agρνDμe
ρ

b and Sab = 1
4 [σa,σ b]. (3)

The action of covariant derivatives on zweibeins is

Dνe
a
μ = ∂νe

a
μ + eb

μωa
bμ − ea

λ�
λ
νμ. (4)

Here, ωa
bμ are the spin connection coefficients defined via

d
(
ea
μdxμ

) = −ωa
b ∧ (

eb
νdxν

)
, (5)

while �λ
νμ are the Christoffel symbols. We require the spin

connection coefficients to be antisymmetric in a and b so as to
avoid the arbitrariness in the above definition.

Every surface has global isothermal coordinates, i.e., every
metric on any surface can be represented in a diagonal form
upon a suitable coordinate transformation [9]:

gij (x,y) =
(

g(x,y)2 0
0 g(x,y)2

)
. (6)

The zweibeins and Christoffel symbols then read, in matrix
forms,

ea
μ =

(
g(x,y) 0

0 g(x,y)

)
, eμ

a =
(

g(x,y)−1 0
0 g(x,y)−1

)
,

�
ρ

κ1 = 1

2

(
g−2∂1(g2) g−2∂2(g2)
g−2∂2(g2) −g−2∂1(g2)

)
,

(7)

�
ρ

κ2 = 1

2

(
g−2∂2(g2) −g−2∂1(g2)
g−2∂1(g2) g−2∂2(g2)

)
.

The spin connections are calculated as

ω1
21 = 1

g
∂2(g),

ω2
12 = 1

g
∂2(g), (8)

ωa
μb = 0 (other components).

By substituting these into Eq. (2), we arrive at the massless
Dirac equation on a curved surface in terms of isothermal
coordinates,

i

(
0 1

g
∂

1
g
∂̄ 0

)(√
gψ+√
gψ−

)
= E

(√
gψ+√
gψ−

)
, (9)

where ∂ ≡ ∂x − i∂y , ∂̄ ≡ ∂x + i∂y , and ψ+, ψ− are two
components of the spinor.2 It is easy to see that Eq. (9)
has a chiral symmetry [1] since the equation has a solution
with eigenenergy −E accompanied with a solution with
eigenenergy E:

i

(
0 1

g
∂

1
g
∂̄ 0

)( √
gψ+

−√
gψ−

)
= −E

( √
gψ+

−√
gψ−

)
. (10)

Moreover, the system has a zero mode, where
√

gψ+ and√
gψ− are holomorphic and antiholomorphic, respectively.

2Notice we have dropped 1/2 from the ordinary definition of ∂

and ∂̄ .

u

v

z

a

FIG. 1. (Color online) A helicoid in three-dimensional Euclidean
space. Shown on the surface are the isothermal coordinates, (u,v).

III. DIRAC EQUATION ON THE HELICOID

The helicoid, shown in Fig. 1, can be parametrized in R3 �
(x,y,z) as ⎛

⎝x

y

z

⎞
⎠ = a

⎛
⎝sinh u cos v

sinh u sin v

v

⎞
⎠, (11)

where the coordinate v spirals about the axis of the helicoid,
while u shoots out normal to v from the axis, with a being the
pitch of the spiral. The metric in this parametrization is

gij =
(

a cosh2 u 0
0 a cosh2 u

)
, (12)

which indicates that (u,v) are indeed isothermal.
The massless Dirac equation (9) on the helicoid then reads

i

a cosh u

(
0 ∂u − i∂v + tanh u

2
∂u + i∂v + tanh u

2 0

)(
ψ+
ψ−

)

= E

(
ψ+
ψ−

)
. (13)

Since v is a cyclic coordinate, representing the translational
symmetry along the axis of the helicoid, we can set

ψ±(u,v) = exp(iv)φ(u)±, (14)

in which  is physically the “angular momentum” along the z

axis. Since the system is helical and the coordinate v spirals
around the axis of the helicoid,  does not necessarily have
to be integer-valued, or cannot be quantized. This angular
momentum  can also be regarded as the momentum along
the helical axis. This leaves us with a differential equation for
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φ(u) below:

i

cosh u

(
0 ∂u +  + tanh u

2
∂u −  + tanh u

2 0

)(
φ+
φ−

)
= E

(
φ+
φ−

)
.

(15)
Here, we took a unit in which a = 1. We are going to stick
with this unit system unless otherwise stated.

A. Solving the equation with fixed �

The massless Dirac equation on the helicoid, Eq. (15), is
similar to the flat-space Dirac equation in that it takes an
off-diagonal form,(

0 iD

cosh u
iD−

cosh u
0

)(
φ+
φ−

)
= E

(
φ+
φ−

)
, (16)

where

D = ∂u +  + tanh u

2
. (17)

We square the Dirac Hamiltonian
(

0 iD
cosh u

iD−
cosh u

0

)
to get a set of

second-order differential equations:

1

cosh u
D

1

cosh u
D−φ+ = E2φ+ (18)

1

cosh u
D−

1

cosh u
Dφ− = E2φ−. (19)

Although it is possible to numerically solve these equations
directly, one alternative is to cast them into a more convenient,
Schrödinger-type form with the transformations below:

s = sinh(u) and ψ±(u) = φ±(u)
√

cosh u. (20)

This transformation is chosen for geometric reasons: (i) ds

gives the infinitesimal canonical distance in R3. (ii) The inte-
gral measure, cosh u du, associated with the metric, Eq. (12),
is then factored out. Following these, Eq. (19) is transformed
into

− d2

ds2
ψ(s) +

[
2

1 + s2
− s

(1 + s2)3/2

]
ψ(s) = E2ψ(s). (21)

We concentrate only on the ψ−(s) ≡ ψ(s) component of the
spinor here and hereafter: We only have to change  into − to
obtain the ψ+(s) component of the spinor. Equation (21) is just
the one-dimensional Schrödinger equation with eigenenergy
E2 for a particle with mass m = 1/2 traveling through the
potential barrier,

V(s) = 2

1 + s2
− s

(1 + s2)3/2
(22)

(see Fig. 2). Note that E2 on the right-hand side of Eq. (21)
ensures we can concentrate only on non-negative eigenvalues
of this eigenvalue equation.

The potential barrier V(s) approaches zero as s → ±∞
(Fig. 2). This implies we have no bound states with energy
above zero. Therefore all the states we need to consider (with
eigenenergy E2 non-negative) are scattering states, and we
have to solve the equation with boundary conditions in which
eigenstates behave asymptotically as plane waves as s → ±∞.
Examples of numerically obtained wave functions are shown
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FIG. 2. (Color online) (a) The potential barrier in the transformed
one-dimensional problem as a function of s = sinh(u) with different
values of . (b) 2D color map of the potential against  and s.

in Fig. 3, along with their asymptotes. We have employed
the Runge-Kutta method and solved the differential equation
backwards from s0 = 45, with its initial value conditions
chosen to match the real/imaginary parts of ψ(s0) = exp(iEs0)
and ψ ′(s0) = iE exp(iEs0). We can see from the figure that
the wave functions deviate from the asymptotic plane waves
in a region very close to the axis of the helicoid (s ∼ 0).

We then calculate the reflection and transmission coeffi-
cients, R ≡ ReiδR and T ≡ T eiδT , using the obtained wave
functions and their asymptotes (see Fig. 4). The results are
plotted against E in Fig. 5.

We can see from the figure that the transmission/reflection
probabilities resemble those of a finite potential barrier, except
that the resonance phenomena does not show up in the present
system. This is because the potential barrier V(s) is somewhat
rounded compared with finite hard walls. The wavelengths of
the electrons are much shorter than the typical scale at which
the height of the potential changes.

B. Solving the equation with fixed E

We also plot R and T against  (Fig. 6). We can see from
Fig. 6 that |T |2, |R|2, and arg T are invariant while arg R

increases by π under the inversion of the angular momentum
( 
→ −). The reason why there is such a symmetry will be
discussed in the next section.
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FIG. 3. (Color online) The wave function with  = 0.5 at E =
0.35 (red, thick curves). The green, thin curves on the right side (25 <

s < 50) represent positive asymptotes, i.e., cos(Es) and sin(Es) in
the upper and lower panel, respectively. The blue, thin curves on
the left side (−50 < s < −25) are fitted curves representing negative
asymptotes.

C. Scattering amplitudes and phase shifts against � and E

Let us summarize the above results into two-dimensional
plots against  and E of |T |2, |R|2, arg T , and argR. These
are shown in Fig. 7.

eiEs

Rei(−Es+δR)

Tei(Es+δT )

s∞−∞

FIG. 4. The boundary condition of the system as a transformed
one-dimensional problem.
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FIG. 5. (Color online) The transmission/reflection probabilities
with  = 0.5 plotted against energy.

Physical quantities tend to change significantly where the
eigenenergy E2 becomes comparable with the peak height of
the potential:

E2 ∼ 2
27 [||(2 + 3)3/2 − 2(2 − 9)] ∼ 2 [ � O(1)].

(23)
This corresponds to the line where physical quantities change
considerably in Fig. 7 [the green regions in Fig. 7(a), the
purple and aqua regions in Fig. 7(b), and the purple regions in
Fig. 7(c)].

One interesting question worth asking here is how the trans-
mission/reflection coefficients associated with some positive
angular momentum  (i.e., electrons spiralling upwards in the
+z direction) are related to those associated with the inverted
angular momentum − (electrons spiralling downwards in the
−z direction). In the transformed one-dimensional problem,
the relation V(s) = V−(−s) implies the following: Inverting
the angular momentum ( 
→ −) amounts to inverting s with
 fixed (s 
→ −s). We are therefore going to discuss the change
in physical quantities in terms of the space inversion.

We define the transfer matrix as described in Fig. 8:(
A

B

)
= T̂

(
C

D

)
, T̂ =

(
p r

q s

)
. (24)

The relations between the variables above and those in Fig. 4
are 1/p = R ≡ ReiδR and q/p = T ≡ T eiδT . The probability
conservation requires |p|2 − |q|2 = 1 as well as the existence
of � such that r = q∗ei� and s = p∗ei� hold.3

The space-inverted transfer matrix T̂ ′ satisfies, by defini-
tion, the following:(

D

C

)
= T̂ ′

(
B

A

)
, T̂ ′ =

(
pe−i� −qe−i�

−q∗ p∗

)
. (25)

This means that the transmission/reflection coefficients, T
and R, of the inverted system are ei�/p and −(q∗/p)ei�,

3We can show this as follows: |A|2 − |B|2 = |C|2 − |D|2 leads to
|p|2 − |q|2 = |r|2 − |s|2 = 1 and p∗r − q∗s = 0, which then leads
to |p|2 = |s|2. This means there exists � such that s = p∗ei� and
substituting this into the relations above yields r = q∗ei�.
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FIG. 6. (Color online) The transmission and the reflection prob-
abilities and the phase shifts plotted against  at (a) E = 0.5 and
(b) E = 1.5.

respectively. The transmission/reflection probabilities, |T |2
and |R|2, are therefore invariant under the space inversion.
We can also show

� ≈ 0, arg q ∝ 1

E
→ 0 (E → ∞) (26)

using the first Born approximation. This is shown in Ap-
pendix A. This relation holds to a good approximation,
according to our numerical calculation. This is the reason why,
as we can see in Fig. 6, the phase shift of the transmitted wave
is symmetric about  = 0 while that of the reflected wave is
symmetric, except a jump by π at  = 0.

= 1 22
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FIG. 7. (Color online) (a) 2D color map of the reflection proba-
bility (|R|2 = 1 − |T |2) on  and E. (b) 2D color map of the reflection
phase shifts on  and E. (c) 2D color map of the transmission phase
shifts on  and E.

It might first seem strange that inverting the angular
momentum should bring about changes in any physical
quantities. However, as we are dealing with spinors here,4

only when the angular momentum and the spin directions are
both inverted will the system go back to its original state. This
operation corresponds to inverting  and s simultaneously.

4Although we started off by dealing with pseudospins on helical
graphene, at this stage we are free to think of these spins as real
spins; there would be no difference in any arguments in the paper
according to whether or not the spins are real.
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FIG. 8. Incoming and outgoing waves.

IV. LOCAL DENSITY OF STATES

We now turn to the local density of states (LDOS) of the
system. This is one way of visualizing wave functions when
dealing with continuous spectra. LDOS, ρ(r,E), is defined, in
terms of the Green’s function, as

ρ(r,E) = 1

π
Im Tr G(r,r,E), (27)

where G(r,r′,E) is the Green’s function and is a 2 × 2 matrix:

G(r,r′,E) =
(

G++(r,r′,E) G+−(r,r′,E)
G−+(r,r′,E) G−−(r,r′,E)

)
. (28)

The Green’s function for the Dirac equation,(
0 D+

D− 0

)(
ψ+

n

ψ−
n

)
= En

(
ψ+

n

ψ−
n

)
, (29)

satisfies the following relation:[(
0 D+(r)

D−(r) 0

)
− E

](
G++(r,r′,E) G+−(r,r′,E)
G−+(r,r′,E) G−−(r,r′,E)

)
= −δ(r − r′)1. (30)

This gives a spectral representation of the Green’s function:

G++(r,r′,E) = − lim
δ→0

∑
n

Eψ+
n (r′)ψ+

n (r)

E2 − E2
n + iδ

, (31)

G−−(r,r′,E) = − lim
δ→0

∑
n

Eψ−
n (r′)ψ−

n (r)

E2 − E2
n + iδ

, (32)

where we have assumed the completeness of {ψ+
n (r)} and of

{ψ−
n (r)}, respectively. LDOS is then given by

ρ(r,E) =
∑

n

Eδ
(
E2 − E2

n

)
[|ψ+

n (r)|2 + |ψ−
n (r)|2], (33)

or

ρ(r,E) = 1

2

∑
α=±

[∣∣ψα,1
E (r)

∣∣2 + ∣∣ψα,2
E (r)

∣∣2]
, (34)

if we have a continuous spectrum. Here, we let
{ψ±,1

E (r),ψ±,2
E (r)} form an orthonormal basis of the eigenspace

of D±(r)D∓(r) with eigenvalue E2.
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FIG. 9. (Color online) (a) Local density of states on the helicoid
on s with  = 0.5 at E = 0.3. Note the symmetry with respect to
the space inversion, s 
→ −s. (b) Surface color plot of LDOS on the
helicoid.

We can Fourier transform Green’s function on the helicoid
with respect to v to decompose LDOS into a partial LDOS,
ρ(s,E):

ρ(s,E) =
∑



ρ(s,E) =
∑



∑
α=±

[∣∣ψα,1
,E(s)

∣∣2 + ∣∣ψα,2
,E(s)

∣∣2]
.

(35)

We calculate the partial LDOS numerically. As the original
wave functions [asymptotically cos(ks) and sin(ks) as s →
∞] do not form an orthonormal basis, we have to prepare
ψ

±,1
E (s) and ψ

±,2
E (s) which are orthogonal and normalized.

This orthogonalization of the actual wave functions was
done using the Gram-Schmidt algorithm. The numerically
calculated LDOS is shown in Fig. 9. We can see that LDOS
oscillates with large amplitudes in the vicinity of the axis of the
helicoid. This is natural because the potential is peaked around
s = sinh(u) ≈ 0 (see Fig. 2). We also plot LDOS against E

and s or against  and s. These are shown in Fig. 10. Again,
LDOS oscillates with large amplitudes around the axis of the
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FIG. 10. (Color online) Local density of states against E and s

(upper) or against  and s (lower).

helicoid in a consistent way: faster oscillations for larger E,
and smaller amplitudes for larger .

V. MASSIVE CASE

Having studied the case of massless Dirac fermions so far,
let us move on to the case of massive Dirac fermions on the
helicoid. One might expect that bound states could appear in
the massive case, for which we replace E2 with E2 − m2 in
Eq. (21):

− d2

ds2
ψ(s) +

[
2

1 + s2
− s

(1 + s2)3/2

]
ψ(s) = (E2−m2)ψ(s).

(36)
We can, however, prove that bound states continue to be absent
even in the massive case.

In order to show the absence of bound states with
E2 − m2 < 0, we only have to find one wave function
whose eigenenergy satisfies E2 − m2 = 0 that is everywhere
nodeless. This can most easily be done by going back to the
original Dirac equation, Eq. (15). At E = 0, this equation
becomes, for φ−,

[
d

du
+  + tanh(u)

2

]
φ− = 0, (37)

which can be solved analytically to give

φ−(u) = e−u

√
cosh u

. (38)

This can be translated into a wave function of the Schrödinger-
type equation, Eq. (36), with its eigenenergy satisfying E2 −
m2 = 0,

ψ−(s) = φ−(u)
√

cosh u = e−u > 0, (39)

where s = sinh u, as before.5 This means that one of the wave
functions of the states with E2 − m2 = 0 is nodeless (hence a
ground state wave function), which means there are no bound
states at E2 − m2 < 0. We therefore conclude the absence of
bound states even in the case of massive Dirac particles.

We can also show that the state with E2 − m2 = 0 is
actually the ground state on any surface if it has at least one
cyclic coordinate. According to Eq. (9), the zero-energy wave
functions satisfy the following differential equation:

(∂x − ∂y)[
√

g(x,y)ψ−(x,y)] = 0 (40)

[see Eqs. (6) and (9) for how g and ψ− are defined]. We think
of y as the cyclic coordinate conjugate to the momentum k,
and the above equation becomes

(∂x + k)[
√

g(x)φ−(x)] = 0, (41)

which again can be solved analytically to give

φ−(x) = e−kx

√
g(x)

. (42)

In the Schrödinger-type notation the wave function is

ψ(x) = φ−(x)
√

g(x) = e−kx > 0, (43)

in agreement with Eq. (39) in the case of the helicoid. Hence
the zero-energy wave functions have no nodes, and we again
identify it with the ground state wave function.

Turning back to the massless case, the absence of (positive
energy) bound states can be loosely accounted for the Gauss
curvature approaching zero as u approaches positive/negative
infinity. This is because the effective potential stemming from
the curvature of the surface is proportional to the Gauss
curvature [2]. We therefore expect the potential barrier in the
transformed one-dimensional problem, V(s), to be roughly
proportional to the Gauss curvature of the surface.

VI. CONCLUSIONS AND OUTLOOK

We have studied the Dirac electrons on the helicoid so far.
We saw that the scattering mainly occurs just around the helical
axis and that the bound states are absent even when we make
fermions massive.

One of the candidates of the physical realization of the
present system is graphite with a screw dislocation. As our
analysis was done using the Dirac equation and hence ignored
the actual lattice, the analysis is applicable when the typical
length scale at which the carbon honeycomb lattice bends is
much larger than the lattice constant.

5Change  into − to see ψ+(s) is also positive everywhere.
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Although we showed the absence of bound states of
massless/massive Dirac electrons on the helicoid, we can
also build surfaces that, unlike the helicoid, allow bound
states for massive/massless Dirac fermions. An example of
such a surface is the one whose metric is given by ds2 =
(dx2 + dy2)/(y2 + A2), with A being constant. This has a
larger curvature at larger distances and the corresponding
effective potential is larger at greater distances.

Further extensions of our work may include applications
to surfaces periodic in two or three directions rather than one.
The Dirac equation on those surfaces can no longer be reduced
to the ordinary Schödinger-type equation, unlike the case of
the helicoid here.

We have considered only pseudospins in this paper. Thus
another possible extension of the paper will be to introduce
real spins into the analysis: This will be of great interest with
more complicated spin connections. This possible research
direction is also thought-provoking as we might be able to
consider spin current on graphene with combined pseudospins
and real spins.

Note added. Recently, we became aware of a paper which
deals with helicoidal graphene nanoribbons [10]. While the
screw axis regions of helicoidal nanoribbons, which are
the subject of the above paper, are hollow, our main interest in
the present paper is the very region, because of its singularity
and possible applications to graphite with a screw dislocation.
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APPENDIX A: DERIVATION OF EQ. (26)

We take a notation in which x = s and k = E throughout
this Appendix. The one-dimensional Lippmann-Schwinger
equation reads

ψ(x) = eikx − i

2k

∫ ∞

−∞
dy eik|x−y|V (y)ψ(y). (A1)

A Born approximation gives the first-order perturbation:

ψ(x) = eikx − i

2k

∫ ∞

∞
dy eik|x−y|V (y)eiky

= eikx− i

2k

[
e−ikx

∫ ∞

x

dy e2ikyV (y)+eikx

∫ x

−∞
dy V (y)

]
.

(A2)

Hence the first-order perturbative expressions for the transmis-
sion/reflection coefficients are

T = 1 − i

2k

∫ ∞

−∞
dy V (y), R = i

2k

∫ ∞

−∞
dy e2ikyV (y).

(A3)
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FIG. 11. (Color online) Local density of states in the Schrödinger
case with  = 0.5 at

√
E = 0.3.

We can readily see that T is invariant under space inversion6

and that arg T ∼ 1/k for sufficiently large k. Similarly,∫ ∞

−∞
dy e2iky 1

1 + y2
= πe−2|k|,

(A4)∫ ∞

−∞
dy e2iky y√

1 + y2
3 = 4ikK0(2|k|) ∼ 4ike−2|k|,

so that arg R ∼ 1/k for sufficiently large k (K0(2|k|) is the
modified Bessel function of the second kind). This completes
the derivation of Eq. (26).

APPENDIX B: NONRELATIVISTIC FERMIONS
ON THE HELICOID

We deal with the Schrödinger equation on the helicoid
following an unpublished work by Aoki and Morimoto [4]
for the purpose of comparison with the Dirac case.

We first write down the Schrödinger equation on a curved
surface with metric gij ,[

− �
2

2m

1√
g

∂

∂qi

√
ggij ∂

∂qj
− �

2

8m
(κ1−κ2)2

]
φ(qk) = Eφ(qk),

(B1)
where (q1,q2) is the coordinate system on the surface, denoted
hereafter as (u,v), and κ1 and κ2 are the two principal
curvatures on the surface.

Specifically, the Schrödinger equation on the helicoid
[metric given by (12)] becomes

1

cosh2 u

(
d2

du2
+ 2 − 1

cosh2 u

)
φ(u) = Eφ(u). (B2)

We used the fact that the two principal curvatures of the
helicoid are κ± = ±1/[a cosh2(u)] [11]. We also set a = 1,
� = 1, and m = 1/2, as in the case of the Dirac particles.

6That T is invariant under space inversion can also be seen by
considering the Wronskian and equating its values at x → ±∞.
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Here, rather surprisingly, the coordinate transformation for
the Dirac equation, Eq. (20), can also be applied to transform
this Schrödinger equation into a new Schrödinger equation on
the flat metric:

− d2

ds2
ψ(s) +

(
2

1 + s2
− s2 + 2

4(1 + s2)2

)
ψ(s) = Eψ(s). (B3)

The potential of this Schrödinger equation is V (s) = 2

1+s2 −
s2+2

4(1+s2)2 , which is different from that of the Dirac case.
We first note that the system does not allow for bound states,

following a similar argument in the main body of the text. The
absence of bound states on the helicoid, therefore, is not just
specific to Dirac fermions.

We also see that the potential is symmetric with respect
to  
→ − and s 
→ −s. This indicates that the reflection
phase shift does not change by π at  = 0. This is one major
difference in the physical quantities between the Dirac and
the Schrödinger case. As mentioned at the end of Sec. III C,
the symmetry of the Dirac system is the combined inversion
of the angular momentum and the (pseudo)spin directions,
whereas the allowed symmetry operation in the Schrödinger
case is to invert the angular momentum only—no spins are
involved in the Schrödinger system.

LDOS of the Schrödinger system, shown in Fig. 11,
also behaves differently from that of the Dirac system. The
oscillation amplitude of LDOS does not diminish as we go
farther away from the helical axis, unlike the Dirac case.
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