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We study Kondo physics of a spin- 1
2 impurity in electronic matter with strong spin-orbit interaction, which can

be realized by depositing magnetic adatoms on the surface of a three-dimensional topological insulator. We show
that magnetic properties of topological surface states and the very existence of Kondo screening strongly depend
on details of the bulk material, and specifics of surface preparation encoded in time-reversal preserving boundary
conditions for electronic wavefunctions. When this tunable Kondo effect occurs, the impurity spin is screened
by purely orbital motion of surface electrons. This mechanism gives rise to a transverse magnetic response of
the surface metal, and to spin textures that can be used to experimentally probe signatures of a Kondo resonance.
Our predictions are particularly relevant for STM measurements in PbTe-class crystalline topological insulators,
but we also discuss implications for other classes of topological materials.
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I. INTRODUCTION

Recent explosion of interest in topological insulators
(TIs) [1–3] is due in large part to the fact that they support
metallic states on their surfaces. The existence of these states
(and hence the metallicity) results from the nontrivial topolog-
ical nature of the Bloch wave functions in the conduction and
valence bands of the bulk material, and is a robust feature. In
contrast, the quantum numbers associated with those surface
states are not determined by topology alone. Therefore, they
may vary from material to material, and depend on the
surface preparation. Understanding physical consequences of
this nonuniversal behavior is one of the foci of our paper.

A typical cartoon picture of surface states in a TI consists of
spin-momentum-locked energy branches of a massless Dirac
spectrum. This description cannot be universally accurate. A
crystal boundary breaks the inversion symmetry and gives rise
to strong, rapidly varying in space, electric fields that define
an effective surface potential for the electrons. Interplay
between these field gradients and the bulk interatomic
spin-orbit interaction (SOI), responsible for the nontrivial
topological aspects of these materials, renders this potential
momentum and spin dependent. As we show in the following,
this ensures that measurable properties of the surface states
cannot be determined by topological arguments alone. Details
associated with a crystal surface can be accounted for via
effective boundary conditions (BCs) for the electron wave
functions [4,5], and are completely excluded from the topo-
logical arguments involving only the bulk band structure. In
this context, Ref. [6] argued that appropriate BCs are essential
for a sensible formulation of a bulk-boundary correspondence
in TIs. Moreover, Ref. [7] pointed out a dependence of the
spin texture of surface Dirac cones on the crystallographic
orientation of the surface, even for simple BCs.

In this paper, we show that the spin behavior of surface
states in three-dimensional (3D) TIs is highly sensitive to both
the bulk band structure and surface properties. We consider
semiconductors with different crystal symmetry: cubic lead
chalcogenides (PbTe or PbSe) and tetragonal Bi2Se3-like TIs,
and demonstrate that magnetic probes (such as an external field

or quantum impurities) can be used to efficiently differentiate
between these two classes. Crucially, the sensitivity of TI
surface states to the surface manipulation allows one to use
TIs as a controllable environment for studying spin-dependent
correlated phenomena in the presence of strong SOI.

While some of the unusual magnetic phenomena that
we argue for can be probed by measuring the response to
a uniform magnetic field, in this paper we focus on the
physics of a spin- 1

2 impurity deposited on the surface of a
3D TI. Kondo screening, whereby the impurity spin at low
temperatures forms a singlet state with the Fermi sea, is one
of the earliest and lucid examples of correlated many-body
physics [8] that remains relevant in contexts ranging from
heavy-fermion systems [9,10] to nanoscience [11]. Advances
in scanning tunneling microscopy (STM) allowed observation
of this phenomenon on the atomic scale [12–14], and granted
access to manipulation of individual Kondo resonances [15].
Testing surface states of TIs via STM [16] complements
spin-polarized angle-resolved photoemission (ARPES) mea-
surements [17,18] and gives a direct probe of the Kondo effect.

In its simplest form, Kondo screening involves only spin
degrees of freedom of the conduction electrons. Hence, it
is sensitive to the spin-SU(2) symmetry breaking, provided
in our case by the SOI. Previous works have shown that
the Kondo effect survives in the presence of spin-orbit
scattering [19–21], and weak (compared to the bandwidth)
Rashba or Dresselhaus band SOI [22–27]. In some cases, the
latter can actually enhance the Kondo resonance [28,29]. The
strong SOI regime is even more intriguing. Indeed, the SOI can
be viewed as a momentum-space magnetic “field” that aligns
electron spins along a particular direction (e.g., perpendicular
to its momentum). When this field is large enough, the spin
degree of freedom of conduction electrons is effectively lost
and cannot participate in the spin-flip scattering leading to
the Kondo effect. Nevertheless, there is substantial theoretical
evidence [26,30–34] indicating that a magnetic impurity on
a TI surface is screened by the surface metal. Remarkably,
the physical nature of this effect and spatial structure of the
screening states have never been elucidated in the context of
TIs. Understanding this phenomenon is also important from
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an experimental perspective because magnetic probes (e.g.,
impurities or magnetic field) coupled to surface electrons can
be used to differentiate trivial and topologically nontrivial
matter, providing an alternative to ARPES-based techniques.

We demonstrate that the strong SOI leads to an unconven-
tional Kondo effect with an impurity spin screened by purely
orbital motion of surface electrons. Specifically, we consider a
simple band model of a 3D TI, and derive an effective Kondo
Hamiltonian that governs the dynamics of the impurity spin at
the TI boundary (that does not break time-reversal symmetry),
taking into account the full 3D spatial dependence of surface-
state wave functions. Because of the SOI, this Kondo exchange
has an XXZ structure and, in general, is strongly anisotropic.
At low energies, the impurity spin forms a singlet state with the
total electron angular momentum, and the system exhibits an
emergent SU(2) symmetry, which is responsible for the Kondo
resonance. The SOI also gives rise to a transverse magnetic
response when an external magnetic field applied normal to
the surface results in an in-plane electron spin polarization,
which may lead to interesting magnetoelectric phenomena
under driving fields. This response is significantly stronger
than an analogous effect on metallic surfaces with Rashba
SOI [35,36].

In Sec. II, we describe our minimal model of a 3D TI and
calculate its surface spectrum. Here, we consider a continuum
version of a lattice model studied in Ref. [6]. Emphasis is put
on the physical meaning of the quantum numbers involved
in the effective description of electronic states. In Sec. III,
we explain how both surface and bulk states play a role in
determining the specific mathematical form of the relevant
operators involved in the effective coupling between surface
electrons of the TI and the magnetic impurity. Here, we contrast
Bi2Se3 and PbTe-class materials. Section IV establishes the
effective XXZ Kondo Hamiltonian that governs coupling of
these surface states to magnetic impurities, and explains why
this is a single-channel Kondo Hamiltonian despite its apparent
two-channel form. In our approach, we control the surface
properties through BCs for electronic wave functions [6] and
show that surface manipulation provides an effective way of
tuning parameters in the effective low-energy Kondo model
and can be used to completely suppress the spin-flip terms
and destabilize the Kondo effect. We study the physical
properties of the effective model and its unconventional
Kondo physics in Sec. V. In particular, we investigate the
transverse magnetic response to an external magnetic field and
point to the resulting transverse spin textures as a distinctive
characteristic of the Kondo screening cloud in strong SOI
materials. We also show how one can tune the Kondo effect and
the characteristic temperature TK via surface manipulation.
Our results can be directly verified in STM measurements in
crystalline TIs like the lead-tin solid alloys Pb1−xSnxTe, but
the above unconventional Kondo physics can also be observed
in well-studied Bi2Se3 and BiSb. Finally, Sec. VI provides a
summary and an outlook with questions that still remain open.
Two appendixes with technical derivations complete the paper:
Appendix A addresses the very important problem of self-
adjoint extensions of unbounded Hermitian operators, of key
relevance to the analysis of bound surface states. Appendix B
exploits the axial symmetry of the problem to construct surface
states with well-defined total angular momentum.

II. SIMPLE CONTINUUM MODEL FOR TOPOLOGICAL
INSULATORS

A. Model Hamiltonian

To describe electronic states in a TI we use Dimmock’s
model [37,38], defined by the modified Dirac Hamiltonian

HD = v(α · p) + β

(
� + p2

2m∗

)
. (1)

This effective Hamiltonian involves two spinful bands (con-
duction and valence) of opposite parity separated by an energy
gap 2� and is written in terms of the 4 × 4 Dirac matrices

α = (σx ⊗ σ ) =
(

0 σ

σ 0

)
, β = (σ z ⊗ 1) =

(
1 0
0 −1

)
,

with σ = (σx,σ y,σ z) denoting the usual Pauli matrices, and 1
the unit 2 × 2 matrix. In Eq. (1), the effective mass m∗ accounts
for contributions from remote bands, and the velocity scale
v is proportional to the momentum matrix element between
conduction and valence Bloch states. In the following, we shall
adopt units with � = 1.

The Dimmock Hamiltonian (1) provides a standard de-
scription of electronic spectra in lead chalcogenides near one
of the eight equivalent L points in the Brillouin zone. Note
that despite the presence of SOI, Eq. (1) is written in the basis
of direct-product states [38] |L±

6 〉 ⊗ |σ 〉, where L±
6 denote

spinor one-dimensional representations of D3d corresponding
to the conduction (L−

6 ) and valence (L+
6 ) bands, superscripts ±

indicate spatial parity of the state, and σ = ↑, ↓ is the electron
spin quantum number. Eigenstates of HD are four-component
envelope functions

ψ(x) =

⎛
⎜⎝

ψc,1(x)
ψc,2(x)
ψv,1(x)
ψv,2(x)

⎞
⎟⎠, ψ†(x) = (ψ∗

c,1 ψ∗
c,2 ψ∗

v,1 ψ∗
v,2),

which define the full electron wave function in
the crystal: 〈x|�〉 = ∑

i=1,2[ψc,i(x)〈x|uc,i(k0)〉 + ψv,i(x)
〈x|uv,i(k0)〉]eik0 x where 〈x|u(c,v),i(k0)〉eik0 x are Bloch states
corresponding to band extrema at the point k0 in the Brillouin
zone (k · p method). The state |�〉 does not need to have a
definite spin quantum number due to the SOI usually present in
TIs. In general, the indices i = 1,2 describe pseudospin states
whose relation to the true spin will depend on the material. For
instance, in PbSe-like systems the gap at the L point is formed
by nondegenerate representations of the single group D3d . The
SOI does not affect these states besides shifting their energy,
so the pseudospin states i = 1,2 can be identified with the
eigenstates of σ z [i.e., |σ 〉 = |↑〉 or |↓〉] [38]. The (periodic part
of the) Bloch basis functions can be taken as direct products
of orbital and spin parts |uc,i(k0)〉 = |uc(k0)〉 ⊗ |σ 〉.

The Hamiltonian (1) has a number of conserved “tensor”
spin operators [39]. For us, the important one is

T = β[� × p] = diag{[σ × p], − [σ × p]}, (2)

with � = (1 ⊗ σ ). One can easily check that [HD,T ] = 0.
Here, we will only need T z = iβαz(α⊥ · p⊥), where “⊥”
denotes xy vector components. The Dimmock Hamiltonian (1)
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can be rewritten as

HD = v(αzpz + iβαzT z) + β

(
� + p2

2m∗

)
. (3)

Note that T z is a block-diagonal matrix whose elements are
proportional to a “Rashba” SOI term [σ × p⊥]z.

Effective mass models similar to (1) emerge in many
narrow-gap semiconductors with strong SOI [40], such as
Bi2Se3. The relevant point in the Brillouin zone and the
interpretation of the quantum numbers may differ depending
on the material. For example, in Bi2Se3 (symmetry D3d at
the � point) the SOI is essential in determining gap-forming
states [1], hence, the basis states are no longer direct products.
Even though there are still four states in the vicinity of the
gap and the effective mass description is given by Eq. (1), the
identification of the pseudospin with real spin (as for PbSe)
is no longer possible. These considerations are important for
deriving an effective mass interaction Hamiltonian between
the surface electrons and external probes such as magnetic
field or magnetic impurities. Naturally, this interaction will
depend on details of the bulk band structure of a material.
Below, we are going to illustrate this point by comparing the
coupling of surface states and localized magnetic moments in
lead and bismuth selenide compounds.

B. Quasiparticle states in a half-space

We are particularly interested in the localized surface states
that form as a result of breaking translational invariance.
Consider a TI bounded by the surface z = 0 whose bulk
states are described by HD [see Fig. 1(a)]. It follows that
p⊥ is conserved and, together with T z, can be used to
classify quasiparticles states. An eigenfunction ψ p⊥τ of T z,
T zψ p⊥τ = τp⊥ψ p⊥τ , has the form

ψ p⊥τ (x) =
(

a(z)U p⊥τ

b(z)U p⊥,−τ

)
ei p⊥·x⊥

with

U p⊥τ = 1√
2

(
1

−iτeiφ p⊥

)
, (4)

where p⊥ = | p⊥| and eiφ p⊥ = (px + ipy)/p⊥. The amplitudes
a(z) and b(z) are determined by solving the remaining 2 × 2
boundary value problem. In Eq. (3), one can now replace T z

with τp⊥, hence reducing the number of independent Dirac
matrices to two: β and αz. Their action on the z-dependent
spinor part of ψ p⊥τ (x) is equivalent to the action of σ z and σx

on a two-component wave function (a∗ b∗)†:

αz

(
a(z)U p⊥τ

b(z)U p⊥,−τ

)
=

(
b(z)U p⊥τ

a(z)U p⊥,−τ

)
→ σx

(
a(z)
b(z)

)
,

β

(
a(z)U p⊥τ

b(z)U p⊥,−τ

)
=

(
a(z)U p⊥τ

−b(z)U p⊥,−τ

)
→ σ z

(
a(z)
b(z)

)
,

which allows us to replace the Hamiltonian (3) with a 2 × 2
operator

H
(2×2)
D = v(σxpz − σyτp⊥) + σ z

(
� + p2

2m∗

)
(5)

y x

z

SB(ϑ) n

(a)

1/m∗v

v/Δ
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py

=τvp⊥|ψp⊥τ |2
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FIG. 1. (Color online) (a) Geometry of the problem. The TI
occupies half-space z � 0. The unit vector n is an outer normal to the
surface. The red arrow represents the impurity spin. (b) Schematic
z dependence of the surface-state wave function (6), characterized
by two length scales: small 1/λ ∼ 1/m∗v (shaded region) and large
1/q ∼ v/�. The Dirac model (7) is valid at distances � 1/q. The
impurity is located under the surface where the Dirac theory is
applicable. The inset shows the dispersion of surface modes. (c)
Stability diagram of surface states (10). Thick lines correspond to
critical momenta pcr

⊥ = ±(�/v) ctg ϑ . In the white region, no surface
states can exist. In the (light) dark gray area, there are surface modes
with (only one, τ = −1) both helicities. (d) Dispersion relation (10)
for several values of ϑ . The upper (lower) branches (relative to the
point p⊥ = 0) correspond to τ = ∓1. The Fermi energy is εF = 0.

acting on two-component z-dependent wave functions. This
reduction of dimension (from 4 to 2) is a direct consequence
of conservation of T z.

An important insight can be obtained by studying the sim-
plest case of a hard boundary at z = 0 where the wave function
vanishes, ψ |z=0 = 0. Surface states with energy ε p⊥τ = τvp⊥
exist for an inverted band structure when −m∗v2/2 < � < 0
[41]. The surface-state (unnormalized) wave function is a
coherent superposition of the conduction and valence bands

ψ p⊥τ (x) ∼
(

U p⊥τ

−iU p⊥,−τ

)
(e−qz − e−λz)ei p⊥·x⊥ , (6)

and is characterized by two momentum-dependent inverse

length scales: (q
λ
) = m∗v ∓ √

m∗(m∗v2 + 2�) + p⊥2. This

surface state is stable only when q > 0, i.e., for p⊥ ≤√
2m∗|�| and merges into the scattering continuum for larger

p⊥. For more complicated BCs, the problem of determining
the surface spectrum from microscopic considerations is rather
cumbersome (see Ref. [6] and Appendix A for details).

It is possible to simplify matters by considering the limit
when m∗v � |�|/v, p⊥. In this case, vq ≈ |�| and λ ≈
2m∗v � q. These lengths are illustrated in Fig. 1(b). One
can build a theory [42] valid on the scale ∼1/q by neglecting
1/λ. This small-p⊥ perturbative approach is similar to that
used in hydrodynamics of weakly viscous fluids [43]. In the
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bulk we can simply omit the p2/2m∗ term in Eq. (1), so the
Hamiltonian takes the Dirac form

H0 = v(α · p) + β�. (7)

Near the surface (at distances ∼1/λ) the situation is more
complicated because the term p2/2m∗ ∼ λ and cannot
be neglected. Within this layer [shown in gray in Fig. 1(b)], the
electronic wave function varies rapidly in accordance with the
BCs supplementing the Dimmock Hamiltonian (1). However,
this complexity can be absorbed into the BC for the Dirac
Hamiltonian (7). This BC has to be consistent with the particle
conservation, time-reversal and inversion (parity) symmetries,
and can be written as [4–6] Bψ |z=0 = 0 with

B = 1 + β sin ϑ + iβ(α · n) cos ϑ, (8)

and n the outer normal to the surface. The boundary operator B

includes one free parameter ϑ which accounts for microscopic
properties of a realistic TI surface, and the behavior of the
electronic wave function at the length scale ∼1/m∗v. An
exact connection between ϑ and the boundary conditions
of the original fully microscopic Hamiltonian is not unique
in the effective long-wavelength Dirac model. However, we
show in Appendix A that to be self-adjoint in a half-space,
the Hamiltonian (7) must have a single-parameter family of
BCs. Consequently, variation of the parameter ϑ allows us to
consider entire sets of possible surface properties realized in
experiments. Physically, ϑ controls the amount of particle-hole
(p-h) asymmetry at the surface: The p-h symmetric case is
recovered only when ϑ = 0 or π . The Dirac model (7) is
clearly less complete than the Dimmock theory (1), but it is
much easier to work with.

From now on, we will focus on the problem defined
by Eqs. (7) and (8). Since ϑ can be chosen arbitrarily, we
confine our analysis to the case � > 0 (no band inversion) and
ϑ ∈ [0,π ]. Results for ϑ > π can be obtained using charge
conjugation ψ → αyψ∗. The energy and wave function of
surface states are given by

ε p⊥τ = τvp⊥ cos ϑ − � sin ϑ (9)

and

ψ p⊥τ (x) = N
(

(1 − sin ϑ)U p⊥τ

−i cos ϑU p⊥,−τ

)
e(i p⊥·x⊥−q p⊥τ z). (10)

Here, N = √
q p⊥τ /A(1 − sin ϑ) and

q p⊥τ = −τp⊥ sin ϑ − (�/v) cos ϑ (11)

is the localization wave vector and A the area of the TI
surface [xy plane, see Fig. 1(a)]. The stability region of
the state (10) is determined by the condition q p⊥τ � 0. For
ϑ > π/2, the τ = −1 state exists for any value of p⊥, while
the state with τ = +1 is stable only for vp⊥ < −� ctg ϑ .
For ϑ < π/2, the τ = +1 mode is always unstable and the
one with τ = −1 exists for vp⊥ > � ctg ϑ . These regions are
shown in Fig. 1(c). The surface state enters the single-particle
continuum at p⊥ = pcr

⊥ = ±(�/v) ctg ϑ . The function ε p⊥τ is
presented in Fig. 1(d) for several values of ϑ .

kF

τ =−1

sin ϑ
1
2

Σ

(a)

z

bulk bands

Δ

Δ

S

JK sin ϑ

l<v/Δ

JKΔ2 v3

Hss
K

(b)

FIG. 2. (Color online) (a) Helical structure of the surface
state (10). Blue arrows indicate the expectation value of the electron
spin 1

2 � which points perpendicular to the momentum and has a
magnitude ∼ sin ϑ . For ϑ = π , surface states carry no spin. (b)
Schematic illustration of the Kondo interaction HK in Eq. (12). At
weak coupling, one can ignore bulk-surface mixing induced by the
impurity and assume that HK ≈ Hss

K . The impurity only couples to
surface states (blue Dirac cone).

Surface states (10) are characterized by a helical spin
distribution, shown in Fig. 2(a), that depends on the
BC, as one can see by computing an expectation value
of the spin 1

2�. This average is 〈 1
2�〉 = 1

2N 2U
†
p⊥τ [(1 −

sin ϑ)2 σ + cos2 ϑσzσσ z]U p⊥τ = −qp⊥τ τ sin ϑ(sin φ p⊥ ex −
cos φ p⊥ ey) ∼ sin ϑ , hence at a p-h symmetric point ϑ = π ,
surface states (10) [and (6)] carry no spin. This situation is
quite different from the usual case of boundary-independent
surface states [2,3].

The single-particle scattering continua are defined by
ε p⊥pz

= ±√
v2(p2

z + p⊥2) + �2 with pz � 0. Note that ε p⊥pz

is doubly degenerate w.r.t. τ . The corresponding (unnormal-
ized) wave function is

ψ p⊥pzτ (x) ∼
(

(� + ε p⊥pz
) sin κ U p⊥τ

−iv[pz cos κ + τp⊥ sin κ]U p⊥,−τ

)
ei p⊥·x⊥ ,

where κ = pzz + ζ and

tg ζ = vpz cos ϑ

(1 + sin ϑ)(� + ε p⊥pz
) − τvp⊥ cos ϑ

.

Finally, we make two general remarks. First, for ϑ = π

the Dirac surface state (10) has a structure similar to its
Dimmock counterpart (6). An additional negative sign in the
lower component of the spinor in Eq. (10) appears because
in the Dimmock theory (1) we used � < 0, while in the
Dirac Hamiltonian (7) � > 0. In the latter case, the sign of
� can be flipped by a unitary rotation H0 → �†H0� and
B → �†B� with � = (σx ⊗ 1). After this transformation,
the Dirac surface-state wave function (10) at ϑ = π becomes
identical to Eq. (6). Hence, conclusions obtained using the
Hamiltonian (7) should also be applicable to the Dimmock
model.

Second, one has to prove that the Hamiltonian (7) is
self-adjoint in the space of wave functions satisfying the
BC (8), which is necessary to guarantee that the Dirac model is
physical and our conclusions can be linked to experimentally
observable quantities. In Appendix A, we show that this is
indeed the case and the BC (8) defines a self-adjoint extension
of the Dirac Hamiltonian (7).
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III. COUPLING THE TOPOLOGICAL INSULATOR TO
SURFACE MAGNETIC IMPURITIES

The Kondo Hamiltonian that describes the interaction of
the two electronic bands with an impurity on the surface at
x = x0 = (0,0,0) has the form

HK = JK S · s(x0), (12)

where S is the impurity spin and s(x0) is the electron spin
density at x0, the coupling constant JK is positive (and
has units of energy × volume). Based on contributions from
different parts of the electron spectrum, the operator HK can
be decomposed as

HK = PsHKPs + PbHKPb + (PsHKPb + H.c.).

Here, Ps (Pb) is the projector on the surface (bulk) subspace
with Ps + Pb = 1. The first two terms have matrix elements
only between surface and bulk states, respectively; the last
term describes surface-bulk mixing induced by the impurity.
Since bulk states are gapped, the pure bulk contribution
cannot support Kondo screening (due to a vanishing density
of states at the Fermi surface) and can be omitted. For
JK/l3

C � �, with the “Compton” length scale lC = v/�,
the off-diagonal surface-bulk mixing term is perturbative,
and can be neglected in a zeroth-order approximation [see
Fig. 2(b)]. In the following, we will focus on the surface term
Hss

K = PsHKPs .
As already mentioned in Sec. II A, the relation between

real electron spin and the pseudospin index in the Dirac
Hamiltonian is material dependent. We will consider the
simplest case of PbSe-class materials where the electron spin
operator coincides with the pseudospin and has the form

s(x0) = 1

2
c†(x0) � c(x0) = 1

2
c†(x0)

(
σ 0
0 σ

)
c(x0),

where c(x) is the annihilation operator that corresponds to the
quasiparticle eigenstates (10), c(x) = ∑

p⊥τ ψ p⊥τ (x)c p⊥τ +
bulk modes.

The surface part Hss
K is obtained by computing matrix

elements of � between states (10):

1

2
ψ

†
p′

⊥τ ′(x0)� ψ p⊥τ (x0) =
√

qp′
⊥τ ′qp⊥τ

2A(1 − sin ϑ)

×U
†
p′

⊥τ ′[(1 − sin ϑ)2σ + cos2 ϑσzσσ z]U p⊥τ

= 1

A

√
qp′

⊥τ ′qp⊥τ U
†
p′

⊥τ ′[− sin ϑ σ⊥ + σ zez]U p⊥τ ,

where σ⊥ = σxex + σyey and we used the identity U p⊥−τ =
σ zU p⊥τ . The full effective Hamiltonian is

Hef = H0 + Hss
K =

∑
p⊥τ

ε p⊥τ c
†
p⊥τ c p⊥τ + JK

A
S · sc, (13)

with 1
A

sc = Ps s(x0)Ps :

sc =
∑
p′

⊥τ ′
p⊥τ

Q
p′

⊥τ ′
p⊥τ c

†
p′

⊥τ ′U
†
p′

⊥τ ′[− sin ϑ σ⊥ + σ zez]U p⊥τ c p⊥τ

and Q
p′

⊥τ ′
p⊥τ = √

q p′
⊥τ ′q p⊥τ . For ϑ = π (hard wall BCs in the

Dimmock model), the coupling of electrons to the impurity

spin is purely Ising type. Since the impurity spin cannot be
dynamically flipped, there is no Kondo effect in this p-h
symmetric case. This offers the possibility to control the Kondo
screening by surface manipulation via the boundary parameter
ϑ . Even though the bulk Kondo coupling (12) is SU(2)
symmetric, Eq. (13) describes a Kondo impurity model with
an XXZ exchange anisotropy, which is a direct consequence
of the inversion symmetry breaking at the surface.

Due to factors Q
p′

⊥τ ′
p⊥τ , the Hamiltonian (13) is equivalent to

a Kondo model with spatially nonlocal exchange couplings.
This can be seen by rewriting sc in terms of the fermions
c p⊥α = ∑

τ (U p⊥τ )αc p⊥τ with α = ↑,↓:

sc =
∑
p′

⊥ p⊥

Mα′β ′( p′
⊥)[− sin ϑ σ⊥ + σ zez]β ′β

×Mβα( p⊥)c†p′
⊥α′c p⊥α,

where Mαβ( p⊥) = ∑
τ

√
qp⊥τ (U p⊥τ )α(U ∗

p⊥τ )β = Q0δαβ +
Qz[σ αβ × p⊥]z/p⊥ with Q0 = 1

2

∑
τ

√
qp⊥τ and Qz =

1
2

∑
τ τ

√
qp⊥τ . When ϑ = π − δϑ for small |δϑ | � π and

vp⊥
�

δϑ � 1, to the lowest order we have Qz

Q0
≈ − vp⊥

2�
δϑ and

Q0 ≈
√

�
v

[1 − ( δϑ
2 )2(1 + v2p2

⊥
2�2 )], and

sc ≈
∑
p′

⊥ p⊥

[
�

v
(−σ⊥δϑ + ezσ

z) + iδϑ

2
ez( p′

⊥ − p⊥) · σ

+ (δϑ)2

2
{[( p′

⊥ + p⊥) × ez] + i( p′
⊥ − p⊥)σ z}

− �(δϑ)2

v
ezσ

zF p′
⊥ p⊥ − iv(δϑ)2

4�
[ p′

⊥× p⊥]

]
α′α

× c
†
p′

⊥α′c p⊥α ,

with 2F p′
⊥ p⊥ = 1 + ( v

2�
)2( p′

⊥ + p⊥)2. The first term in this
expression will give rise to the usual (local) Kondo interaction.
The third term describes a purely orbital mechanism to flip the
impurity spin via a nonlocal p-wave coupling with the conduc-
tion electrons. Finally, the longitudinal terms (proportional to
ez) reflect an effective Zeeman field originating from electron
in-plane motion.

Because Uτ p⊥ are eigenstates of [σ × p⊥]z, Hef in Eq. (13)
describes a two-dimensional system of electrons subjected to
a Rashba SOI and interacting with a magnetic impurity. From
Fig. 1(d) it follows that by tuning ϑ we can make one chirality
τ almost completely disappear, which is equivalent to having
a strong SOI dominating single-electron kinetic energy.

The effective model (13) seems to be incompatible with
recent results [30,32,33], arguing that there is always Kondo
screening at the surface of a TI. The root of this discrep-
ancy is the common assumption that TI surface states can
be considered as helical Dirac (or Weyl) fermions. From
Eq. (9), the effective single-particle surface Hamiltonian
has the form H hel

0 = U p⊥τ εp⊥τU
†
p⊥τ = v cos ϑ[σ × p⊥]z −

� sin ϑ , and the usual case encountered in the literature
H hel

0 = −v[σ × p⊥]z is recovered when ϑ = π . The above
assumption is not universal: While the free-particle dispersion
relation is captured correctly by H hel

0 , it is nontrivial to couple
these surface electrons to external probes, e.g., impurities or an
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external magnetic field. Interaction terms involving TI surface
states have to be derived carefully taking into account bulk and
surface properties, and are material dependent.

Indeed, our results will be completely different for Bi2Se3.
The tetragonal band structure of this material dictates that an
effective mass expression for the electrons spin is [44]

s′(x0) = 1

2
c†(x0)�′c(x0) = 1

2
c†(x0)

(
σ 0
0 σ zσσ z

)
c(x0).

The cancellation in the spin matrix element which led to
the factor sin ϑ in Eq. (13) does not occur and we recover
an isotropic (XXX) Kondo Hamiltonian whose structure is
essentially independent of ϑ :

Hss
K = JK

A
S ·

∑
Q

p′
⊥τ ′

p⊥τ c
†
p′

⊥τ ′U
†
p′

⊥τ ′σU p⊥τ c p⊥τ .

In the particular case of ϑ = π (when Q = const), it is indeed
admissible to use the Dirac-Weyl description of surface states
with the Pauli matrices in the effective Hamiltonian being
the true electron spin, as described for example in Ref. [1].
However, as indicated above, for PbSe-class materials this is
not the case.

Another way to experimentally distinguish the above two
classes of materials is by their response to an external
homogeneous magnetic field h applied parallel to the surface.
Without loss of generality, we assume that h = hex . The
surface electrons couple to this field via a Zeeman term HZ =
− h

2

∑
i Psc

†(xi)�xc(xi)Ps |z=0 with � = � or �′. In Bi2Se3-
like TIs with ϑ = π , the full single-particle Hamiltonian is
H0 = −∑

p⊥
c
†
p⊥α{v[σ × p⊥]z + (�/v)hσx}αβc p⊥β . Hence,

the only effect of h on surface states is to shift the Dirac cone
in the Brillouin zone [45]. On the contrary, for ϑ = π surface
electrons in lead chalcogenides do not couple to the transverse
field at all because sx

c ≡ 0. The Zeeman coupling appears only
to the order (π − ϑ)2. For ϑ �= π , the Dirac-Weyl description
of surface states in terms of H hel

0 is meaningless, regardless of
the material.

IV. EFFECTIVE SURFACE HAMILTONIAN: ORBITAL
NATURE OF SCREENING

To gain insight into the physical properties of the Kondo
impurity model (13) we will exploit its axial symmetry which
guarantees conservation of the z component of the total angular
momentum jz = lz + 1

2�z with lz being the orbital part. The
fermions c p⊥τ can be expanded in the angular momentum
basis:

c p⊥τ =
∑
m

eimφ p⊥ cp⊥mτ ; cp⊥mτ =
∑
φ p⊥

e−imφ p⊥ c p⊥τ ,

where the integer m ∈ (−∞,∞). The sum over φ p⊥ has to

be understood as
∑

φ p⊥
→ ∫ 2π

0
dφ p⊥

2π
. We also define a sum

over the radial momentum p⊥:
∑

p⊥ → A
2π

∫ ∞
0 dp⊥p⊥, so

that
∑

p⊥
= ∑

p⊥φ p⊥
. Moreover, δ p′

⊥ p⊥ = δp′
⊥p⊥δφ p′⊥φ p⊥ . Using

these relations, one can show that cp⊥mτ satisfy the fermionic
anticommutation relations {c†

p′
⊥m′τ ′,cp⊥mτ } = δp′

⊥p⊥δm′mδτ ′τ .

The fermion spin density sc in Eq. (13) becomes

s+
c = i sin ϑ

∑
p′

⊥τ ′
p⊥τ

Q
p′

⊥τ ′
p⊥τ τc

†
p′

⊥0τ ′cp⊥1̄τ ;

sz
c = 1

2

∑
p′

⊥τ ′
p⊥τ

Q
p′

⊥τ ′
p⊥τ (c†

p′
⊥0τ ′cp⊥0τ − τ ′τc

†
p′

⊥1̄τ ′cp⊥1̄τ ).

Because only m = 0 (s-wave) and m = 1̄ = −1 (p-wave)
angular harmonics enter these expressions, we can define new
fermionic degrees of freedom [22]

ap⊥τ↑ = cp⊥0τ , ap⊥τ↓ = −iτcp⊥1̄τ . (14)

These operators create surface electrons with total angular
momentum jz = ±1/2 (see also Appendix B).

To give microscopic meaning to the operators (14), it is
instructive to compute the local electron spin density at the
surface that corresponds to a state with one a particle, i.e.,
an expectation value in the state |1p⊥τμ〉 = a

†
p⊥τμ|0〉 of the

operator

s(x⊥) = 1

2

∑
p′

⊥p⊥
μ′μ

ψ
†
p′

⊥m′τ (x)� ψp⊥mτ (x)

∣∣∣∣
z=0

a
†
p′

⊥μ′ap⊥μ,

where ψp⊥mτ = ψp⊥m(μ)τ is the surface-state wave func-
tion (10) in the angular momentum basis (cf. Appendix B),
m′ = m(μ′), and m(↑) = 0 and m(↓) = −1. In the polar
coordinates x⊥ = (r cos ϕ,r sin ϕ), we have

〈1p⊥τμ|s(x⊥)|1p⊥τμ〉 = ±qp⊥τ

A

{
− τ sin ϑJ0(ρ)J1(ρ) er

+ 1

2

[
J 2

0 (ρ) − J 2
1 (ρ)

]
ez

}
, (15)

with er = (cos ϕ, sin ϕ), ρ = p⊥r , and Jn(x) is the nth Bessel
function of the first kind. The upper (lower) sign corresponds to
μ = ↑ (↓). The spin distribution (15) is shown in Fig. 3. Unlike
the plane-wave states c

†
p⊥τ |0〉, the wave functions a

†
p⊥τμ|0〉

carry no net spin, i.e.,
∫

d2x⊥〈1p⊥τμ|s(x⊥)|1p⊥τμ〉 = 0.
Using operators (14), we can rewrite Eq. (13) as

Hef =
∑
p⊥τ

εp⊥τ a
†
p⊥τμap⊥τμ + JK

2A

∑
p′

⊥τ ′
p⊥τ

Q
p′

⊥τ ′
p⊥τ S · a

†
p′

⊥τ ′μ′

×(sin ϑ σ⊥
μ′μ + σ z

μ′μez)ap⊥τμ. (16)

Here, we assumed implicit summation over pseudospin indices
μ and μ′ = ↑,↓, omitted all angular harmonics m �= 0,1̄ which
do not couple to the impurity, and disregarded the negative
sign in the XY term. This sign is irrelevant and can be
switched by a unitary transformation Hef → U †HefU with
U = 2Sz. Elementary spin-flip scattering processes in Eq. (16)
correspond to dynamical mixing of the spin distributions (15)
and are schematically illustrated in Fig. 4(a) [and should be
contrasted with spin-flip scattering in the usual metal without
SOI depicted in Fig. 4(b)].

The Hamiltonian (16) appears to describe a magnetic
impurity coupled to two conduction bands (channels) labeled
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FIG. 3. (Color online) Spin distribution 〈1p⊥τμ|s(x⊥)|1p⊥τμ〉 =
〈s(r)〉, Eq. (15) along radial direction with τ = 1̄ and ϑ = 0.9π .
〈sr〉 [〈sz〉] is the radial (z) component. The blue line is the “total” spin
s tot =

√
〈sr〉2 + 〈sz〉2. Blue arrows show schematic spin distributions

at a fixed radius r . Thick red dots indicate the impurity location at the
origin x0 = (0,0,0).

by the helicity index τ = ±1. However, this is not actually the
case as can be easily demonstrated by converting Hef to the
energy representation. We shall consider only energies within
the band gap −� � ε � � and assume that π/2 < ϑ � π ,
so cos ϑ � 0. There is a one-to-one correspondence between
τ and energy (i.e., helicity of the state and its energy in the
upper or lower Dirac cone). From Eqs. (9) and (11) it follows
that τ = +1 (−1) corresponds to energies ε < −� sin ϑ (ε >

r

JK sin ϑ

TI surface

lz

lz

|↑

jz =1/2

|↓

jz =−1/2

r

JK

no SOI

|↑

jz =1/2

|↓

jz =−1/2

lz = 0

ρ

sr =sin ϑJ0(ρ)J1(ρ)

sz = 1
2
[J2

0 (ρ) −J2
1 (ρ)]

er

ez

ρ

s = 1
2
nJ2

0 (ρ)

er

ez

(a () b)

FIG. 4. (Color online) (a) Upper plot: Spin-flip scattering pro-
cesses leading to the Kondo effect. The red (blue) arrows denote
impurity spin at x⊥ = 0 [local spin (15) in the conduction band at
a distance |x⊥| = r from the origin]. The impurity spin is screened
by the orbital degrees of freedom (coupled flips of the electron spin
and orbital angular momentum lz). The lower plot shows a spiral
spin structure (15) along a radial direction (ρ = p⊥r) away from
the impurity. (b) Same as in panel (a) but for a conventional metal
without SOI. Only conduction electrons in the s-wave state couple to
the impurity and the orbital angular momentum does not participate in
the Kondo screening. The spin direction (along an arbitrary direction
n) does not depend on the radial position.

−� sin ϑ). Since q p⊥τ and ε p⊥τ depend only on the product
τp⊥,

q(ε) = � + ε sin ϑ

v| cos ϑ | . (17)

Notice that q(ε) �= 0 for all ε within the gap. Next, we
derive the density of states (DOS) gτ (ε). For τ = +1 one
has 1

A

∑
p⊥ = ∫ −�

−� sin ϑ
dε(ε + � sin ϑ)/2πv2 cos2 ϑ =∫ −� sin ϑ

−�
dε g+(ε). Similarly for τ = −1: 1

A

∑
p⊥ =∫ �

−� sin ϑ
dε g−(ε) with g−(ε) = (ε + � sin ϑ)/2πv2 cos2 ϑ .

Hence, for all energies

g(ε) = |ε + � sin ϑ |
2πv2 cos2 ϑ

. (18)

Finally, we introduce new operators aεμ = ap⊥(ε)τμ/
√

g(ε)
with anticommutation relations {a†

ε′μ′,aεμ} = δμ′μδ(ε′ − ε)
which allow us to reduce Hef to a single-channel form

Hef

A
=

∫ �

−�

dε ε a†
εμaεμ + 1

2
JK S ·

∫ �

−�

dε′
∫ �

−�

dε

×[g(ε′)g(ε)q(ε′)q(ε)]1/2 a
†
ε′μ′(sin ϑ σ⊥+ σ zez)μ′μaεμ.

This reduction from a two-channel form (16) occurs because
of the unique correspondence between energy and helicity
peculiar to surface states.

V. UNCONVENTIONAL KONDO PHYSICS

The Hamiltonian (16) describes a Kondo impurity model
with an anisotropic (XXZ) exchange coupling and a DOS (18)
that can vanish at the Fermi level, ε = 0, if the BC ϑ = π

is satisfied. In this limit, two effects simultaneously ensure
that the Kondo screening does not occur, and the impurity
spin effectively decouples from the surface metal. First, from
numerical renormalization group calculations, for linearly
vanishing DOS and particle-hole symmetry the critical Kondo
coupling does not exist [46]. It is worth noting that this behav-
ior is not captured by the standard mean-field theories [47].
Second, in our system the spin-flip scattering is proportional
to sin ϑ and therefore disappears at ϑ = π . This effect is
already present at the mean-field level. Hence, the decoupling
of the impurity from the metallic surface states at ϑ = π

is inexorably linked to the anisotropy of the spin scattering
stemming from the bulk band structure.

For π
2 < ϑ < π , there is a finite DOS (18) at the Fermi

surface, and for temperature T below a characteristic Kondo
scale TK , the impurity spin is screened [9,10]. This Kondo
effect occurs due to the orbital motion of conduction electrons
[Fig. 4(a)] unlike the conventional case when the impurity is
screened only by itinerant spins [Fig. 4(b)]. More precisely, the
impurity spin forms a singlet with the total angular momentum
j of the surface states. This unconventional mechanism for the
Kondo screening originates from the strong SOI that couples
spin and orbital momentum of electrons in TIs.

In the following, we would like to address the physical
manifestations of this unconventional Kondo effect. We first
demonstrate the appearance of a transverse spin linear response
to a longitudinal external magnetic field. We next consider the
effect of temperature and study the dependence of the Kondo
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FIG. 5. (Color online) (a) Schematic plot of the transverse mag-
netic response on a TI surface. A magnetic field h applied normal
to the surface causes a radial electron spin polarization. (b) Same as
panel (a), but for the Kondo effect in a usual two-dimensional metal
without SOI. There is only longitudinal magnetic response.

temperature on the electronic surface properties parametrized
by ϑ . Although we focus on the model (16) obtained in the
context of TIs, results of the present section are applicable to
Kondo physics in any two-dimensional metal with SOI.

A. Transverse local magnetic response

The simplest manifestation of the spin-orbital nature of
the Kondo effect on a TI surface can be found in the
zero-temperature (T = 0) linear response to a weak magnetic
field h acting on the impurity. Assuming that h = hez points
perpendicular to the surface, the field correction to the
model (16) is

Hmag = −hSz.

According to Eq. (15), surface states with μ = ↑ and ↓
correspond to different (opposite) radial spin distributions.
In the Kondo singlet state, both configurations are equally
probable and the total spin in the xy plane vanishes. However,
in an applied magnetic field the impurity spin is weakly
polarized creating a population imbalance of electrons with
different μ’s. This imbalance results in a transverse local (i.e.,
at a fixed distance from the impurity) spin polarization in the
conduction band [see Fig. 5(a)].

To calculate the field-induced transverse magnetization we
use the standard variational approach [6,48] for the Kondo
problem, and assume that ϑ < π so that all τ = +1 states are
filled and the Fermi level lies in the τ = −1 cone in Fig. 1(d).
At weak coupling JK�2

v3 � 1 one needs to keep only τ = −1
terms in Eq. (16), hence in the rest of this section we will
omit τ in the subscripts. The variational wave function has the
form [49]

|ψ0〉 =
∑

p⊥≥kF

[Ap⊥χs
μα + Bp⊥χt

μα]a†
p⊥μ|FS〉 ⊗ |α〉, (19)

where kF = � sin ϑ
v| cos ϑ | is the Fermi momentum, and |FS〉 and

|α〉 are the Fermi sea and impurity spin states (α = ↑,↓),
respectively. There is an implicit summation over spin indices.
The two terms in (19) correspond to singlet (χs) and triplet (χt )
components with χs,t

μα = 1√
2
(δα↓

μ↑ ∓ δ
α↑
μ↓). The latter satisfy the

relations χs
μαχs

μα = χt
μαχt

μα = 1, χs
μαχt

μα = 0, and Sz
αβχs

μβ =
1
2χt

μα . The state (19) is normalized according to 〈ψ0|ψ0〉 =∑
p⊥≥kF

(|Ap⊥|2 + |Bp⊥|2) = 1.

The amplitudes Ap⊥ and Bp⊥ are variational parameters
determined by minimizing the functional F = 〈ψ0|Hef +
Hmag|ψ0〉 − (EFS − λ)〈ψ0|ψ0〉, where λ is the Lagrange mul-
tiplier that plays the role of an energy shift due to the Kondo
screening. To the first order in h, a straightforward calculation
yields(

Ap⊥
Bp⊥

)
= JK (1 + 2 sin ϑ)

4A

c
√

qp⊥

(εp⊥ + λ)2

(
εp⊥ + λ

−h/2

)
,

with p⊥ ≥ kF and c = ∑
p⊥≥kF

√
qp⊥Ap⊥ . The eigenvalue λ

is determined from the nonlinear equation

1 = JK (1 + 2 sin ϑ)

4A

∑
p⊥≥kF

qp⊥

εp⊥ + λ
. (20)

At weak coupling, the sum can be computed as 1
A

∑
p⊥ . . . =∫ �

0 dε
g(ε)q(ε)

ε+λ
≈ q(0)g(0) ln �

λ
[q(ε) is given in Eq. (17)]

which means that ln λ
�

≈ −8πv3| cos3 ϑ |/�2JK sin ϑ(1 +
2 sin ϑ). Then, the normalization constant c is given by
c2 = Aλ

g(0)q(0) [
4

JK (1+2 sin ϑ) ]
2.

If, as is commonly done, one identifies the energy shift
λ with the Kondo temperature TK , we find that, as ϑ → π ,
TK vanishes exponentially as TK ∼ � exp[−8πv3/�2JK (π −
ϑ)]. Note, however, that in this approach for a finite DOS at the
Fermi level the variational energy shift does not vanish when
spin-flip processes are suppressed. Consequently, in the next
section we take this effect into account and define the Kondo
temperature using the slave-boson method.

The field-induced transverse spin distribution in the ground
state |ψ0〉 is straightforwardly obtained using Eq. (B2) and the
discussion in Sec. IV:

〈ψ0|sr (x⊥)|ψ0〉
= sin ϑ

A
σx

mn

∑
p′

⊥p⊥≥kF

√
qp′

⊥qp⊥Ap′
⊥Bp⊥Jn(p′

⊥r)Jm(p⊥r),

with n,m = 0 and 1. With the aid of the above expressions for
λ, c, Ap⊥ , and Bp⊥ , we finally arrive at

〈ψ0|sr (x⊥)|ψ0〉 = − 4h sin ϑ

(1 + 2 sin ϑ)JK

J0(kF r)J1(kF r),

where we also employed a weak-coupling approximation for
the energy integrals

∫ �

0 dε f (ε)/(ε + λ)n ≈ f (0)
∫ �

0 dε/(ε +
λ)n (f is a smooth function and n � 0 is an integer). Due to
the structure of the variational state (19) the spin distribution
is identical up to a prefactor to Eq. (15) with p⊥ = kF (see
also Fig. 3).

The transverse magnetic response, i.e., nonzero 〈sr〉 ∼ h,
can be viewed as a variation of the Edelstein effect [50,51]: an
applied magnetic field creates an imbalance of different orbital
angular momentum states that couple to the impurity, which in
turn induces a radial spin polarization. This phenomenon exists
only due to the SOI and is absent in metals without SOI [see
Fig. 5(b)]. Therefore, by studying the spatial structure of the
Kondo resonance, for example by spin-polarized STM, one can
differentiate between topologically nontrivial and trivial states
of matter. Field-induced radial spin spirals similar to Figs. 4(a)
and 5(a) were reported in Ref. [36] in connection to Kondo
screening of magnetic impurities on gold surfaces with a weak
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Rashba SOI αR . In that work, the transverse susceptibility
κ⊥ = 〈sr〉/h ∼ αR . Our results deal with an opposite limit of
strong SOI and hence κ⊥ depends only on JK and the boundary
parameter ϑ .

In the absence of an external field h, the ground-state
wave function (19) is an SU(2) singlet, despite the XXZ

anisotropy of the Kondo model (16). This is an example
of the general irrelevance of exchange anisotropies for the
Kondo physics [10]. However, in our case this emergent SU(2)
symmetry is quite nontrivial because the impurity spin forms
a singlet with the total angular momentum of the surface
electrons [see Fig. 4(a)]. Coupling to the orbital motion
ensures that this singlet formation is the physical mechanism
responsible for the Kondo resonance even when electron spins
are quenched by the strong SOI.

B. Slave-boson mean-field approach

In the previous subsection we assumed that for any ϑ < π

the impurity is screened by surface electrons with only one
helicity τ = −1. Here, we verify this conjecture by studying
the model in Eq. (16) within the slave boson mean-field
approach [9,33]. This analysis also provides an extension of
our previous results to finite temperature.

First, we introduce a pseudofermion representation of the
local spin S = 1

2f †
μσμνfν with the constraint

∑
μ f †

μfμ = 1.
In this language, the interaction term in Hef can be written in
a compact form

Hef = −JK sin ϑχ̂
†
0 χ̂0 + JK

1 − sin ϑ

2
χ̂
†
⊥ · χ̂⊥

− JK

1 − 2 sin ϑ

4

∑
p′

⊥τ ′
p⊥τ

Q
p′

⊥τ ′
p⊥τ a

†
p′

⊥τ ′μap⊥τμ. (21)

The slave bosons are defined as [52] χ̂l =
1√
2A

∑
p⊥τ

√
qp⊥τ f

†
μσ l

μνap⊥τν with l = 0,1,2,3 and σ 0
μν = δμν

(see Fig. 6). Notice that the zero energy in Eq. (21) is chosen
such that it eliminates χ̂z, which is necessary since energies
of the states with condensed χ0 and χz bosons (see below)
are only different when spin-flip scattering is present. This
procedure adds a potential scattering term that preserves the
impurity spin and is therefore irrelevant for the Kondo physics
(cf. Ref. [33]).

The mean-field appoximation amounts to treating the
pseudofermion constraint on the average via a chemical
potential Ef , and assuming that the ground state corresponds
to condensation of the χ0 boson, i.e., 〈χ̂⊥〉 = 0 but 〈χ̂0〉 =
χ0 �= 0. The mean-field Hamiltonian

HMF =
∑
p⊥τμ

εp⊥τ a
†
p⊥τμap⊥τμ − Ef

∑
μ

f †
μfμ

− JK sin ϑ

2A

∑
p⊥τμ

√
qp⊥τ (χ0a

†
p⊥τμfμ + H.c.)

can be diagonalized using the equations-of-motion method
for retarded Green functions [53,54] which, for fermions, are
defined as 〈〈A; B〉〉 = −iθ (t − t ′)〈{A(t),B(t ′)}〉 [θ (x) is the
Heaviside step function]. We will need three types of Green
functions: 〈〈ap⊥τμ; a†

p′
⊥τ ′μ〉〉, 〈〈fμ; f †

μ〉〉, and 〈〈fμ; a†
p⊥τμ〉〉. A

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.6  0.7  0.8  0.9  1

T
K

/
Δ

ϑ/π

αK

JK sin ϑ

1
2
JK(1−sinϑ)

χ0

χz

χ⊥

FIG. 6. (Color online) Kondo temperature, computed from the
Nagaoka-Suhl equation (22), as a function of the BC angle ϑ [see
Eq. (8)]. The arrow shows increasing values of the dimensionless
Kondo coupling αK = JK�2/2πv3 = 0.05, 0.1, 0.2, 0.4, 0.7, 1.0.
Inset: Energies involved in the Hamiltonian (21). The blue color
indicates the condensed slave boson χ0.

direct calculation yields

〈ap⊥τμ; a†
p′

⊥τ ′μ〉ω =
δτ ′τ
p′

⊥p⊥

ω − εp⊥τ

− JK sin ϑ√
2A

χ0
√

qp⊥τ

ω − εp⊥τ

〈fμ; a†
p′

⊥τ ′μ〉ω,

〈fμ; a†
p⊥τμ〉ω = − JK sin ϑχ∗

0
√

qp⊥τ√
2A(ω − εp⊥τ )[ω + Ef − �(ω)]

,

where we introduced the Fourier transform 〈〈A; B〉〉 =
1

2π

∫ ∞
−∞ dω e−iω(t−t ′)〈A; B〉ω, and the impurity self-energy

�(ω) = |JK sin ϑχ0|2
2A

∑
p⊥τ

qp⊥τ

ω − εp⊥τ

.

The mixed Green function 〈fμ; a†
p⊥τμ〉ω allows us to construct

the self-consistency equation for χ0:

χ∗
0 = 1√

2A

∑
p⊥τμ

√
qp⊥τ 〈a†

p⊥τμfμ〉

= 1√
2A

∑
p⊥τμ

√
qp⊥τ

∫
dωAp⊥τμ(ω),

with the spectral function

Ap⊥τμ(ω) = i

2π

〈fμ; a†
p⊥τμ〉ω+i0 − 〈fμ; a†

p⊥τμ〉ω−i0

eω/T + 1
.

At the Kondo temperature TK , defined by Ef (TK ) =
�(TK ) = 0, the above self-consistency condition reduces to
the Nagaoka-Suhl equation

1 = −JK sin ϑ

A
P.V.

∑
p⊥τ

qp⊥τ

εp⊥τ (eεp⊥τ /TK + 1)
, (22)

where P.V. indicates the Cauchy principal value. This ex-
pression generalizes the Yosida equation (20) for the case
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where both helicities τ are allowed to participate in the Kondo
screening.

For ϑ sufficiently distinct from π and weak coupling we
only need to consider conduction band states near the Fermi
energy. All of them have the same helicity due to the one-
to-one correspondence between τ = ±1 and energy leading
to the helicity-independent DOS (18). This fact justifies our
assumptions made in the previous subsection.

Beyond weak coupling, the sum in (22) can be computed
numerically using Eqs. (17) and (18) for q(ε) and g(ε). The
dependence of the Kondo temperature on ϑ is shown in Fig. 6.
Asymptotically, for ϑ → π , the Kondo temperature TK ∼
� exp[−2πv3/�2JK (π − ϑ)2] is exponentially suppressed,
albeit its functional behavior is different from that obtained
using the variational approach. Since at ϑ = π , the XY term
in (16) vanishes, there is no critical Kondo coupling that would
yield a finite TK at this point (cf. Ref. [47]).

VI. DISCUSSION

In this work, we advocated the use of magnetic probes
to test and tune the unconventional phenomena at topological
insulator surfaces. We showed that physical characteristics and
quantum numbers of the surface states are quite sensitive to
surface properties encoded in boundary conditions for electron
wave functions, as well as the structure of bulk Bloch bands.
Moreover, we demonstrated how the combination of spin-orbit
interaction and nontrivial boundary conditions leads to an
unconventional Kondo screening of dilute magnetic impurities
on the surface of a 3D topological insulator.

We considered a localized spin S = 1
2 (magnetic) impurity

atom deposited on the (111) surface of a PbTe-class narrow-
band semiconductor, and derived a low-energy effective theory
that governs the coupling of this local spin to surface electrons
taking into account the full 3D structure of surface-state wave
functions. The resulting Kondo impurity model is spatially
nonlocal and anisotropic [XXZ-like, see Eq. (16)]. Interest-
ingly, both of these features are controlled by parameters
defined by the boundary conditions, in our case ϑ , that
determine the magnitude of the particle-hole asymmetry at
the surface [see Fig. 1(d)]. Specifically, at the particle-hole
symmetric point ϑ = π the XY component of the Kondo
exchange interaction vanishes, signaling an instability of the
Kondo screened ground state (for any amount of surface
gating) due to the lack of spin-flip processes.

When the particle-hole symmetry is broken by the bound-
ary conditions, we find that the impurity spin is fully
screened by the surface electrons, in agreement with earlier
works [25,26,30–33]. However, unlike the conventional Kondo
effect [9], here the local spin forms a singlet with the
total angular momentum of itinerant electrons (as opposed
to only their spin) and is screened mainly by the orbital
electronic degrees of freedom. This effect originates in the
strong spin-orbit interaction that underpins the helical structure
of the surface states, and manifests itself in a transverse
spin response: A weak, normal to the surface, magnetic
field induces an in-plane electron spin polarization [see
Fig. 5(a)] which locally resembles a q = 1 magnetic vortex
(see Ref. [55]) with itinerant spins aligning along the radial
direction.

The sensitivity of the Kondo screening to specific surface
properties shows that it is impossible to provide a universal
theory of topological insulator surface states based solely on
topological arguments [2,3] without involving knowledge of
the boundary conditions for the Bloch states (see Sec. II and
Ref. [6]), and, as elaborated in this work, the specific bulk
band structure. Most importantly, the latter defines the set of
relevant effective operators that parametrize the surface theory.
Indeed, in Sec. III we demonstrated that for a Bi2Se3-like
tetragonal material the form of the surface Kondo interaction
is completely different (isotropic, XXX-like) than in cubic
PbTe-like systems (anisotropic, XXZ-like).

This physical nonuniversality of topological surface states
can be exploited in experimental studies of topological insula-
tors, for instance to control the surface spin polarization with
external electric and magnetic fields. Although we focused
on magnetic impurities, our analysis can be generalized to
any magnetic interaction, e.g., the Zeeman coupling of surface
electrons to external fields. For Bi2Se3-like materials, the only
effect of an in-plane magnetic field is to shift (neglecting
the Fermi surface warping) the Dirac cone in the Brillouin
zone [45]. However, in PbTe-like crystals with a particle-hole
symmetric boundary (ϑ = π ) such field does not couple to
surface states at all. In general, this coupling can be tuned
by surface manipulation. The above result shows a convenient
way of discriminating between different types of topological
insulators by using interactions of surface states with external
magnetic probes.

The transverse spin structures in Fig. 5(a) can be observed
in scanning tunneling microscopy measurements of the local
spin-polarized density of states around the impurity, or nuclear
magnetic resonance experiments. This predicted effect is not
peculiar to topological insulators and should in fact exist in
any strong spin-orbit coupled metallic host. A similar idea of
probing the local spin polarization around magnetic impurities
in a metal without spin-orbit interaction, i.e., the analysis of
the Kondo screening cloud, was discussed before [56]. Unlike
our analysis, in that work the magnetic field induced only a
longitudinal (and no transverse) spin polarization [Fig. 5(b)].

Finally, we comment on the role of impurity charge
fluctuations in multiband Dirac-type materials with strong
spin-orbit coupling. The standard Kondo impurity Hamilto-
nian is typically derived from the Anderson impurity model
via a Schrieffer-Wolff (SW) transformation assuming that
charge fluctuations at the impurity get suppressed [9]. In
the absence of spin-orbit interaction, the virtual transitions
included in the SW transformation preserve the electron spin
quantum number. The effective Kondo exchange then depends
on momentum only via energy, and near the Fermi level can be
approximated by a constant value. This situation may change
in a spin-orbit coupled system when the electron transitions
between local and itinerant states are accompanied by a spin
flip. For a PbTe-like host, these processes can be captured with
a modified 3D Anderson impurity model

HAIM =H0 + 1√
N

∑
p

[
V c

αβ ( p)c†pαdβ +V v
αβ ( p)h†

pαdβ +H.c.
]
,

written in terms of the fermion operators d†
α , c

†
pα , and h

†
pα

that create electrons in the impurity orbital, conduction, and
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valence bands, respectively. H0 = HD + Hd , with HD from
Eq. (1) and Hd representing the self-energy of the localized
electrons. The matrix amplitudes V c

αβ and V v
αβ describe

hybridizations of the local impurity level with electrons in
the conduction and valence bands.

A phenomenological form of these amplitudes can be
obtained from general symmetry considerations. We require
that HAIM has the same symmetries as the noninteracting
Dimmock model HD, in particular, time-reversal invariance
and symmetry w.r.t. spatial inversion P . The former demands
that V c and V v contain spin (via the Pauli matrices) and
momentum in even power combinations, e.g., p2 or σ · p. The
inversion symmetry dictates which of these terms actually oc-
cur in each hybridization amplitude. Under P , local fermions

are invariant dα
P→ dα , while conduction and valence band

electrons transform as [57] c pα
P→ c− pα and h pα

P→ −h− pα .
This means that V c (V v) is an even (odd) function of p:
V c( p) = Vc0 + Vc1p

2 + . . . and V v( p) = Vv1(σ · p) + . . . .
To lowest order in momentum, V c can be taken p independent:
V c

αβ ( p) ≈ Vc0δαβ . On the other hand, V v
αβ( p) ≈ Vv1(σ αβ · p)

has a p-wave structure and is spatially nonlocal. This result
differs from the calculations of Refs. [58,59] which used
constant values for both amplitudes V c and V v .

Applying the SW transformation to HAIM yields a modified
effective Kondo model: apart from the local exchange coupling
JK , there are essentially nonlocal corrections that include p-
wave couplings between conduction electrons and the local
impurity spin. We considered the simplest version in this paper
and leave the more complex situation for a future investigation.
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APPENDIX A: SELF-ADJOINT EXTENSIONS OF THE
DIRAC AND DIMMOCK HAMILTONIANS IN THE

HALF-SPACE

Given a linear bounded operator O, its adjoint O† is defined
as 〈ψ |O†φ〉 = 〈Oψ |φ〉 for all vectors |ψ〉 and |φ〉 in the
Hilbert space H. Moreover, O is symmetric (or Hermitian)
if 〈ψ |Oφ〉 = 〈Oψ |φ〉 or O† = O for all vectors |ψ〉 and |φ〉.
The set of all vectors |φ〉 for which O|φ〉 is defined is called the
domain of the operator O. For a bounded symmetric operator
O its domain covers the entire space: D(O) = D(O†) = H.

On the other hand, if a linear operator H is unbounded its
domain does not necessarily coincide with that of its adjoint.
One can make these two domains coincide by defining them
appropriately. If D(H†) contains D(H), and in D(H) the two
operators are the same, then we say that H† is an extension
of H . A symmetric operator H with a dense domain is self-
adjoint whenever D(H) = D(H†) [60].

In this section, we prove that the Dirac Hamiltonian (7)
in the half-space z � 0 is self-adjoint in the domain of wave
functions satisfying the BC (8) (the following analysis can also

be seen as another derivation of this BC). We also determine
self-adjoint extensions (SAEs) of the Dimmock Hamilto-
nian (1) in the half-space. This constitutes a crucial step to
discussing and analyzing surface or interface phenomena that
is physically observable.

The general theory of self-adjoint extensions can be found,
for instance, in Ref. [61]. Its practical application to an
operator H , however, is rather straightforward [60,62,63]
and was made systematic by von Neumann’s method of
deficiency indices. First, one constructs deficiency subspaces
of the adjoint operator, i.e., determines eigenfunctions ψ± of
H † corresponding to eigenvalues ±iη with arbitrary η > 0.
Dimensions of these subspaces, the deficiency indices n±,
give the number of parameters needed to construct families
of possible SAEs: if n+ = n− = n = 0 the operator is already
self-adjoint, otherwise (n > 0) its extensions need to be built.
When n+ �= n−, the operator cannot be made self-adjoint.

Provided n+ = n−, the next step is to demand that the
positive and negative deficiency subspaces be unitarily related
by an n × n matrix U . This matrix is arbitrary and therefore
the number of possible SAEs is n2. Finally, we require that the
combination ψ+ + Uψ− belongs to the domain of the original
operator H . This yields BC for the wave functions that define
the domain in which H is self-adjoint. The arbitrary unitary
matrix U represents all possible BCs compatible with H being
self-adjoint. One can then consider SAEs that are constrained
by additional symmetry conditions, such as time-reversal
invariance or parity.

1. Dirac Hamiltonian in the half-space z � 0

For purely imaginary eigenvalues ±iη of the Hamilto-

nian (7) it follows that pz = ±i

√
(η2 + �2)/v2 + p2

⊥ = ±iκ .
To find the corresponding eigenfunctions ψ±, it is convenient
to reduce Eq. (7) to a 2 × 2 form similar to Eq. (5):

H (2×2) = v(σxpz − σyτp⊥) + σ z�,

and make a unitary transformation generated by

ζ = 1√
2

(
1 1
i −i

)
,

so that ζ †σ ζ = (σy,σ z,σ x). In this representation,

ψ± =
(±iη − vτp⊥

� − vκ

)
e−κz,

where we dropped the unimportant, for the analysis below,
dependence on x⊥ as well as the normalization constant (which
is the same for ψ+ and ψ−). Clearly, this solution exists for
any sign of ±iη, hence, the deficiency indices are n+ = n− =
1. By the von Neumann theorem, the Hamiltonian (7) has a
single-parameter n = 1 family of SAEs. The unitary matrix,
connecting ψ+ and ψ−, is just eiλ with an arbitrary λ.

Possible SAEs are found in the form of BC for a general
wave function ϕ = (ϕ∗

1 ,ϕ∗
2 )† from the domain of H . The

condition that H is self-adjoint if

〈ψ |Hϕ〉 − 〈H †ψ |ϕ〉 = −iψ†αzϕ|z=0 = 0

[ψ ∈ D(H †) and we are interested in functions such that
D(H ) = D(H †)]. Substituting ψ = ψ+ + eiλψ−, we obtain
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(note that αz is equivalent to σy)

ϕ1

ϕ2

∣∣∣∣
z=0

= −vτp⊥ cos λ/2 − η sin λ/2

(� − vκ) cos λ/2
= ρ,

where ρ is an arbitrary real constant.
As a final step, we would like to recast this BC in a form

B ′ϕ|z=0 = 0 (det B ′ = 0). The matrix B ′ can be written as

B ′ = b1

(
b2 b2ρ

1 ρ

)
= b1

2
[(b2 + ρ) + (b2 − ρ)σ z

+ (1 + b2ρ)σx − i(1 − b2ρ)σy],

with arbitrary real b2 (notice that b1 is irrelevant). This BC
preserves time-reversal and parity invariance of the Dirac
Hamiltonian. The BC of Eq. (8) is recovered after inverting
the ζ transformation, i.e., replacing σ with (β,αz, − iβαz),
and taking b1 = 2ρ/(1 + ρ2) and b2 = 1/ρ. Then, sin ϑ =
2ρ/(1 + ρ2) and cos ϑ = (1 − ρ2)/(1 + ρ2).

2. Dimmock Hamiltonian in the half-space z � 0

Similarly to the previous subsection, for the Dimmock
model (1), we have

p2
z

2(m∗v)2
= −

[
1 + � + p2

⊥/2m∗

m∗v2

]
±

√
1 + 2� − η2/m∗v2

m∗v2
.

It is straightforward to check that for any values of the
parameters � and p⊥, there are two normalizable solutions
that decay with z → ∞. Therefore, the deficiency indices
are n+ = n− = 2, and the self-adjoint extension of Eq. (1)
is realized by a four-parametric family of BCs.

APPENDIX B: SURFACE STATES IN THE TOTAL
ANGULAR MOMENTUM BASIS

The eigenvalue problem defined by the Dirac Hamilto-
nian (7) and its BC (8) has an axial symmetry around the z axis
which leads to conservation of the z component of the total
angular momentum jz = lz + 1

2�z (lz is the orbital angular
momentum). Here, we will employ this symmetry to construct
surface states with a definite value of jz, and derive their spin
structure (15) and coupling to the impurity [see Eq. (16)].

We will work in cylindrical coordinates (r,ϕ,z) with 0 �
r < ∞ and 0 ≤ ϕ < 2π , related to the Cartesian basis in
Fig. 1(a) via x = r cos ϕ and y = r sin ϕ. The vector product
[σ × p⊥]z entering the tensor spin operator Tz [see Eq. (2)]
has the form

[σ × p⊥]z =
(

0 e−iϕ
(

∂
∂r

+ lz
r

)
eiϕ

( − ∂
∂r

+ lz
r

)
0

)
,

with lz = −i ∂
∂ϕ

. The eigenstates of this operator are

Up⊥mτ = 1√
2A

(
Jm(p⊥r)eimϕ

τJm+1(p⊥r)ei(m+1)ϕ

)
.

Here, p⊥ = | p⊥| and Jm(x) is the Bessel function of the first
kind, of order m. This wave function is analogous to Eq. (4)
with p⊥ replaced by a pair (p⊥,m). It is normalized to the total

surface area A:∫
d2x⊥U

†
p′

⊥m′τ ′Up⊥mτ = 2πδm′m

2A

δ(p′
⊥− p⊥)√
p′

⊥p⊥
(1 + τ ′τ )

→ 2πδm′m

2A

(
A

2π
δp′

⊥p⊥

)
(2δτ ′τ ) = δp′

⊥p⊥δm′mδτ ′τ ,

where we used the relation between discrete and con-
tinuous (Dirac) δ functions δp′

⊥p⊥ → 2π
A

(p′
⊥p⊥)−1/2δ(p⊥ −

p′
⊥) and δφ p′⊥φ p⊥ → 2πδ(φ p′

⊥ − φ p⊥) that follow from the

vector relation δ p′
⊥ p⊥ = δp′

⊥p⊥δφ p′⊥φ p⊥ → (2π)2

A
δ( p⊥ − p′

⊥) =
(2π)2

A
δ(φ p′

⊥ − φ p⊥ )(p′
⊥p⊥)−1/2δ(p′

⊥ − p⊥) (see also the dis-
cussion at the beginning of Sec. IV). There is also a com-
pleteness relation

∑
p⊥mτ [U ∗

p⊥mτ (r ′,ϕ′)]α[Up⊥mτ (r,ϕ)]β =
δαβδ(x′

⊥ − x⊥). Using well-known properties of the Bessel
functions [64], we can relate Up⊥mτ and plane-wave spinors of
Eq. (4):

ei p⊥·x⊥
√

A
U p⊥τ =

∞∑
m=−∞

ime−imφ p⊥ Up⊥mτ (r,ϕ). (B1)

The surface-state wave function (10) can be written as
ψ p⊥τ (x⊥) = ∑

m ime−imφ p⊥ ψp⊥mτ with

ψp⊥mτ =
√

qp⊥τ

1 − sin ϑ

(
(1 − sin ϑ)Up⊥mτ (r,ϕ)
−i cos ϑ Up⊥m,−τ (r,ϕ)

)
e−qp⊥τ z.

It is easy to show that jzψp⊥mτ = (m + 1
2 )ψp⊥mτ . Furthermore,

the operator sc from Eq. (13) becomes

sc = 1

2

∑
p′

⊥m′τ ′
p⊥mτ

Q
p′

⊥τ ′
p⊥τ C

†
p′

⊥m′τ ′ {− sin ϑ[(ex + iey)τ ′δm′1̄
m0

+ (ex − iey)τδm′0
m1̄ ] + ez(δ

m′0
m0 − τ ′τδm′1̄

m1̄ )}Cp⊥mτ

= 1

2

∑
p′

⊥τ ′
p⊥τ

Q
p′

⊥τ ′
p⊥τ (− sin ϑ σ⊥ + ezσ

z)μ′μa
†
p′

⊥τ ′μ′ap⊥τμ,

where we used the fact that Jm(0) = δm0 and Cp⊥mτ =
imcp⊥mτ . The operators ap⊥mτ are defined via ap⊥τ↑ = Cp⊥0τ

and ap⊥τ↓ = τCp⊥1̄τ . The latter expression differs from the
analogous definition in Eq. (14) by a pure phase −i which can
be tracked to the above relation between fermion operators
Cp⊥mτ and cp⊥mτ , as well as the factor im in the expansion (B1).
When plugged into the Kondo Hamiltonian (13), the above
expression will yield the model (16).

To compute spatial spin distributions, we will need the
matrix element

s
p′

⊥mτ
p⊥mτ (x⊥,z = 0) = 1

2
ψ

†
p′

⊥mτ
�ψp⊥mτ

∣∣∣∣
z=0

=
√

qp′
⊥τ qp⊥τ

A

{
− τ sin ϑ Gm(ρ,ρ ′)er

+ ζm(ρ,ρ ′)ez + iτ sin ϑ Fm(ρ,ρ ′)eϕ

}
,
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where ρ = p⊥r , ρ ′ = p⊥r ′, er = ex cos ϕ + ey sin ϕ, eϕ =
−ex sin ϕ + ey cos ϕ, and

⎛
⎝Gm

Fm

ζm

⎞
⎠ = 1

2

(
Jm(ρ ′)Jm+1(ρ) ± Jm(ρ)Jm+1(ρ ′)
Jm(ρ ′)Jm(ρ) − Jm+1(ρ ′)Jm+1(ρ)

)
.

Importantly, Gm and ζm are symmetric w.r.t. inter-
change of their arguments [Gm(ρ,ρ ′) = Gm(ρ ′,ρ) and
ζm(ρ,ρ ′) = ζm(ρ ′,ρ)], while Fm is antisymmetric [Fm(ρ,ρ ′) =

−Fm(ρ ′,ρ)]. We will only consider the case m = 0 and 1̄. By
virtue of the relation J−1(ρ) = −J1(ρ), G0 = −G1̄, ζ0 = −ζ1̄,
and F0 = F1̄, and we get

s
p′

⊥mτ
p⊥mτ =

√
qp′

⊥τ qp⊥τ

A
{iτ sin ϑ F0(ρ,ρ ′)eϕ

±[−τ sin ϑ G0(ρ,ρ ′)er + ζ0(ρ,ρ ′)ez]}, (B2)

with upper (lower) sign corresponding to m = 0 (1̄). This
equation reduces to (15) when p⊥ = p′

⊥ (i.e., ρ ′ = ρ and
F0 = 0).
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[58] H.-F. Lü, H.-Z. Lu, S.-Q. Shen, and T.-K. Ng, Phys. Rev. B 87,
195122 (2013).

[59] I. Kuzmenko, Y. Avishai, and T. K. Ng, Phys. Rev. B 89, 035125
(2014).

[60] M. T. Ahari, G. Ortiz, and B. Seradjeh, On the role of
self-adjointness in the continuum formulation of topological
quantum phases, arXiv:1508.02682.

[61] D. Gitman, I. Tyutin, and B. Voronov, Self-adjoint Extensions
in Quantum Mechanics: General Theory and Applications to
Schrödinger and Dirac Equations with Singular Potentials,
Progress in Mathematical Physics (Springer, Berlin, 2012).

[62] G. Bonneau, J. Faraut, and G. Valent, Am. J. Phys. 69, 322
(2001).

[63] V. S. Araujo, F. A. B. Coutinho, and J. Fernando Perez, Am. J.
Phys. 72, 203 (2004).

[64] V. Batygin and I. Toptygin, Problems in Electrodynamics
(Academic, New York, 1970).

205423-14

http://dx.doi.org/10.1016/0038-1098(90)90963-C
http://dx.doi.org/10.1016/0038-1098(90)90963-C
http://dx.doi.org/10.1016/0038-1098(90)90963-C
http://dx.doi.org/10.1016/0038-1098(90)90963-C
http://dx.doi.org/10.1103/PhysRevB.77.094419
http://dx.doi.org/10.1103/PhysRevB.77.094419
http://dx.doi.org/10.1103/PhysRevB.77.094419
http://dx.doi.org/10.1103/PhysRevB.77.094419
http://dx.doi.org/10.3367/UFNr.0071.196005c.0071
http://dx.doi.org/10.3367/UFNr.0071.196005c.0071
http://dx.doi.org/10.3367/UFNr.0071.196005c.0071
http://dx.doi.org/10.3367/UFNr.0071.196005c.0071
http://dx.doi.org/10.1070/PU1960v003n03ABEH003275
http://dx.doi.org/10.1070/PU1960v003n03ABEH003275
http://dx.doi.org/10.1070/PU1960v003n03ABEH003275
http://dx.doi.org/10.1070/PU1960v003n03ABEH003275
http://dx.doi.org/10.1103/PhysRev.138.A1112
http://dx.doi.org/10.1103/PhysRev.138.A1112
http://dx.doi.org/10.1103/PhysRev.138.A1112
http://dx.doi.org/10.1103/PhysRev.138.A1112
http://dx.doi.org/10.1103/PhysRevB.82.161401
http://dx.doi.org/10.1103/PhysRevB.82.161401
http://dx.doi.org/10.1103/PhysRevB.82.161401
http://dx.doi.org/10.1103/PhysRevB.82.161401
http://dx.doi.org/10.1103/PhysRevB.87.195122
http://dx.doi.org/10.1103/PhysRevB.87.195122
http://dx.doi.org/10.1103/PhysRevB.87.195122
http://dx.doi.org/10.1103/PhysRevB.87.195122
http://dx.doi.org/10.1103/PhysRevB.89.035125
http://dx.doi.org/10.1103/PhysRevB.89.035125
http://dx.doi.org/10.1103/PhysRevB.89.035125
http://dx.doi.org/10.1103/PhysRevB.89.035125
http://arxiv.org/abs/arXiv:1508.02682
http://dx.doi.org/10.1119/1.1328351
http://dx.doi.org/10.1119/1.1328351
http://dx.doi.org/10.1119/1.1328351
http://dx.doi.org/10.1119/1.1328351
http://dx.doi.org/10.1119/1.1624111
http://dx.doi.org/10.1119/1.1624111
http://dx.doi.org/10.1119/1.1624111
http://dx.doi.org/10.1119/1.1624111



