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Majorana zero modes choose Euler numbers as revealed by full counting statistics
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We study transport properties of a quantum dot coupled to a Majorana zero mode and two normal leads. We
investigate the full counting statistics of charge tunneling events and obtain complete information on current
fluctuations through the dot. Using the Keldysh path-integral approach, we compute the cumulant generating
function of the current. We first consider a spinless case and find that for the symmetric dot-lead couplings,
the zero-frequency cumulants are independent of the microscopic parameters and exhibit a universal pattern
described by Euler numbers. We then consider the spinful system and investigate the effect of both weak and
strong Coulomb interactions. We show that cases with and without Majorana coupling exhibit qualitatively
different full counting statistics of charge tunneling events despite the fact that differential linear conductance

might have zero-bias features in both cases.
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I. INTRODUCTION

Majorana zero-energy modes (MZMs) have recently at-
tracted enormous theoretical and experimental attention [1-4]
due to their exotic non-Abelian braiding statistics [5—7] and
potential application to fault-tolerant topological quantum
computation [8]. A large number of theoretical proposals has
been put forward to realize MZMs in topological superconduc-
tors (TSCs) [9-17]; see also reviews [4,18,19] for more details.
One of the most promising proposals involves a semiconductor
nanowire with strong spin-orbit interaction coupled to a
conventional s-wave superconductor [13,14]. An appropriate
combination of the spin-orbit coupling, Zeeman splitting, and
induced s-wave pairing allows one to realize an effectively
spinless p-wave superconductivity at the interface which is
characterized by the presence of MZMs bound to certain
defects (i.e., vortices in two dimensions and domain walls
in one dimension) [7,20]. The simplest way to detect MZMs is
to measure local density of states at the defect and to probe the
emergence of the zero-energy resonance across the topological
phase transition. The first Majorana tunneling spectroscopy
experiment, based on a semiconductor/superconductor het-
erostructure proposal [13,14], was performed in Delft [21].
Later on, the observation of the zero-bias peak in a finite
magnetic field, consistent with the theoretical predictions [22],
was reported by many other experimental groups [21,23-28].
The main challenge of these measurements is to exclude the
other false-positive contributions to the zero-bias peak that are
ubiquitous in condensed matter systems such as the Kondo
effect [29,30], disorder in the topological region [31-35] and
in the leads [36,37], as well as some other resonant Andreev
scattering phenomena [19]. The feature distinguishing the
Majorana origin of the zero-bias peak from the other mecha-
nisms is the quantized zero-bias peak conductance of 2¢%/h
which is a universal property of Majorana zero modes [38,39].
However, due to the large subgap conductance (so-called “soft
gap” problem) observed in tunneling experiments [21,23-28],
the largest observed height of the zero-bias peak was at most
30% of the predicted value. Therefore, additional experimental
tests [37,40-55] are necessary in order to conclusively confirm
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the presence of MZMs in the semiconductor-superconductor
heterostructures.

In this paper, we study current correlations in a mesoscopic
device consisting of a quantum dot (QD) coupled to a MZM
and two normal leads. The possibility of tuning the couplings
between QD and other conductors as well as QD gate voltage
allows one to study current correlations in a well-controlled
environment. We show here that in the case of a symmetric
left-right normal metal coupling (see Fig. 1 for a layout of the
proposed device), current fluctuations are characterized by a
universal pattern of the zero-frequency cumulants. We argue
that the measurement of such cumulants allows one to exclude
other false-positive signatures in tunneling transport and
uniquely identify the presence of the putative Majorana modes.

The transport properties of a strongly interacting QD
coupled to an MZM and a single normal lead (NL) have been
studied using master equations, valid in the high-temperature
regime, in Ref. [41]. The low-temperature behavior of the
MZM-QD-NL system and the interplay between Kondo and
Majorana couplings was considered in Ref. [43] finding that
zero-bias tunneling conductance exhibits strong temperature
dependence, which is distinct from that of a MZM-NL
structure [38,39]. Later on, Cheng et al. [46] revisited the low-
temperature behavior of the MZM-QD-NL system, and found
that Majorana coupling significantly modifies the low-energy
properties of the QD and drives the system to a new (different
from Kondo) infrared fixed point. They also confirmed that the
temperature dependence of the zero-bias conductance at the
particle-hole symmetric point is similar to that of the MZM-NL
structure [39]. The zero-bias conductance of a noninteracting
QD with a side-coupled MZM (ungrounded TSC) through two
normal leads was considered in Refs. [42,45], where it was
predicted that the tunneling conductance is given by e*/2h for
symmetric QD-lead couplings. Reference [44] considered a
spinful QD in the Kondo regime for this two-lead structure, and
studied the QD spectrum and zero-bias conductance by using
the numerical renormalization group method, which shows
that the zero-bias conductance is 3e?/2h for small QD-MZM
coupling. The shot noise of a different two-lead structure
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FIG. 1. (Color online) Proposed experimental setup to measure
the distribution function of the transmitted charge, namely the full
counting statistics. The QD is created near the center of the semi-
conductor nanowire T junction, two normal metal leads are attached
to the upper and lower legs, and an s-wave superconductor is
in proximity to the third lead. The latter realizes the topological
superconductor hosting two MZMs y; and y,.

(with a grounded TSC) has been studied in Ref. [56] for both
noninteracting spinless QD and spinful Kondo QD predicting
that the shot noise not only shows universal behaviors but also
can be used for qualitatively distinguishing MZMs with other
modes. There has been also an experimental interest in QD-
superconductor devices. The interplay of the Kondo effect and
superconductivity has been revisited in Refs. [28,29,57,58]. A
natural realization for the proposed experimental setup (see
Fig. 1) involves a T junction of the semiconductor nanowires
which can be grown using the vapor-liquid-solid growth
technique [59]. The QD can be created near the junction;
two normal leads and the TSC are connected to each leg of
the T junction. Another electron channel capacitively couples
the junction, and can be used as a charge sensor to measure the
charge distribution function. Thus, we believe that the setup
we propose in the paper is within the experimental reach.
Although conductance and shot noise exhibit peculiar
universal dependence due to the MZM coupling, it is insightful
to obtain the full probability distribution function of the charge
transferred through the QD, which can serve as the Majorana
sensor. The theory of full counting statistics (FCS) [60-62]
for charge transport in mesoscopic systems was established by
analyzing nonequilibrium transport. A great effort has been
made to investigate various aspects of FCS in a variety of
systems theoretically [63—77] and experimentally [78-85].
Recently, the FCS calculation has also been considered for
electron transport through multiterminal networks of MZMs
[76], and for Quantum dot Majorana system in the high
temperature regime [86]. In this paper, we study FCS of
charge tunneling through a QD with a side-coupled TSC, or
equivalently a QD coupled to a MZM, in the low temperature
regime. The charge transport is measured between two normal
leads. Here we assume that TSC is grounded so there is
also Andreev current between (left) lead and the supercon-
ductor. Using the Keldysh path-integral approach [87], we
compute the cumulant generating function. We first consider
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a noninteracting spinless QD, and find that for the symmetric
dot-lead couplings, the zero-frequency cumulants exhibit a
universal pattern described by Euler polynomial. This result
is independent of the microscopic parameters such as the QD
energy level and QD-MZM coupling. For a spinful QD with
a small QD Zeeman splitting, we compute FCS in the regime
of weak (perturbative regime) and strong (single-electron
occupancy regime) Coulomb interactions. In the former case,
we compute the interaction-induced correction to the cuamulant
generating function up to the leading order in U (i.e., U?). In
the latter case, we study the FCS due to the interplay between
the Kondo and Majorana coupling.

The paper is organized as follows. In Sec. II, we review the
formalism of the FCS calculation for the mesoscopic transport
problem. In Sec. III, we introduce the QD-MZM model and
compute the cumulant generating function for this model with
noninteracting spinless QD. In Sec. IV, we consider the weak
Coulomb interaction effect for a spinful QD, and compute the
leading order interaction correction to the cumulant generating
function by using a diagrammatic perturbation method. In
Sec. V, we consider the strong Coulomb interaction effect for
a spinful QD, and study how Kondo and Majorana couplings
affect the FCS. Finally, the conclusions are shown in Sec. VL.

II. FULL COUNTING STATISTICS:
GENERAL FORMALISM

In this section, we will review the formalism for calculating
full counting statistics (FCS) of charge fluctuations in a
mesoscopic system (we refer a reader to Ref. [88] for more
details). Consider the distribution function P, for g electrons
to be transferred through a mesoscopic device within the
measurement time 7. Here we assume that the measurement
time is long enough (7" > ¢/I) so that the average number of
electrons M transferred within 7 is large, i.e., M > 1. The
distribution function P, allows one to extract more information
about the nature of the charge carriers as well as the statistics
of the charge fluctuations. In particular, tails of the distribution
contain information about the statistics of rare events. From the
theoretical point of view, rather than P, it is more convenient
to compute the cumulant generating function (CGF) yx (1),
defined by a Fourier transform,

X =) P, (1)
q

Here the auxiliary variable A represents a counting field. From
the CGF, one can calculate the cumulants ((6"¢g)) (irreducible
moments of P,),

aA)

Thus, the average current and zero-frequency symmetrized
current noise can be obtained by a simple differentiation:

(8"q) =

Iny (A)]5.=o- ©))

17T —i dlny
1= /O antioy = 58| 3)
S = Tdt 5118 1(0) + 81 (0)8 1t _ Z1¥ny (4)
—/O wloaio + sfosiw) = 70|

The third cumulant and the fourth cumulant describe the
asymmetry (or skewness) and the kurtosis (or sharpness) of

205422-2



MAJORANA ZERO MODES CHOOSE EULER NUMBERS AS ...

the distribution function, and can be also straightforwardly
obtained using x (A).

In order to define the CGF in a proper way, Levitov and
Lesovik introduced a “gedanken scheme,” in which a spin-1/2
system magnetically couples to the electric current [60,61].
Based on their definition, the CGF in a Keldysh formalism is

given by
x(A) = <TC exp [—i /C dtHA(t):|>, 5)
with
H*(t)=H + %i. (6)

Here, the integration is preformed along the Keldysh contour
C, T¢ is time ordering; (---) is the quantum-mechanical
average [87]. The second term in Eq. (6) describes the
interaction between the electron current and counting field,
and A(¢) has different sign on the two branches of the Keldysh
contour, i.e., () = AV for forward branch and A(¢) = A for
backward branch with AV = —A? = ).

III. FCS FOR A SPINLESS QD WITH SIDE-COUPLED MZM
A. Theoretical model

We now consider the setup shown in Fig. I—a quantum
dot (QD) is coupled to an end of a one-dimensional (1D)
topological superconductor (TSC) hosting two Majorana zero
modes (MZMs) y; and y; at the opposite ends. For pedagogical
reasons, we first consider the spinless model for this setup
(assuming that the Zeeman splitting is very large), and relegate
the discussion of the spinful case to the next sections. In the
former case, the model is essentially noninteracting, and one
can calculate FCS exactly. The QD is coupled to two normal
spinless leads which can be used for transport measurements.
Given that each lead couple to the QD at a single point, one can
perform an unfolding transformation and reduce the problem
to the one corresponding to a quantum impurity coupled
to one-dimensional free fermions. Thus, the corresponding
Hamiltonian reads

H = Hicad + Hop-mzm + Hr, (7)
where the Hamiltonians for the leads, QD-MZM system, and
the lead-QD couplings are, respectively, given by

Hicag = —ive Y / dx Yl ()Y (x), ()
a=L,R
Hgp-mzm = eqd'd + ik (d + dNy, + isy1y, 9)
3 WO +13d e (0).  (10)

a=L,R

Hy =

Here wj[ (d") is the creation operator for an electron in the
o lead (QD), €, is the energy level in the QD, and #,; (k) is
the tunnel coupling between the leads (MZM) and the QD.
The effective Hamiltonian for the TSC is given in terms of
the low-energy degrees of freedom (MZMs) assuming that the
induced superconducting gap A is the largest energy scale in
the problem. For a finite-length L TSC, the coupling § between
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two MFs is exponentially small § ~ A exp(—L/&) with the
coherence length being & = vp/A.

We now derive the CGF for our QD-MZM model as-
suming the symmetric source-drain bias (u; = eV /2 and
ur = —eV /2). The Hamiltonian including the counting field
can be written as

ey — hal0)
H=H+ ) oo

a=L,R

an

where the current operator for the « junction is I, =ie[H,N,]
with the electron number operator N, for the « lead. One can
apply a gauge transformation to remove the last term in the
H*(t), and obtain

H" = Hieaa + Hopvizm + Hy, (12)

H} = Z (tye D241 (0)d + H.c.). (13)

a=L,R
We note that for k = 0, the gauge symmetry of the Hamiltonian
allows one to gauge away one of the counting fields so it is
enough to keep the counting field in one of the junctions. In
the general case (i.e., k # 0), however, we need to keep both
counting fields A, .

We can now compute the path integral for the effective
action defined by the Hamiltonian (12). Given that the
presence of the superconductor (i.e., MZM coupling) breaks
particle number conservation, the QD Green function contains
anomalous contributions, e.g., (Tcd(¢)d(t')) # 0. Therefore,

we introduce Nambu spinors: W} = (], 9,)/+/2 and W) =
(dt,d)/~/2, where o = L,R is the lead index. The effective

Keldysh action now reads
S = Steads + Sop-mzm + St, (14)

where

Steats = Y / / drdt' Vi) 05 L ,1) U, (1),
~JcJc
Sapawzat = f / drdr B0 O3y ) By, (15)
cJC

St =— Z/ dt(tae_"%wgd + c.c.)
o Jc

(16)

=-> / dt(Wi()Mr o Va(t) +He)  (17)
o C

are the actions for leads, QD, and lead-QD coupling, and

_j e
tye i 0
MT,a = % iw .
0 —tye' 2

Here we have already integrated out the bulk degrees of
freedom in the leads and kept only the field \IJ; (t)atthex =0,

i.e., at the QD. The free lead Green’s function Qo,a atx =0
in the Nambu space N can be written as

Qo,a(w)=<g3(()‘”) ¥ )

(18)

19)

g

where g%(t — 1) is the P-H conjugation of gl(t —1'). We
perform Larkin-Ovchinnikov (L-O) rotation, and the Green
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function in Keldysh space becomes

. 1 21 —2n,
§w) = —mpF<0 - )>, 20)
. 1201 - 27,
) = —mpp(o - )). @
One notices that g%%(w) = —g%4(—w) and %K (w)=

—§2'K (—w). Here, n, is the Fermi distribution function of
the o lead with chemical potential ju,, and 7, corresponds
to the Fermi distribution function with —px,. Assuming the
symmetric source-drain bias u; = eV /2 and ug = —eV/2,
one can relate the Fermi function for particles and holes
ny =ng and ng = n;. The free QD Green function (with
MZM coupling) can be written as

Giua Goua Foas Foua
y Gt . 0  Fl,
Qoaa(@) =] ¢ Y R Pl I 0)
Foaa Toaa Goas Goaa
A A
0 Fla 0 Ghuy
where the retarded components read [41,56]
w+ins+€; — 2m(w)
G jalw) = ———— i S @3
’ (0 +ins —2Zm(w)(w +ins) — €5
w+ins —€g — Lm(w)
G ga(@) = —— \ S (24
’ (@ +ins —2Zm(@)(w +ins) — €;
—Zm(w)
Fu(@) = Fl(w) = . : .
0.4 0.dd (0+ins — 2Sm(w))(w + ins) — €3
(25)

Here the self-energy due to MZM coupling is Xy(w) =
/cza)/(cu2 —8?%), and the infinitesimal ng — 0. The Keldysh
components are proportional to 1, and, thus, can be set to zero.
After L-O rotation, the action for the tunneling part becomes

o0 -
ST:—E:/ dr| Wl
o —00

Z M;",a ®yl ‘i;d

i=cl,q

n

+Ul[ Y M ey | V. (26)
i=cl,q
where
IO RN\
y e e et 0
M;’a - ( ’ e 1 ) ’ @7
0 _ e
_od @
. e—ite’ =ity 0
MT’a - ( X eik&”m?) (28)
0 _e

are written in the Nambu space whereas y/ =1 and y? =
oy represent the Keldysh space. Note the relationship A{) =
—A® = ), which allows one to simplify the expressions. After
some manipulations, the cumulant generating function can be
written as

xX() = / DId",d1D[y], g le! et SepmitSo) - (29)
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Next, we perform Gaussian integration to find

=7 [ 52m [det srs = ?0’”"’?““]}, (30)
2 J 2w det[l454 — Qo,da O mol
where
:
O =Y (Z M, ® y‘) Q0. <Z My, ® y‘)-

(€29)
Equation (30) is a general expression for the CGF. In the next
sections, we will explicitly evaluate x (A) for different limiting
cases.

B. Results and discussions
1. OD coupled to two normal leads

It is instructive to review first a simple case of a noninter-
acting QD coupled to two normal leads. Taking the limitx = 0
in Eq. (22) and substituting it into Eq. (30), one obtains

Iny = %[ S i+ o0+ Tl ()

with the functions Y1 being defined as
AT, T
T (@te) (T, +Tg)
x [n(1 =np)e? ™ — 1)+ R« L. (33)

Ti

The term in the second bracket of the logarithm function in
Eq. (32) is the particle-hole conjugation of the term in the
first bracket. Since we consider a symmetric source-drain bias
(eVy, = —eVg = €eV/2), the transformation v — —w (e.g.,
for the terms in the second bracket) will result in the following
changes: ny — 1 —ng and ng — 1 — ny. Thus, one can see
that Eq. (32) is consistent with the results of Ref. [68]. Indeed,
at zero temperature and to the linear order in applied bias eV,
one obtains the well-known result for the shot noise in a QD:

St 62( 2 3% In x(Ar,Ag = 0)
= —(—1
eV h g 2L=0
26240 TR[(Tr — Tr)* + €]
h [+ @, +TR?)

One can notice that the shot noise (as well as other cumulants)
generically depend on the microscopic parameters for the
QD such as, for example, €,. Furthermore, in the resonant
case corresponding to €; = 0 and I'j = I'g, the first eight
cumulants are given by

{C1(0), ...Cg(0)} = {1,0,0,0,0,0,0,0}, (35)
with C,(0) being defined as

. (34)

((8"g))
o

Notice that at the symmetric point I'x = Iz, all higher order
(n > 1) cumulants become zero as €; — 0. This dependence
on €, is a generic feature because density of states in QD
strongly depends on the gate voltage controlling €;. As we
show below, this is not the case when QD is coupled to a TSC.

Ci(0) = (36)
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2. OD coupled to two normal leads and a TSC

Let us now consider a QD coupled to a TSC through MZM coupling, i.e., ¥ # 0. Substituting Egs. (19), (22), (27), and
(28) into Eq. (30), we find the following expression for the cumulant generating function:

In x(A) = z foo d—wln |:1 - LnL(l —np)— LnR(l —ng)+ LHL(I —ng)
2 ) 2 K(x = 0) K = 0) K(x = 0)
B, F J
+ m’ﬂe(l —np)+ annR(l —np)(1 —ng)+ annR(nL - nR):|- 37

The coefficients (Cy, C,, By, B,, F, J, K) in Eq. (37) are defined in the Appendix-A. Above expression can be simplified in
the zero-temperature limit where the terms proportional ton; (1 — np),ng(l —ng),npngr(l —np)(1 —ng),andnyngr(n, —ng)
vanish, and and the corresponding expression for In x (1) becomes

o]

T dw
In x (Wl = 3/ 2 1 Ny (1= ) + Nomg(1 = ), (38)

where Nj(w) = B /K(A = 0) and Na(w) = B>/K(A = 0). In addition, at T = 0 we have (n.(1 — ng)) =nr(1 —ng), (ng(l —
np)) =ng(1 —ny), and (n (1 —ng)) (ng(l —np)) =0 f i,j #0). Assuming u; > ug, the generating function can be

further simplified to

T r9
In (W7o = 5/
e

where the functions are N'(w) and D(w) are defined as

d_a) In (1 + M), (39)
2

D(w)

N(w) — p2ikr {8ei(AL+AR)FLFR[E§ + Em(w) — a))2 + T, — FR)z] + 4(221\/[(60)2 + 4% l“i)l’%e

— 4 [(1—**)Em(w)’ T} 4203 T 4+ Zm(@)’ Tk + 2T Tr(€] + (Em(w) — 0)* + T3)]} (40)
D(w) = [e] + 2Zm(w) — a))a)]2 + (T 4+ Tr)> + (T + Tp)*[2(e] + 2Zm(0)* — 2Zp(@)o + )] 41)
[
Equation (77) is the main result of this section which allows conductor:
one to compute cumulants as a function of various physical 5
parameters. We now simplify the above expression in the limit [o= & 'r =T, 45)
8 = 0 and small bias eV — 0. We keep only the leading order ATHT r+TL

terms in eV, and simply set @ = 0 in the integrand.’

l" i}LL l" 7!‘)»1(
—1In < Let ke ) (42)
I, +Tx

where M = TV /2x = TVe?/h is the number of incoming
particles during the waiting time. As mentioned above, the
expression (79) only depends on the ratio of I';,/ I'g, and is
independent of many other microscopic parameters such as €,
and «. This universality is due to the finite density of states at
zero energy induced by the Majorana leaking into the QD, and
is a characteristic feature of topological superconductivity.

To get some insight we compute now currents through the
left and right junctions. Using Eq. (3), one finds

In x
M

eV—0

2
e FL

I =————V, 43

LT R TR+, (43)
62 FR

Ig=——+—""-—-V (44)
hTpr+T,

Clearly, when I'y # 'k, there is Andreev contribution to
the current due to the presence of a grounded super-

Note that limits § — 0 and w — 0 are noncommutative. Here we
first set § = 0 and then take the limit @ — 0.

One can notice that when 'y = 0, we recover the previous
results [46] corresponding to a single lead coupled to a
TSC. Indeed, given that the voltage drop between the left
lead and TSC is V/2, linear differential conductance d1/dV
is equal to the universal value of 2¢%/h. Next, at the
symmetric point 'y = I'z, Andreev current becomes zero,
and linear differential conductance between right-left leads
is dI;/dV = e?/2h which is consistent with the previous
work on QD coupled to an ungrounded TSC [42,45]. In
addition, if we reverse the right lead voltage Vg = -V /2 —
V /2, the linear conductance is also equal to the universal
value 2¢%/h which is expected based on the RG analysis
[38,46].

We now discuss higher order cumulants n > 1. One can
check that the expressions for the shot noise (as well as other
higher order cumulants) through the left and right leads are
the same in the eV — 0 limit. Beyond the eV — 0 limit,
this relation only holds for the symmetric couplings I'y =
I'g. Therefore, we set Ag = 0 from now on and study current
fluctuations through the left junction only. By expanding the
CGF in terms of ¢'*-, one finds

. 'z M (M [T\ iniy
X(AL)_<FR+FL> ;(”)(F_R)e B
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FIG. 2. (Color online) The cumulant spectrum C,(w) for n = 2,3,4 for different «, § = 0 (left panel) and §/I" = 0.02 (right panel). Here

wesete; /" = —-2.0,, =T,
The probability P, can be obtained by the Fourier transform,

1 2

P, dipe” '™ x(kr)

27 Jo
(D) (7)
-~ \g/\I'p+T, Tr/)
As expected, the generating function in the presence of MZM

coupling k # 0 is still described by the binomial distribution.
However, the cumulants, defined as

(47)

cy0 =08 iy L 83;2 D
follow a peculiar pattern at '), = g,
(C1(0)- - Cx(0)) = {1,1,0, Lot - 1—7},
24 8 4 16
cy0) = 210, (49)

with E,(x) being the Euler polynomial. Contrary to the case
without MZM, higher order cumulants are nonzeroatI'y = I'g
and are independent of ¢; and «.

The dependence of the cumulants on Majorana splitting
energy 6 and finite voltage bias (beyond linear in V contribu-
tions) can be obtained using Eq. (77). In this case, one needs to
perform an integration of the cumulant spectrum C,(w) over
w € (—eV/2,eV/2), where

5" 19"
Gy = W@ _ 10 (1 N(w)) |
M 20M] D) ) |5, p=0
(50)
The frequency dependence of the cumulants for ¢;/ " = —2

with different « and 6§ are shown in Fig. 2 (left panel, § = 0;
right panel, §/I" = 0.02). As one can see, the cumulants
exhibit plateaus corresponding to the universal values [see
Eq. (49)] in the frequency range w < min{I",x?/ T} which
allows one to distinguish the Majorana physics from the other
non-Majorana effects.

Next,we consider the effect of finite Majorana degeneracy
splitting § # 0 which affects the cumulant spectrum C,(w) at
small frequencies @ — 0. One can see that, provided x 2 T,
the cumulants with 6 = 0 and § # 0 are similar for || > §.
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FIG. 3. (Color online) The €, = 0.0 result of the second cumulant spectrum C,(w) for different k', § = 0 (left panel) and 6/ I" = 0.02 (right

panel). Here we take I') = I'.

Therefore, in order to observe the universal values of C,s, one
has to adjust the source-drain bias V to the appropriate regime:
min{k?/T,I"} > eV > §. One can notice that there is also a
redistribution of the spectral weight for small «/ I". Therefore,
the large /" 2 1 limit is more favorable for the experimental
measurement of the cumulants.

Finally, we plot the second cumulant spectrum C,(w) for
€, = 0inFig. 3. We can see that although the quantitative value
shows small changes compared to the €;/ " = —2 result, the
conditions for the source-drain bias shown above still hold
indicating that our results are robust against changes of €;.

IV. WEAKLY INTERACTING SPINFUL
QD COUPLED TO A MZM

In this section, we consider the spinful model for a QD
coupled to a MZM which is relevant in the context of the
Majorana proposals involving topological insulators [9,10,15].
Indeed, MZM can be localized, for example, at the domain wall
between an s-wave superconductor and a magnetic insulator
of a quantum spin Hall insulator heterostructure. Assuming
that the magnetic insulator, polarized along the z axis, does not
affect the spin in QD (i.e., Zeeman splitting in QD is negligibly
small), one arrives at the following effective Hamiltonian:

HQD-MZM = Z edd;dq + Udideldi

+ ik(dy +dDy +idyiy. 51)

Here we also include the effect of inter-particle interaction U
assuming that it is weak, i.e., U < I',x. The opposite limit of
strong Coulomb interaction in the dot is considered in Sec.V.

As shown in the previous section, the CGF for spinless
QD becomes universal (i.e., independent of €¢; and «) due
to the MZM coupling. In the spinful case, only one channel
[e.g., spin-up) effectively couples to the MZM; see Eq. (51)].
Thus, the CGF will also have a nonuniversal contribution
from the spin-down channel which is decoupled from MZM.
However, as follows from Eq. (35), higher order cumulants
(i.e., n > 1) from the spin-down channel vanish at ¢, = 0 and
I', = 'k enabling one to observe the universal part originating
from the spin-up part. Thus, some fine tuning is necessary
in this case (as opposed to the strongly interacting case in
Sec.V). In addition to the aforementioned corrections to the
universal features in FCS, one should also consider the effect
of Coulomb interactions. Without loss of generality, we set

Mg = 0 and calculate effect interactions on charge fluctuations
through the left lead. Our conclusions also apply to charge
fluctuations through the right lead.

We now consider the effect of weak interactions U < {I",«}
on FCS. We first calculate the contribution of the Coulomb
interaction to the self-energy and then obtain the corrections
to the CGF in powers of U. Up to the second order in U,
the corresponding Feynman diagrams are shown in Fig. 4.
The linear in U contribution to the self-energy E;{; (see
Fig. 4) merely represents the renormalization of the QD energy
level €,. This is a trivial interaction effect which does not
modify our previous conclusions. We, therefore, focus on U 2
contributions. The self-energy in the Nambu space has the

following form,
Zad
s )

dd dd

(52)

where 232 and E"}fj are particle-hole conjugation of E:}Z and
E;g. We note that all the Green’s functions here depend on
the counting field A;. The details of the calculation of %*
is presented in Appendix B 1. After some manipulations, the
cumulant generating function for each spin channel can be
written as

00 d AL >
Iny() = Z/ d—wln et[[v ddwU:O]fl ]
2 Jeoo 2 det [[ Q7] — ==0]
Tty Sl ]
2 Jwe2m det [[Oh5-0] ']
. 7_— 0o d_a) N det []I4><4 - QZZ,U:OEM]
2 )2 det[Ians — Q;Z,:LLOEAL:OT

(33)

where

t
[ V();é,U:O]_] = [Qvéfdd]_l - Z (Z M;",ot by yl) QO,a
X (Z M;,a ® yl)

The first term in the generating function corresponds to the
result for noninteracting case [see Eq. (30)], whereas the sec-
ond term originates from the interaction-induced corrections.

(54)
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Normal propagator : Gda(t,t’) = > t'
!
Faq(t,t") = s <t
Anomalous propagator : ,
Fo(tt) = feerst
U

Coulomb interaction :

(a)

PHYSICAL REVIEW B 92, 205422 (2015)

FIG. 4. (Color online) (a)Diagrammatic representation of the normal and anomalous impurity Green functions and the Coulomb interaction;
(b) and (c) diagrammatic representation of the self-energy due to leading order corrections of the Coulomb interaction.

We consider weak Coulomb interactions Uu<< {T,A,eV},
and keep the leading order terms in U: Q;ﬁl,U:OZAL ~

U?/min{T",A,eV}? < 1. By expanding the second term in
Eq. (53) up to quadratic order in U, we obtain
/OO

Inx (1) ~ %foo ;,—wln det[[Qij_L:, 0]71]
oo ST det[[QddU 0] ]
x [Tr(Q Giu=oZ™) — Tr(Q}, 44 U OZAL_O)]’ (55)

where we used the relation det(I +xA)~ 1+ xTr(A) for

x K 1.
After some manipulations (see Appendix B 1), the cumulant
generating function for small U can be written as

TU?
2
which can be described by Fig. 5. Note that the matrix

R
formalism of the Green functions has the form ((G;,;

T

2

dw
21

In xo (hr.U) U=0)-— K

=
o

~ In xo (A, ; (56)

)
GA
(i.e., with a L-O rotation). However, for the convenience of
the calculation, we will also use the matrix Green functions in
the Schwinger-Keldysh space (without L-O rotation). Here the
function E; [A here means (,y,Ag)]in the Schwinger-Keldysh
space has the form,

=T )

[1]

(57)

>N

69}

0o 2T
Foo[™dQ
E =/ 2_(1'1,T, (M @+ 1L (T (@),
oo 2T
|
~ —iA 2
’:K’(?,) _ (e L — 1) ~ T
B4 gy O (2 B I)
~ 1 . ;
E}Iié?’) _ [15K2(el)\.L _ 1) +K2(e21}\.L

24730 42(1 4+ efte)?
1%, .(0*.,0) — 1%, . (0*,0)
67213

—l)\L

- D,

—~< . dQ A< < < A<
S, = Z(nP,T(_Q)HP,L(Q)‘i_HH.T(_Q)HH,L(Q))’
—0o0
—> OO ae . > A > > >
g = 700Z(I'IPYT(—Q)l‘[lw(Q)—i—l'[H’T(—Q)HH’i(Q)),
(58)
and
Ef =(Ef +8] —Ef — E})/2. (59)

The polarization functions 1'[“ P, and HO‘ , (see Fig. 4) are
calculated in Appendix B 1. One can notlce that, for ¢; = 0,
the particle parts are exactly the same as the hole parts:
I Po = =TI H.0- Thus, the functions E, for the spin-up channel
have the same form as those for the spin-down channel, and
we drop the spin index in &, from now on. Lastly, it is
well known that the function EX ;=0 (here A = 0 means
A = Ag = 0) vanishes because of causality and unitarity.
However, the presence of the artificial counting field A(f)
having a different sign on the forward branch and backward
branches of the Keldysh contour breaks unitarity. Therefore,
the relation E/{(:O =0 does not hold for A # 0, and we
have to evaluate it explicitly. In general, the calculation of
EF , is not very illuminating but some simplification can be
obtained by expanding the interaction-induced corrections in
powers of eV assuming that eV — 0. After some algebra
(see Appendixes B 2, B 3, and B 4), we find that the leading
contribution to CGF is proportional to V3:

afa =@y +515). (60)
where the functions Ef 2 ) and Ef’é3) are given by
(e = DI(e™ —1) = 2(e™ +3)k7] 61)
1273 (ef*e + 1)2T4%2 ’
— 1)+ (=22 = 1562 (e — 1) + (I'? = 8k2)(e 2 — 1))
(62)
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FIG. 5. (Color online) Diagrammatic representation of the cumulant generating function up to the leading order corrections of the Coulomb

interaction.

where

< JQr. ~ —i
OK) = iy £ —Q,0)———
®) /_oo o [ T e

+ 115 1 (=53,0)

—i Q _ «
m —, K= —. (63)

, with Q=
r r

One can check that indeed the above expression vanishes for A, = 0, as required by unitarity. The integral in Eq. (61) is a

dimensionless number depending only on «/ I". The functions ﬁg’zT.T(OJF,O) in Eq. (62) are defined in Eq. (B19); these functions

depend on I' and « [89-92].2

Combining all the terms, the final expression for the cumulant generating function of the spinful QD at the O(U?) level can

be written as

Inx(Ar,U) ~ In x4 (hp .U = 0) + In x (b, U = 0) = TUeV) (EF ) + B V), (64)

and the leading correction for the current and shot noise (for left junction current) can be written as

e U%(eV)? [ 0(K) 7’
81V = - —— 2 22— — | — —
L™ n 4 (671 +< 4)6713

ho T4 61 4

55U, = e U2(eV)? (O(E) N <2 B n2> 1+ 2k?

Thus, the leading order correction to the generating function in
the presence of MZM coupling is of the order of (eV)? which
is the same in the case without MZM considered in Ref. [68].
Since the leading order correction to the cumulants C, is of
the order of (eV)?, the interaction-induced corrections do not
affect cumulants at small bias. Therefore, we expect that one
can observe the universal values of the cumulants discussed in
Sec. III in realistic experimental conditions.

V. STRONGLY INTERACTING SPINFUL QD COUPLED
TO A MAJORANA ZERO MODE: INTERPLAY
OF KONDO AND MAJORANA COUPLINGS

In this section, we study another nontrivial case correspond-
ing to a strongly interacting spinful QD in the limit of single-
electron occupancy coupled to a MZM. The Hamiltonian for
the system reads

H = Hy, + Hor + Hop-mzm + Hr, (67)

Hgp-mzm = Zédna +Unyny +ikyi(dy + db + i8y1y2.

(68)

2We note here that Egs. (61) and (62) contain terms proportional
to (1 + ¢*£)72 which can be represented as an infinite series in
e*L . Similar terms in CGF also appear in other interacting systems
[89-92], and there has been some debate as to their interpretation. We
note, however, that physical observables (cumulants) are well defined
even in the presence of these terms; cf. Eq. (65).

1 N M7, ,(07,0) — f17, (07,0) ©5)
273 62 ’
1—62%2  TI%, (0*,0)— 1}, ,(0*,0) ©6)
247382 1 48732 672 '
[
Hr= Y (ta¥],(0)d, +H.c). (69)
a=L,R,0

Here Hor and Hyp correspond to the right and left nonin-
teracting lead, respectively; d; and d, are electron creation
and annihilation operators in the QD with n, = d;dg; the
energies €¢; and U correspond to the QD energy level and
the on-site repulsive interaction. x and & represent coupling
between QD electrons and MZM and the degeneracy splitting
energy in TSC. The operator w;’J(O) corresponds to an
electron annihilation operator in the lead o with spin o
at the junction with the QD (i.e., x =0) and 7, is the
corresponding amplitude for tunneling. Once again, we assume
here that Zeeman splitting in a QD is negligibly small [see
discussion after Eq. (51). In the limit of single-electron
occupancy (i.e., large U and €; < 0), considered henceforth,
one has to take into account interplay of Kondo and Majorana
couplings [46]. In the next subsections, we present calcula-
tions for the FCS of charge fluctuations using two different
techniques: exact solution at the particle-hole symmetric
point and slave-boson approximation, both of which show
that the zero-frequency cumulants calculated in the linear
response regime exhibit a universal pattern described by Euler
polynomial.

A. Low-energy effective theory at the particle
hole symmetric point

In this section, we study FCS of charge fluctuations at the
particle-hole symmetric point where one can solve the problem

205422-9



DONG E. LIU, ALEX LEVCHENKO, AND ROMAN M. LUTCHYN

exactly; see Ref. [46]. First, in the limit of a large charging
energy, one can project out double-electron occupancy state
in the QD using Schrieffer-Wolff transformation [46]. The ef-
fective low-energy Hamiltonian at the particle-hole symmetric
point (¢; = —U/2) reads

Het = Hor + Hor + Z
Jj=x,y,z;0=R,L

iJ2 V18P0 (0)

+ Z JS,aa’§ . gaa’(o)v (70)

ao’=L,R

where §= {Sx,Sy,S;} are spin operators for the dot, and
y) is the Majorana zero mode at the end of the TSC
wire. We also define the Majorana operators from the

lead fermions: ®q.(0) = Wuy(0) + ¥), (0), Pe,,(0) = i —
Vay (0) + 9., (0), and Pq(0) = Yy (0) + ¥, (0). The lead

spin operator is defined as Syq/(0) = gﬁis(O)G /2) Y (0).
The coupling constants J,, and J3,, are given by

1 1
Jow = nlta|<— + —)
leal U — |eql

1 1
J3al¥, = |t0tt01’|<_ + —)'
leal U — |eql

It has been shown in Ref. [46] that the low-energy fixed
point corresponding to the Hamiltonian (70) is governed by
the J, coupling which is the leading relevant perturbation in
the model. It has been confirmed by the DMRG calculation
[46] that the strong coupling fixed point corresponds to
the nontrivial boundary conditions for the lead fermions—
Andreev boundary conditions (BCs) for spin-up electrons and
normal BCs for spin-down electrons. Some insight regarding
the strong coupling fixed point can be obtained by setting
J3 = 0 and using the exact solution of the model [46]. The
effect of the marginal perturbation J3 can be taken into account
perturbatively.

(71)

1. FCS using the exact solution of the model at J; = 0

The low-energy Hamiltonian (70) with J3 =0 can be
further simplified by noticing that the operators ¢; = 2y, S;
(j = x,y,z) along with y, satisfy the Clifford algebra and
define the new Majorana operators {; = 2y,S;, which maps
the model to the following fermion bilinear Hamiltonian

J

PHYSICAL REVIEW B 92, 205422 (2015)

[46]:
Her = Hop, + Hor +iJ21 Z £ ®.;(0)
j=x,y,z
+ihr Y ¢jDg;(0). (72)

j=x,y,z

In order to study FCS for this model, we introduce the counting
field A, by replacing ¥} (0) with e=**«®/2y;t (0), and then
perform the Gaussian integration over fermionic fields:

T (*d det[wl3,3 — O
In X (1) = —/ —“’m[ ey 9“1], 3)
2 Joo 2 [det{wlzxs — Orol
where the matrix is defined as Qr I
Ory = Z W;,,J 00uWra- (74)

a=L,R

Here the Green function and the coupling matrix WT,a operate
in the Keldysh-Nambu space. The Green function for the o
lead Qg is defined as

ggT(a)) 0 0 0
y _ 0 8o, (@) 0 0
Qoo(w) = 0 0 2 (@) o | T
0 0 0 2

where g0 (w) and g0 (w) are given in Egs. (20) and (21). The
matrix Wr,a describes the coupling between Majorana modes
{¢x,¢y,¢.} and the lead electrons {gﬁw,ww,wiww;l} atx = 0:

0 iJZamka 0 ij2a7%)»a
WT,O[ = 0 Jzam)\.a 0 _JZOJ%)L&
iJZamAa 0 iJZaﬁAa 0
(76)
The matrices mjyy = cos(Ae)l —isin(Ay,)ory and M, =

— cos(Ay) — i sin(ry )0, are defined in Keldysh space. Note
that in order to obtain the above expression for the matrix
Wr., we used the relation A\ = —A® = A, and applied
the Larkin-Ovchinnikov rotation [87]. Assuming symmetric
applied voltage bias V;, = V/2 and Vx = —V/2 (see Fig. 1),
we find the generating function for this low-energy model at
zero temperature 7 = 0:

T (7 do
In x(M]r—0 = > ~—In{1+

v 27
2

M) , 3D
D(w)

where the functions are N (w) and D(w) are

N(w) = =4 + Tog)? + @) + e (e *(4(Tyy, — Tag)* + )
+ 1605 Top)? (€% (0 + 415, €**1) + 8T Toge M0 417, ), (78)

D(w) = (4o + Mar)? + 0?)°.

In the linear response regime, we arrive at the following generating function:

In x

M

—In ((FzLei'\" + Cage”*0)(Tar — Tar)” + 4€i(’\"_AR)F2LF2R)> 79)
Vo0 (Tar + Tag)? '
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where Ty = mprpJ2, and M = TV /2w = TVe*/h has the
meaning of the number of incoming particles during the
waiting time. The cumulants of the current fluctuations through
the left-lead junction are given by

n

M oAT

Ca(0) = (—l)” Iny (2) (80)

)\L,R=0

For the symmetric left-right lead couplings J>;, = Jg, the
cumulants follow a peculiar universal pattern,

(CL0) - ColO) = 31, 1ol 17
! ST =127 T8 T 16

E,1(D
2

C,(0) = forn > 2, (81)

with E,(x) being the Euler polynomial.

2. Corrections to FCS due to finite Kondo coupling J; # 0

In this subsection we consider the effect of the Kondo
coupling and show that its contribution to FCS is higher
order in applied voltage bias eV. We first provide qualitative
arguments based on the RG equations and then corroborate our
conclusions using the perturbative calculation in J3. The per-
turbative RG analysis [46] shows that J, coupling is the
leading relevant perturbation in the model which flows to
strong coupling and changes the boundary conditions for
the conduction electrons. At the strong coupling fixed point,
the Majorana operators ¢; are effectively absorbed by the
conduction electrons in the leads—spin-up electrons absorb
a Majorana mode whereas spin-down electrons absorb a
Dirac fermion mode which leads to new boundary conditions:
Andreev BCs for spin-up electrons and normal BCs (Kondo)
for spin-down electrons: Ay ® N, . Next, we rewrite the QD
impurity spin in terms of the Majorana operators ;:

—’Esabc;i . (82)

Thus, the Kondo Hamiltonian written in terms of the new
operators ¢; reads

Si = —2i8iijjSk =

i
Hg = —z Z J3,aa’(é‘y§zsxsaﬂt’(0)

aa’'=L,R
+ 888 y,00(0) + $08y57 00 (0)). (83)

Since Majorana operators are now effectively absorbed by
the conduction electrons, the scaling dimension of the Kondo
term has changed. Indeed, the Kondo coupling written in the
new variables looks like the four-fermion interaction term.
Therefore, the RG flow for the Kondo coupling J; at the strong
coupling fixed point is given by

dJs

T Js, (84)
and, thus, the Kondo term becomes an irrelevant perturbation.
Therefore, the second order in J3 contribution to the shot noise
(as well as other cumulants) is proportional to (eV)?, and is
vanishing in the linear response regime. This conclusion is in
complete agreement with the previous results in Sec. IV where
we showed that the contribution to FCS of the Kondo term is
proportional to (e V)*. Following exactly the same procedure as

PHYSICAL REVIEW B 92, 205422 (2015)
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FIG. 6. (Color online) Diagrammatic representation of the cumu-
lant generating function up to the leading order corrections of the J3.
The solid lines describe the Majorana propagators, and the dashed
lines describe the propagators of the free electron in the leads.

Sec. IV [refer to Egs. (52)—(56)], we now calculate the leading
order correction in J3 coupling to the generating function:

TJ?
I o (bt J3) & In o (ke dy = 0) = Y7 =B L (85)

aa’

The Feynman diagrams corresponding to the second-order
correction in Js to the free energy are shown in Fig. 6.
Following the procedure outlined in Sec. IV and Appendix B,
we first expand the CGF in powers of eV and calculate
the lowest nonvanishing contribution. After some algebra,
one finds that the leading order correction to the CGF is
proportional to (eV)*:

7 5(eV)y3p2 .
=K _ F 2iAp 2 4
SIRA T T4 32 ¢ cos” Ap + O(eV™), (86)
127313
=K (V) oi 2k o2 4
ERL) = a3y € fcos"Ap+ O(eVT), (87)
12773
~ VvV 3
ek, , = _—(162 )3 lf L cos(2hz)cos® hp + O(eV?), (88)
iy (V) pf

RRo = o 3F2 E cos(2h)cos? A + O(eV*H). (89)

Here pr is the electron density of state at the Fermi level in
the leads, and the coupling I'; is defined as I'; = 7 J7 pr (we
consider Jo; = Jog = Jo).

At the end of the day, we find that our prediction regarding
the universal FCS of current fluctuations is not modified in
the linear response regime since the contribution of the terms
proportional to J3 is higher order in voltage and, thus, can
be neglected. Indeed, this universal sequence is completely
determined by the properties of the fixed point itself rather
than the fluctuations around it. This is to be contrasted with
the Kondo fixed point where the shot noise and higher order
cumulants are proportional to (eV)* [93] and, thus, depend
on the details of irrelevant perturbations around the strong
coupling fixed point.
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B. FCS away from particle-hole symmetric point:
Slave-boson mean-field theory

In this section, we provide a different perspective on the
problem and consider current fluctuations in the QD-TSC
system away from the particle-hole symmetric point. In the
limit of single-electron occupancy {I',k} < |e4] < U, one
can study the problem, defined by the Hamiltonian (67), using
a slave-boson mean-field (SBMF) approximation originally
developed for an infinite-U Anderson model [94,95]. This
approach allows one to eliminate double occupancy in the
QD and significantly simplify the problem. For the sake
of completeness, we outline here main steps of the SBMF
approach. We refer a reader to Ref. [46] for more details of the
SBMF calculation in the presence of MZM. We first rewrite
fermion operators in QD in terms of the auxiliary boson b
and fermion f, operators, i.e., d, — f,b'. This procedure
requires one to introduce a constraint bib + > f; fo=1
on the Hilbert space. After the transformation, the effective
Hamiltonian becomes

Hspye = Hicass + ) €af) fo + ikni(frb' + f1b)

+ Y Yt O fob + hc) +iSyiya,

a=L,R o

(90)

where the lead Hamiltonian Hi.gs is unchanged. Next, we
apply the mean-field approximation and replace the bosonic
operator b and the Lagrangian multiplier n enforcing the
constraint by their mean-field expectation values. We choose
(b) = (b') = b to be a real positive number. The mean-field
parameter b and n can be determined self-consistently by

-_—

w
o;
o

1.0
K/l

2.0

0.5 1.0

K/l

1.5 2.0

FIG. 7. (Color online) Dependence of the cumulants C,(0) = {(§"
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minimizing the free energy [46]:

b+ (flf) =1, ©n
2n+1 Y D (fiVea(0) +cc)
a=L,R o©
+ik(n(f] + f) =0. 92)

Here, we assume the eV « max {Tk,«} and thus neglect the
dependence on voltage bias eV in the SMBF calculations; see
also discussion in Ref. [96]. The above equations determine
thermodynamics of the system, and we are now ready to
compute transport properties. Once the mean-field values
of the auxiliary parameters are determined in the SBMF
approximation, spin-up and spin-down channels become de-
coupled. Thus, effectively the problem reduces to the previous
model—spin-up channel is coupled to an MZM whereas the
spin-down channel is not. The chemical potential and cou-
plings are renormalized: €; — Ci=¢€s+n, ty > 1, = bty,
Iy > Iy =0Ty, and k — K = bk.

Using the results of Sec. 11, it is rather straightforward to
obtain the CGF at small voltage bias eV — 0 in this case,

<FL€ML + FREMR>
=In =~ -
V-0 ' +Tg

€+ (T +Tr)?

4T T
€4
Here the first and second terms correspond to the spin-up
and spin-down channels, respectively. As discussed below, the
renormalized QD energy €, is close to the Fermi level, i.e.,
€4 — 0, for a large parameter range {x,['} < || (so-called

In yxm
M

(ei(h*)we) _ 1)) .

93)

C2(0)

1.0 1.5

K/l

0.5 2.0

-0.09t
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g)/M (6 =0 and eV — 0 limit) on the Majorana coupling « in the

Kondo regime from SBMF calculation. We choose I';, = I'g, €,/ ' = —10.0, and bandwidth A/ I" = 30.0.
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FIG. 8. (Color online) The cumulants C,(0) for n = 1,2,3,4 as a function « and §. Here ¢,/ T" = —10.0, I'y =Tk, eV /T = 0.001, and

A/T = 30.0.

universal limit). Thus, in the case of symmetric right-left lead
couplings 'y = I'z, the second term in Eq. (79) is simply given
by i(AL — Ag) and, therefore, does not contribute beyond the
first cumulant. Thus, the shot noise as well as other higher
order cumulants are once again given by the universal pattern:

[C1(0) - C5(0)} = Sl Lolo U
1 8 - 2741 9 87 74’ k 16 9
E,_i(1
C,(0) = 21() forn > 1, (94)

with E, (x) being the Euler polynomial. Note that this result
agrees perfectly with the FCS calculation at the particle-hole
symmetric point; cf. Eq. (49). One may wonder here whether
fluctuation corrections around the mean-field solution modify
the universal pattern predicted for FCS of current fluctuations.
This is an important question which is outside the scope of
this paper but it is certainly encouraging that the SBMF theory
agrees well with the exact solution obtained at the particle-hole
symmetric point.

C. Results and discussion

The SBMF solution discussed above allows one to analyze
different perturbations in more details. We begin with the case
of zero degeneracy splitting § = 0 and study the dependence of
the cumulants on the MZM coupling «. In the linear response
regime, the dependence of the cumulants on k can be obtained
numerically and is shown in Fig. 7. A recent study based on the
SBMF approach [46] shows that there is a crossover between
Kondo- and Majorana-dominated regimes as a function of the
MZM coupling k. For ¥ <« k. = +/Tx/I'|€,4]|, the mean-field
solution is determined by the Kondo temperature Tk:

['=Tb? = Tx = Aexp(—mleq|/2D), (95)

and the renormalized energy level is &; = |eg + n| ~ ['b*.
Here A is the bandwidth and I' =T'g + [,. Since b <1,
the renormalized energy €, is small €; < ' [46]. Thus, the

cumulants at exactly zero frequency and 'y = ', are given
by Eq. (94). At finite temperature, there will be corrections to
the universal values which are governed by Kondo temperature
Tk. In the case of intermediate MZM coupling « > k., the
parameter b ~ k/|€,4| is determined by the Majorana coupling.
Therefore, the finite-temperature corrections to the universal
values of the cumulants are determined by the Majorana
coupling rather than the Kondo temperature.

Next we consider the effect of a finite energy splitting § # 0
and voltage bias on our prediction, which is important for
the experimental detection in realistic settings. The cumulants
C,(0) for n = 1,2,3,4 as a function « and § are shown in
Fig. 8, where we focus on the limit |e;| > {I",k}. One can
see that in order to resolve the universal quantized values,
one has to adjust the voltage bias in the following range
min{x2/T,['b?} > eV > § where b = /Tx/ T for k < k.
and b = k/|ey4] for k. K k K |€4]. The plot of the cumulant
power spectra as a function of the splitting § and Majorana
coupling « is shown in Fig. 8. One can notice that the width
of the plateau around the quantized values gradually shrinks
with increasing §.

VI. CONCLUSIONS

In this paper, we study the full counting statistics of current
fluctuations in a QD device with a side-coupled TSC; see
Fig. 1. Two normal-metal leads, coupled to a QD, are also
introduced in order to detect electric current fluctuations.
Using the Keldysh path-integral approach, we compute the
cumulant generating function for the QD with MZM coupling
in this two-lead structure. We first consider a noninteracting
spinless system, and find that for the symmetric left-right lead
couplings ') = T'g, the zero-frequency cumulants exhibit a
universal pattern described by a series of numbers generated
by the Euler polynomial. We show that the cumulants
depend only on one dimensionless parameter I'; /I'g, and
are independent of other microscopic parameters of the QD
(i.e., QD energy level and QD-MZM coupling). We then
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consider another realistic setup—a spinful QD coupled to a
topological superconductor—and show that our prediction for
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APPENDIX A: DERIVATION OF THE COEFFICIENTS IN CGF EQ. (37)

In this Appendix, we provide details of the calculations of FCS for the noninteracting case. To evaluate the generating function,
we first define

(AD)

T
K(A.2g) = det | Lixa — Qoaa Y (Z Mj, ® y") Do (Z M, ® y")

We consider a symmetric source-drain bias (u; = eV /2 and ug = —eV/2), and insert Egs. (19), (22), and (27), (28) into
K(Az,Ag), and obtain

KO = 0.h5 = 0) = 1 (T + TP (685, I+ (T + TP F ] = 20 AP (1 + (o 4 TGl 68

+[Gg ] (1+ L+ TR[GE 1, ])), (A2)
and
K r,Ag) = K(0,0) = Cin (1 —np) — Cong(l —ng) +Bing(1 —ng) + Bong(l —ny)
+Fning(l —np)(1 —nR)+ Jnpng(ng — ng), (A3)
where
(Cl — 4e—i(AL+AR)FLFR(4FLFRei()\L—)\R)(eiAL _ eiAR)Z([FOI?dd]Z _ ngaGgﬁd)z _ (1 _ ei(AL+AR))2[FO}?dd]2), (A4)
(CQ — 4g7i(AL+)\R)FLl—~R(4FLFR€71'()\L7AR)(€[)LL _ eiAR)Z([FOI’Qdd]z _ G(])Q’dd_G(I)gjd)z _ (1 _ ei(AL+AR))2[FOI?dd]2), (AS)
Bl — 46—2i)»L (_zeikL(eiAL _ eiAR)([FORjdd]z _ ngaGgad)zrer + eZML(_l + eziAR)[F(fdd]2Fé
— (e — N TR([G ] + (G841 +2((Ffual” = 6§ 0aGaa) T?)
+ T2 (—(=1+ 2P [FR T+ de s (—e* 4 ™) ([FR,, " — GR ,GR,)’T2)), (A6)
By = de™ " (—2e" (e — eiAR)([I"ﬂOI:"dd]2 - G(I)e,dJG(I)e,Jd)ZFzFR
+€2ML(—1 + eZMR)[FORjdd]ZF% _ 6‘ML(€ML _ eiAR)FLFR([ngJ]Z + [ng_d]z + 2([F01?dd]2G(I;,dd—G(I;ad)2F%)
+T(-(-1+ emL)[Fol,edd]z + detr (et 4 eiAR)([Fol,edd]2 - GédaGgad)zrfe))’ (AT)
212 R 72 R R \2f o AL — AR !
F =256T; T ([ Fo'ua] — GoaaGoaa) | sin ) (A8)
2 of L h—rr\ .
J=128iT TR ([Fo'aa)” — GiaaGaaa) (sm T) sin(A, — Ag), (A9)

where the Green functions, i.e., Gy 44,Go 43, and Fp 44, are defined in Egs. (23), (24), and (25) of the main text.
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APPENDIX B: CALCULATION OF THE CGF CORRECTIONS DUE TO WEAK INTERACTION EFFECTS

1. Derivation of the interaction correction formula

For the convenience of the calculation, we consider the polarization function (see Fig. 4) in the Schwinger-Keldysh space
(without Larkin-Ovchinnikov rotation),

p(Q) = (1:1‘{(9) IE(Q))
M@ M)
% day (Gla@1 + G (01) + Fjy(wr + Q) F (@) Jale1 + )G H(w1) + Fry(wr + Q)F 7 (w1)
- /oo g(? (01 + )G (1) + Fy(wr + Q) F55(w1) (w1 + Q)G J@) + F, d(wl +Q)F——(w1)>
B1)

Here the subscript P indicates the particle channel, its particle-hole conjugation (i.e., the hole channel) IT;(€2) has the same form
but with replacement G,;; — Gj, and F;; — Fj;. The respective self-energy for the spin-up channel can be extracted from

(@ — DI}, | (Q) (@ — I (Q)

d‘”(w) _ 1U2/ dQ( dd,t dd? ) (B2)
dﬂ - I (Q) ch(w DM ()
Fi; (0 =M () F (0 — I ¢(sz)

DANC >—1U2 > (B3)
cm(‘“ I | (Q) W(w T, ¢p(52)
, dar@— DML (@) Fj (0 — T ()

=l ) = i0* [ ( ! - e o ) (B4)
dd T(w DI () Fly (o — I (Q)
— ITL () (@ — DI (Q)

ddT(w)_le < ddT AH,L dd¢ H| ) (B5)
Gy (o=l () Gy, (o— M (@)

where the spin-up channel couples to MZM and the spin-down channel does not. We want to calculate the following function,
i.e., interaction correction in Eq. (55),

> d "
[ Sy oz @)

o]

*d
= / 2;UT 1(Gy, ?(w)Edd +(@) + Fag Hw)Zk (@) +Fg N 1(@) + Gyq, T(“’)Edd T(w))

*® dw
= / 7 (v Gaay @)y ¢ 'S4 (@) + ¥ Faa 1 @)y U B5 (@) + 7 UFaa 1 @)y T E5 (@) + yIGag 1 @)y T (@),

o0
(B6)
where y! = I,,,. Note that the matrix Green functions and self-energies [which are from Eq.(55)] have the form (g; gi) (.e.,

with the L-O rotation). Therefore, the function above just corresponds to the classical-classical part (I? ) of a certain polarization
function, and we define a function E f ., for the interaction correction,

*® dw
UPES, = / S Tr(yGaa 1 @)y T3 (@) + ¥ Faa s @)y 3k (@) + ¥ Faa 1 (@)y " 2G4 (@) + 7 Gaa 1 @)y 3L (@),

00 2T

B7)

which can be described by the diagrams shown in Fig. 5. The function E; in the Schwinger-Keldysh space (without L-O rotation)
has the simple form,

=T Chy
5, = (H Hf), (BS)
E T
where
T * dQ T AT AT AT
gy = Z HP,¢(_Q)HP,¢(Q) + HH,¢(_Q)HH,¢(Q))7 (B9)
gl = dQnT ML () + AL (—fl (@ B10
— = oog Pﬁ( ) ¢( )+ ¢( ) ¢( )) ( )
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© 4Q

E§=f —(H 42D (@) + T (DI (), (B11)
°°dQ

Ei=f (1'I A (EM7 () + 17, (—DTT7 (), (B12)

and
Ef =(Ef + 8] —Ef — E)/2. (B13)

Finally, we reach the formula in Eq. (56) of the main text.

2. Expansion of E?

Now, let’s look at how the correction EX changes as a function of source-drain bias eV for T = 0. For small eV, we can
expand the function,

28 (ev) = 8K (0) + (eV)EX D (0) + (eV2EF P(0) + (VP EF V0 + - - . (B14)

Due to the causality reasons (this is still true in the presence of the artificial counting field), the polarization function at
T =0 and eV =0 has the following properties: I1; _(2) o n(2) and 17 (2) oc 1 — n(2), where n(Q) =1 — 6(R) is the
Fermi-distribution function at 7 = 0. Then, we find uf(eV =0)= O and :;(eV = 0) = Ofor T = 0. Although the time-ordered

and anti-time-ordered parts of the Green functions (G oy ,G; dT, F d ,and F 52 ) depend on the counting field A , their dependence
on A enters in such a way that all the A, -dependent terms have a prefactor nL(l —ng).AtT =0andeV =0,n,(1 — nR) vanishes
and tlme order and ant1 time-order Green functions are independent of Ar. Therefore, we have Ej T(eV = O) =G&;,_ O(eV =0)
and B T(eV =0)= E]_,(eV = 0). Combining those relations with EX_(eV =0) = E]_,(eV =0)+ E_ (eV = 0) = 0, we

can show
2X0) = 0. (B15)

This is intuitively obvious since there should be no current in equilibrium (i.e., eV — 0).
To consider higher order terms, we expand the integrand of the polarization function integral in order of eV. These integrands
have the following form,

F¥(w1,QIn (w1 + Q),np(@),ng(o) + Q)nr(@1) = Giz(or + QG (1) + Fgy(wr + Q) Fj;(w1), (B16)

where o = T,?,(,), The bias eV only enters through the Fermi distribution function n; and ng: np(w) =1 —0(w — eV/2),
ng(w) =1—0(w + eV /2). Due to the properties of Heaviside theta function, by expansion and resummation, one can prove the
following relation: If one has a series of functions n;(w) =1 — 6(w — w;) withi = 1,2, ... kand w; < wy < --- < g, then
Fny,ny,...,n) = F(0,0,...,00+[F(1,1,...,1) = FO,1,...,D)]n
i i+1

—— r—"
+"‘+[F(O""70’19" 1)_F(O ) ,,...,1)]’1['
4+ [FO,...,0,1) — F(0,0, ...,0)]n. (B17)

Note that this formula depends on the order of the arguments in the Fermi distribution function. We then define the polarization
function for different regions where the function F has different forms. First of all, we consider 2 > eV such that —eV /2 — Q <
eV/2 —Q < —eV/2 < eV/2, and define

o0

- . da)1 o

0%, ,QeV)=i | S Fi(n.9), (B18)
' oo 2T

and F{(w1,Q2ng(w) + Q),np(w) + Q),np(wr),np(wr) = F¥(w,Rnp(w) + Q),np(w)),ng(w + Q),ng(w)), where F* is the

same function as the one defined in Eq. (B16), but the arguments in the function F}* have the different order. Second, we consider

0<Q <eVsuchthat —eV/2 — Q < —eV/2 < eV /2 — Q < eV/2, and define

o]

2y . da)1 o
My 5(82,eV) =i ng (@1,€2), (B19)

—00

where  Fy'(w1,R2ng(w1 + Q),nr(w)),np(wr + Q).np (@) = F*(01,Q2n (o) + Q2),n (1), nr(w) + Q),ng(@))). Third, we
consider —eV < Q2 < Osuchthat —eV/2 < —eV /2 — Q < eV /2 < eV /2 — , and define

o]

Ao . d(,()] o
3 5(2,eV) =i §F3 (@1,€2), (B20)
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where F3'(w1,Q2ng(w1),ng(w; + Q),np(w1),n(w) + Q) = F(w1,R2np (w1 + Q),np(w1),nr(w1 + 2),ng(wr)). Finally, we
consider Q2 < —eV suchthat —eV /2 < eV /2 < —eV/2 — Q < eV /2 — Q, and define

o]

Ao . d(,()] o
5, ,(2,eV) =i EF“ (01,L2), (B21)

where Fj(w1,2{ng(@1),np(@1),ng(@1 + Q),np(wr + Q) = F01,Q|np (@) + Q),np(@1),ng(wr + Q),nr(@1)).
K can be written as (here we consider €; = 0)

=B, + EYp, (B22)

Following the definition above, the correction &

]

o
)
where

—~a OO dg o u o 0 ds o o
d)»,A =2 A Z_HPLT(Q)HP‘L‘L(_Q) +2 EHP‘LT(Q)HPLi(_Q)’

—0Q

&V dQ . .
Ei‘,s=2/0 o —— 115, (DT p3 | (=) — T15, ()T py | (—Q)°]

0
Q
+2 / T (05 1 @2 ()% = 15, (@ p1, (-]
= B¢, 4+ EY . (B23)

Here the factor 2 comes from the summation of both particle and hole parts (note that I Po = I H.o for ¢, = 0). The whole
correction includes two parts: the first part E5 4, and a leftover part E ;. To check this formalism, we considered the case without
MZM coupling and reproduce the result shown in Eq. (21) of Gogolin and Komnik [68]. Note, in order to obtain the right result,
we need to take the appropriate order of limits. If we want to reproduce the ¥ = 0 result, we have to take the limit « — 0 before
taking the @ — 0 limit for linear response. Then, we focus on the case with MZM coupling (where if we want to consider zero
Majorana splitting, i.e., § = 0, we have to take the limit § — O first before taking the @ — 0 limit for linear response).

3. Derivation of the first part of interaction correction ;' K@

First of all, we focus on the first part Ef 4, and expand it in order of eV. We also notice that after the transformation of
Eq. (B17), the integrands of the polarization functions are linear in the Fermi distribution function. Therefore, the expansion can
be obtained analytically by expanding the Fermi distribution function,

eV eV eV eV
n(a):i: 7) = n(w) —8(a))(:|:7> — —8( )( ) — —8 ( )( ) + e (B24)

After expanding the Fermi distribution function in order of eV, we further expand the polarization function,
p(Q.eV) = I15(2,0) + (eV)ITR(2.,0) + (V) TIP(2,0) + (V) T1P(Q2,0) + - - . (B25)

After the integration by part for the Dirac-delta function, the linear terms can be obtained:

@ > 0,0 = [ FE(—2,Q(1,1,1,1) + 2F%(—R,2/0,1,1,1) — F¥(—2,£(0,0,1,1)
- Ff‘(O,Q|0,0,1,1) +2F{(0,€2(0,0,0,1) — F{(0,£/0,0,0,0)], (B26)
5" < 0,0 = [ F2(0,92]1,1,1,1) + 2F2(0,£]0,1,1,1) — F2(0,£]0,0,1,1)
- Ff(—Q,Ql0,0,l,l) +2F§(—©,2(0,0,0,1) — F{(—£,£(0,0,0,0)], (B27)

where o = T, T, (,). After simplification of those expressions above, we find for both spin channels at 7 = 0,
nrY@o =0 nrPQo=o0 1, Q0~06-2). 1,7 Q0 ~06). (B28)
We then obtain the linear correction to the generating function,

200 = 2/ = L (—2,050@,0) + 115 (2,005 (2,0) + 115, (-2,0115 (2,0

P (—Q0115:(2,0) + 1T (—Q.011} | (2,0) + HT Y- N 1(£2,0)
+I5 0V (=Q.000; (2,00 + 17,0117 | (2.,0)]
=0. (B29)
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Similarly, the quadratic terms can be written as

%5?@ > 0,0) = [8a,lF (01 = —2,2(1,1,1,1) — 3, F*(0; = —2,2(0,0,1,1)

+ aw, F'(w; = 0,2(0,0,1,1) — 8, F{'(w1 = 0,£2/0,0,0,0)], (B30)
%52 < 0,0) = = [8wlF4 (01 = —2,Q(1,1,1,1) — 3, F¥(0; = —2,2(0,0,1,1)

+ 8., Fi (@1 = 0,20,0,1,1) — 3, F{' (w1 = 0,£2/0,0,0,0)]. (B31)

The quadratic term of the generating function is, therefore,

~ o0 dQ
gXP0) = 2/ = — 11} . (=2.011,P(2.,0) + fi? (=9 0)11“2)(52 0)
—00

+I, P (=001} | (2,0) + [T, P(-2.011;, | (2.0)]. (B32)

where we use the relations 1> (—22,0)[17(2,0) = 0, [1=(=Q,0)[1(2,0) = 0, 17 (~2,0) = 0,and 17 (—,0) = 0. After
the simplification of polarization functions, we find that the time-ordered and anti-time-ordered parts Ha’(z)(Q 0) (fora =T,T)

do not depend on the counting field A, . Then, we conclude that the quadratic term E g (2)(0) is the same as the term with A, = 0,
which is zero due to causality and unitarity,

=80 0) = 0. (B33)

The cubic term of the polarization function corresponds to the integral of 8, and thus reads

59 > 0,0) = ﬁ[—a};l F(—Q,QI1,1,1,1) + 292 F{(—Q,9(0,1,1,1) — 82, F{(—,2(0,0,1,1)
32 F{'(0,210,0,1,1) + 287 F{(0,£10,0,1,1) — 32 F{(0,£/0,0,0,0)], (B34)
Arat, (3) _ i 2 pa 2 pa 2 rpa
59 < 0,0) = m[—%& (0,Q/1,1,1,1) 4 232 F§(0,2(0,1,1,1) — 82 F§(0,2(0,0,1,1)

—02 F{(—2,210,0,1,1) + 29; F;(—9,2(0,0,1,1) — 82 F{'(—,£/0,0,0,0)]. (B35)
We evaluate and simplify the function above for ¢; = 0 and I') = 'k = I'/2, and obtain
—i(e™ — D[(e™ — HI'? — 2(e*t + 3)k?] 1
48 (et + 1)2I2k2 (I +ilM?’
70 0y = i = Dl = DI? =2 + 3] |
Py 487 (ei*r + 1)2I2k2 (1] —il)?’
—i(e7* — 1) 1
12712 (1] +iM?’
—i(e7 —1) 1
12712 (I —il)?’

- (3)(Q 0) = (B36)

(B37)

fa’ (3)(Q 0) =

(B38)

The cubic term of the generating function reads
K * dQ
—0Q

”3>( Q011 (2.0)+ l'IT D OfIL 1(2.0)]
—i(e~* — 1) [ dQ
e oD f} (- 2.0
6nI2 2T (IQ| +il)?
N —i(e™ — D[(e*t — 1?2 = 2(ei*t + 3)i2]
247 (et + 1)2T2k2

/oo‘m AL (~9.0)— + AL (—.0)—
X — —-2,0)———— —-2,0)————=
2| B (1] +iT)? P (1Q| = il)?

(Gt | PO S VT (G B G )
64 4 1273 (ei*t + 1)2T4%2

N5 1
Iz —-Q,0)0———
e (200, —ir>2]

(B40)
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where
(0109 /wdﬁ[fﬁ (80— 1 1T (~$,0)—— } ih 5= % (B41)
k) = r— —Q,0)—=—= —Q,0)—=—— |, wi ==, K==
7 Qi+ 0 (191 - i) r
This correction is nonzero for A; # 0.
4. Derivation of the second part of interaction correction = f o
Now, let’s consider the leftover terms,
eV ao o o
2 o [I‘[PZT(Q eV)I1¢ 2 (—Q2,eV) — HPM(Q eV)HI4 ba (—R.eV)]
0
0 ds T Fro T Fro
+2 ) 2—[HPM(Q,eV)nPM(—Q,eV) — M1%,,(Q,eV)I1}, |(—Q,eV))]
eV e
:4/0 o [1‘[‘;”(9 eV)Is | (—Q.eV) — n‘;,m(sz eV,  (—Q.eV)]. (B42)

We want to expand the following integral in order of eV,

1o .
52 VI3, (0% V)T, (07 .eV)

eV ds . o
% 1%, Qe VIS, |(—Q.eV) =

1,1 (811%, .0, V) w o BT (07,eV)
7 V) _(a—sz 507, eV) = I, (0, eV) —= o ——
1 9%[11%, ,(Q.eV)I1%, | (—=Q.eV)
+—( V5 [T, £ ] +oee (B43)

002
Q—0*

In the next step, we will expand the functions 1% %0 (0F,eV)dg I Pi. U(Oi,eV) and 92114 % - (0F,eV) in the order of eV. The way
to expand I1¢ Pi. ,(0%,eV) can be found in Appendix B 3. For the A 14 Pi. U(Oi,eV), for example, we notice that

8 o0

AT1%,(Q2,eV) i o
e FS (w1, Qlng(@; + Q),ng(@),np(w) + Q),nz(w))do;
o0

IQ T 27 9o
l' oo

= 2—/ {0 F2(@1,92]0,0,0,0) + [0 F2(w1,L2|1,1,1,1) — dg Fa(@1,22]0,1,1,1)]ng(w; + £2)
T J-c0

+ [0q F2(@1,£2]0,1,1,1) — 0 F>(w1,£2|0,0,1,1)[ng(w;)
+ [0 F2(w1,£2]0,0,1,1) — 9q F>(w1,£2]0,0,0,1)]np (w; + £2)
+ [0 F2(01,£2]0,0,0,1) — g F2(@1,2]0,0,0,0)]n L (w1)}dw;

i eV eV
—— | R -2-—,Q1,1,1,1 ) — | —Q2—-——,2|0,1,1,1
2 2 2
i eV eV
— —|:F2<—Q + 7,Q|0,0,1,1> — Fz(—Q + 7,Q|0,0,01,1)1|.

2
Similarly, for dg f[“ ;(§2,eV) with j = 1,3,4. Then, to expand the whole function, we just need to expand the Fermi distribution
(0jE eV), we can

(B44)

function and the functlon F5 in order of eV, which is very straightforward. For the second derivative 82
apply the same strategy. Combing all the terms together, we recover Eq. (62).
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