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Quantum dynamics of two quantum dots coupled through localized plasmons:
An intuitive and accurate quantum optics approach using quasinormal modes
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We study the quantum dynamics of two quantum dots (QDs) or artificial atoms coupled through the fundamental
localized plasmon of a gold nanorod resonator. We derive an intuitive and efficient time-local master equation,
in which the effect of the metal nanorod is taken into consideration self-consistently using a quasinormal mode
(QNM) expansion technique of the photon Green function. Our efficient QNM technique offers an alternative
and more powerful approach over the standard Jaynes-Cummings model, where the radiative decay, nonradiative
decay, and spectral reshaping effect of the electromagnetic environment is rigorously included in a clear and
transparent way. We also show how one can use our approach to compliment the approximate Jaynes-Cummings
model in certain spatial regimes where it is deemed to be valid. We then present a study of the quantum dynamics
and photoluminescence spectra of the two plasmon-coupled QDs. We first explore the non-Markovian regime,
which is found to be important only on the ultrashort time scale of the plasmon mode which is about 40 fs.
For the field free evolution case of excited QDs near the nanorod, we demonstrate how spatially separated
QDs can be effectively coupled through the plasmon resonance and we show how frequencies away from
the plasmon resonance can be more effective for coherently coupling the QDs. Despite the strong inherent
dissipation of gold nanoresonators, we show that qubit entanglements as large as 0.7 can be achieved from an
initially separate state, which has been limited to less than 0.5 in previous work for weakly coupled reservoirs.
We also study the superradiance and subradiance decay dynamics of the QD pair. Finally, we investigate the
rich quantum dynamics of QDs that are incoherently pumped, and study the polarization dependent behavior
of the emitted photoluminescence spectrum where a double-resonance structure is observed due to the strong
photon exchange interactions. Our general quantum plasmonics formalism can easily be extended to include
multiple QDs interacting through the QNMs of metallic resonator structures, fully accounting for radiative and
nonradiative coupling, as well as nonlinear light-matter interaction processes.
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I. INTRODUCTION

Quantum nanophotonics is an active field of research,
which is driven in part by fundamental ideas in light-
plasmon-matter interactions, applications in nanophotonics,
and by continued advances in nanofabrication technologies.
In particular, various types of nanoscale structures have
been designed and fabricated to manipulate the interaction
between quantum emitters and local electric fields, which can
be enhanced by tailoring the local density of optical states
(LDOS) typically through some discrete cavity resonance
[1,2]. For coupling to electric fields below the diffraction limit,
metallic nanoparticles (MNPs) have been shown to yield an
unprecedented confinement of light at the nm scale due to
the spatial structure of the localized surface plasmon (LSP)
modes. For quantum dot (QD) emitters or artificial atoms
placed sufficiently close to the MNP, the strong coupling
regime has also been shown to be experimentally accessible
[3–6]. As a consequence of the extreme spatial confinement
of the LSP, the corresponding effective mode volume of the
electric field is much smaller than more traditional dielectric
cavity structures, which leads to a strong enhancement of the
spontaneous emission (SE) rate in the weak-to-intermediate
coupling regime [7–9]. Moreover, fine spatial control of the QD
dynamics at the single quantum excitation level and processing
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of the light signal at the nanoscale is possible [2,10,11],
resulting in a broad range of applications in fields such as
high precision quantum information processing and quantum
computation, efficient solar cells [12], and high precision
chemical or biological detection [13–15].

Although long distance and large scale transmission of
information using metallic structures is typically not practical
because of the strong inherent Ohmic losses of metals at
optical frequencies, improvements can be made by using
hybrid semiconductor-metallic structures [16,17], in which
the transmission is carried out by semiconductor optical
technology, while a nanoscale metallic resonator can be used
as an effective modulator [10] and/or transistor [18]. Thus
it is of significant fundamental and applied interest to study
the interaction between dipole emitters such as QDs and
individual MNPs. Recently, there have been several works
studying how quantum emitters couple to LSPs, e.g., to
describe enhanced SE (Purcell effect) [7–9], entanglement
dynamics [19], and the fluorescence spectrum [20]. In the
classical or semiclassical regime, with the exception of a
particular type of simple geometry such as a spherical cavity
[21], for which classical analytical results are available, most of
the nanoplasmonic studies are carried out by direct numerical
analysis which is numerically cumbersome and not physically
intuitive [22–24]. In the quantum optics regime of cavity-QED
(cQED), it has been common to exploit a standard cavitylike
master equation with phenomenological decay rates that are
implicitly Lorentzian in their decay dynamics [25–27]; such an
approach is useful and easy to understand, but it is ultimately
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limited since the general non-Lorentzian nature of the LSP is
neglected, and it it not clear how to obtain the various coupling
parameters, e.g., as a function of QD distance from the MNP
resonator.

As a result of the fluctuation-dissipation theorem, in general
a continuous mode theory instead of a simple single mode
theory needs to be employed for a quantum optics description
of an inhomogeneous lossy structure, and a quantum noise term
can be included phenomenologically [28,29] or by including
a continuous photonic reservoir at the level of a microscopic
theory [30,31]; both of these approaches result in a powerful
framework with the continuous response of the medium
embedded in the medium Green function, which is obtained
from an electric dipole source in Maxwell’s equations. On the
other hand, it is highly desirable to be able to describe the
physics of LSPs in terms of one or a few discrete modes,
which has been the standard approach in dielectric cQED
systems. Recently, it has been shown that the LSP can be
effectively described as the quasinormal modes (QNMs) of
the MNP [32,33], which are defined as the eigenfunctions
of the wave equation in the frequency domain with open
boundary conditions [34,35]. A generalized mode expansion
technique of the classical photon Green function based on
QNMs has been shown to work extremely well for various
shaped MNPs, and the SE enhancement of an electric dipole
located both inside and outside of a MNP shows excellent
agreement with full numerical calculations over a broad
range of frequencies around the LSP resonance [36–38]. The
combination of an insightful QNM approach and a rigorous
Green function approach to quantum optics is thus highly
desired, as MNPs facilitate a coupling regime, in general with
a non-Lorentzian spectral density, i.e., beyond a dissipative
Jaynes-Cummings (JC) model. In certain limits, it can also
be used to aid a JC model and justify when such a simpler
model can work, with clearly identified coupling rates that
can be obtained from QNM theory. Indeed, the MNP yields
a rich mode coupling regime as a function of position and
polarization, and allows one to explore a complex interplay
of radiative and nonradiative dynamics that are unique to the
metal environment.

In this paper we present a quantum optics framework to
model the quantum dynamics between two QDs coupled to
the LSP of a MNP system. The extension to model more than
two QDs is straightforward and also described. While there
have been several useful papers studying the dynamics of two
QDs coupled by a MNP [39,40], these approaches, similar to
the methods mentioned above, typically start from assuming
the system could be described by the standard cQED master
equation by adding in phenomenological decay parameters by
hand; by doing so, they neglect the possible non-Lorentzian
features of the LDOS which is important in the case for QDs
that are sufficiently close to the LSP resonator [20], and they
do not incorporate the full electromagnetic response of the
MNP environment, including both radiative and nonradiative
coupling effects. Instead of assuming a standard Lorentzian
decay rate of the LSP, we start from a microscopic model
and derive a master equation that takes into consideration the
electromagnetic response of the MNP in detail by exploiting
a QNM expansion technique for the photon Green function
[36,37]. As an example application of this theory, we consider

FIG. 1. (Color online) (a) Schematic of the QD nanorod system
with background refractive index, nB = 1.5; QD positions (the dark
brown/light gray ellipsoids) are indicated near both ends of the
gold nanorod; the nanorod has the dimensions L = 100 nm and
rc = 15 nm. (b) Norm of the QNM, |f̃c(x,y,z = 0)|, with complex
eigenfrequency ω̃c/2π = (ωc + iγc)/2π = 324.981 − i16.58 THz.
Yellow (bright) color indicates the highest intensity regions. (c)
Enhancement of the x-projected LDOS/SE (see text), Fx [Eq.
(11)], for an x-polarized QD, at ra = (60,0,0) nm—as is shown by
QDa/white arrow in (a)/(b); the orange (solid)/blue (dashed) lines are
given by Eq. (8) and full-dipole numerical calculations, respectively.

two QDs in the vicinity of a gold nanorod, as shown in Fig. 1(a).
While other MNP shapes can also be used in our theory,
including metal dimers [36], the single nanorod is partly
motivated by the following reasons: (i) the LSP resonance
is around 1.4 eV, which is close to the wavelengths used in
optical communication and for many QD emitters, (ii) the
nanorod is a nontrivial geometry for which analytic methods
are not readily available, and (iii) it is dominated by a single
cavity mode, polarized along the axis of the rod. Although the
technique we exemplify below is a single mode theory, it can
easily be generalized to include multiple LSP modes if there
are several QNMs in the frequency regime of interest, and it
properly includes the QNM dissipation. Recently, Yang et al.
have carried out a somewhat similar effort, to study the simple
linear optical properties of a single dipole coupled to a metal
resonator [41].

The layout of our paper is as follows. In Sec. II, we present
our main theoretical technique and derive a quantum master
equation based on a rigorous quantum optics approach for
the medium in terms of the photon Green function, which
is obtained from the QNM of the LSP. In Sec. III, we
compare the QNM technique to the JC model, and present
the improvements over the standard JC model with the help
of the QNM technique. We also discuss how our approach
could be used in conjunction with the driven JC model in
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certain regimes, providing a rigorous definition for the various
coupling parameters. In Sec. IV A, our first example studies
the simple SE dynamics from a single QD located around the
metal nanorod, and shows that the non-Markovian dynamics
is important on a time scale of around the lifetime of the LSP.
In Sec. IV B, we study the free-field dynamics of two QDs
in a homogeneous background, coupled by the nanorod LSP
and show that two qubit (QD) entanglement can be established
within a few picoseconds for separate states with a peak value
larger than 0.7, despite the strong Ohmic losses; we also
study the affect of QD pure dephasing on the peak value of
the entanglement evolution, and investigate the concurrence
(as a measure of entanglement) for different QD distances
from both sides of the nanorod. In Sec. IV C, we study
the incoherent spectrum for the excited two-QD system; in
particular, we show explicitly how the real and imaginary
parts of the Green function contribute to the coupling between
spatially separated QDs, and find a rich polarization-dependent
behavior of the spectra, including a double-resonance feature
which is mediated by strong photon exchange effects. We
present our conclusions in Sec. V.

II. THEORY: QUANTIZATION SCHEME FOR A GENERAL
MEDIUM, MASTER EQUATION, AND GREEN FUNCTION

EXPANSION IN TERMS OF QUASINORMAL MODES

For our MNP we consider a 3D gold nanorod as shown in
Fig. 1(a) with two QDs (dark brown/light gray ellipsoids),
QD a and b, located around both ends of the nanorod.
We use parameters for a metal nanorod with length L =
100 nm and radius rc = 15 nm, with the Drude model for
the dielectric constant, ε(ω) = 1 − ω2

p/(ω2 + iωγ ), where
ωp = 1.26 × 1016 rad/s (bulk plasmon frequency) and γ =
1.41 × 1014 rad/s (collision rate), similar to the parameters
for gold. The background refractive index is nB = 1.5. We
will also allow for the possibility of an incoherent pump field
on the QDs.

For the medium quantization scheme, we start from the
formalism developed by Scheel/Dung et al. [29,42,43], which
has been widely used to describe the quantum electrody-
namics of a quantum emitter around a spherical resonator
[3,20,44]. This approach, however, is completely general and
can be employed for any lossy inhomogeneous structure
as long as the corresponding Green function G(r,r′; ω)
can be calculated. The photonic Green function is defined
through ∇ × ∇ × G(r,r′; ω) − k2

0ε(r,ω)G(r,r′; ω) = k2
0δ(r −

r′)1, for the position dependent complex permittivity ε(r,ω) =
εR(r,ω) + iεI(r,ω), where ε(r,ω) = ε(ω) inside the nanorod
and ε(r,ω) = εB = n2

B elsewhere; here k0 = ω/c and 1 is the
unit dyadic. The imaginary part of the Green function with
the same position arguments, G(r,r; ω), gives the projected
LDOS ∝ Im[Gii(r,r; ω)]/ω [45,46], while the Green function
with different position arguments gives the propagator of
the electric field. For a homogeneous dielectric, the imag-
inary part of the homogeneous Green function is given by
Im[GB(r,r; ω)] = ω3nB

6πc3 1.
By treating the QDs as two-level systems, and using the

dipole and rotating-wave approximations, the total QD-MNP

system is described by the Hamiltonian,

H = �

∫
dr

∫ ∞

0
dω ω f†(r,ω) · f(r,ω) +

∑
n=a,b

�ωnσ
+
n σ−

n

−
[ ∑

n=a,b

σ+
n

∫ ∞

0
dω dn · E(rn,ω) + H.c.

]
, (1)

where σ+
n /σ−

n (with σ 11
n = σ+

n σ−
n ) are the Pauli matrices of

the two QD excitons (electron-hole pairs), and ωn and dn are
the resonance frequency and dipole moment of the nth QD,
respectively; f/f† are the boson field operators [43], where the
electric field operator is given by E(r,ω) = i

∫
dr′G(r,r′; ω) ·√

�εI (r′,ω)
ε0π

f(r′,ω), with εI (r,ω) the imaginary part of ε(r,ω).
In a rotating frame at the frequency of the QDa, ωa , the total

Hamiltonian becomes H = HS + HR + HI, where the system,
reservoir, and the interaction terms are respectively defined by

HS = −��abσ
+
b σ−

b , (2a)

HI = −
∑

n=a,b

(
σ+

n eiωat

∫ ∞

0
dω dn · E(rn,ω) + H.c.

)
, (2b)

HR = �

∫
dr

∫ ∞

0
dω ωf†(r,ω) · f(r,ω), (2c)

where �nm = ωn − ωm. Transforming into the interaction pic-
ture, and using the second-order Born-Markov approximation,
the master equation for the reduced operator for QD pair is
obtained from

∂

∂t
ρ̃(t) = − 1

�2

∫ t

0
dτ TrR{[H̃I(t),[H̃I(t − τ ),ρ̃(t)ρR]]}, (3)

where ρR = ρR(0) is the state of the reservoir; here we
have assumed a second-order Born approximation, which
is valid in the weak-to-intermediate coupling regime. We
assume the temperature of the reservoir is 0 K, which is a
good approximation at optical frequencies. The field operators
satisfy the following relations: TrR[f†i (r,ω),fj (r′,ω′)ρR] = 0;
TrR[fi(r,ω),f†j (r′,ω′)ρR] = δij δ(r − r′)δ(ω − ω′). After cal-
culating the integrand on the right hand side of Eq. (3)
explicitly, we transform back to the Schrödinger picture, and
the generalized master equation for the reduced system is
obtained as

∂ρ

∂t
= 1

i�
[HS,ρ] +

∫ t

0
dτ

(∑
n,m

[σ−
n (−τ )ρσ+

m − σ+
n σ−

m (−τ )ρ]

× J nm
ph (τ ) + H.c.

)
+

∑
n

(
γ

′
n

2
L

[
σ 11

n

] + Pn

2
L[σ+

n ]

)
.

(4)

Here J nm
ph (τ ) = ∫ ∞

0 dω J nm
ph (ω)eiτ (ωa−ω), with the photon reser-

voir function defined through

J nm
ph (ω) = dn · Im[Gnm(ω)] · dm

π�ε0
, (5)

where, for ease of notation, we have introduced Gnm(ω) ≡
G(rn,rm; ω) with rn/m the positions of the nth/mth QD; in
addition, dn = dnnn with nn the unit vector of nth dipole
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moment, and we have included a pure dephasing term, L[σ 11
n ],

on the right hand side of Eq. (4), with a dephasing rate
γ

′
n, where L[O] = (OρO† − O†Oρ) + H.c. is the standard

Lindblad superoperator; finally, the last term L[σ+
n ] allows for

the possibility of an incoherent pump term on each QDn with
pump rate Pn. In the following calculations, we assume γ ′ =
γ ′

a = γ ′
b and |dn| = 30 D ≈ 0.62 e nm. As can be seen from the

time-dependent integral, the LSP bath sampling depends on the
system Hamiltonian. The time-dependent Pauli matrices are
given by σ±

n (−τ ) = e−iHSτ/�σ±
n eiHSτ/� = σ±

n e∓i�naτ , and for
resonant QDs, �ab = 0, so we have σ±

n (−τ ) = σ±
n . In order

to derive Eq. (4), we have used the identity
∫

dr′G(r,r′; ω) ·
εI(r′,ω)G∗(r′,r′′; ω) = Im[G(r,r′′; ω)] [42]. In a single QNM
picture, Jph(τ ) can be divergent; however, in our master
equation, we calculate

∫ t

0 Jph(τ )dτ , which is convergent. In a
practical QNM calculation, we compute the frequency integral
over a finite bandwidth that covers the QNM resonance, with
limits at approximately ±0.5 eV from the QNM resonance
frequency. Furthermore, we have checked that this leads to the
correct decay rate from a full dipole numerical simulation.

In Eq. (3), some non-Markovian effects are captured
through the time integration over the photon reservoir. Ap-
plying a second Markov approximation (i.e., t → ∞) for the
reservoir bath sampling, we obtain the following Markovian
master equation:

∂ρ

∂t
= i

[
�abσ

11
b ,ρ

] +
∑

n

(
γ

′

2
L

[
σ 11

n

] + γn

2
L[σ−

n ] + Pn

2

×L[σ+
n ] − i�ωn

[
σ 11

n ,ρ
]) + Lcoup[ρ], (6)

where we have introduced the QD coupling term
Lcoup[ρ] = i

∑
n�=m [(σ+

n σ−
m ρ − σ−

m ρσ+
n )gnm − (ρσ+

n σ−
m −

σ−
m ρσ+

n )g∗
mn], a LSP-induced SE rate γn = 2 dn·Im[Gnn(ωn)]·dn

�ε0
,

a photonic Lamb shift �ωn = − dn·Re[Gnn(ωn)]·dn

�ε0
, and a LSP

coupling strength between the QDs, gnm = dn·Gnm(ωm)·dm

�ε0
.

When the QDs are resonant with each other, the
coupling term can be simplified to Lcoup[ρ] =
−iδmn[σ+

m σ−
n ,ρ] + γnm

2 (2σ−
n ρσ+

m − σ+
m σ−

n ρ − ρσ+
m σ−

n ),
where δmn = − dm·Re[Gmn(ωa )]·dn

�ε0
describes the coherent

coupling between the QDs, and γnm = 2 dn·Im[Gnm(ωa )]·dm

�ε0
describes the incoherent coupling. The master equation
[Eq. (6)] then simplifies to

∂ρ

∂t
=

∑
n�=m

γnm

2
(2σ−

n ρσ+
m − σ+

m σ−
n ρ − ρσ+

m σ−
n )− i

�
[Heff,ρ]

+
∑

n

(
γ

′

2
L

[
σ 11

n

] + γn

2
L[σ−

n ] + Pn

2
L[σ+

n ]

)
, (7)

where the effective Hamiltonian term is defined as Heff =
��baσ

11
b + �

∑
n �ωnσ

11
n + �

∑
n�=m δmnσ

+
m σ−

n .
From the above master equations, it is clear that the

dynamics of the coupled QDs will show a strong positional
dependence through the Green function terms, and this is
fully captured in the theory. Unfortunately, the calculation
of the Green functions (apart from very simple geometries)

is generally a very difficult and a time consuming process,
even with computations carried out on clustered computers.
In some previous studies, the coupling to the LSP was
treated phenomenologically without taking the full detail of
the geometry and electromagnetic response into consideration
[39,40]. However, for the MNP, recently it has been shown that
the Green function can be accurately obtained in terms of an
expansion of the QNMs, and for the gold nanorod (and indeed
many MNP geometries), a single QNM expansion represents
an accurate description of the Green function over broadband
frequencies and spatial positions. For any two spatial points
near the MNP, but outside the regime of Ohmic heating, the
dyadic Green function [47] is accurately described through
[36,37]

Gc(r1,r2; ω) = ω2

2ω̃c(ω̃c − ω)
f̃c(r1)f̃c(r2), (8)

where f̃c(r) and ω̃c are the QNM of interest and the corre-
spondent complex eigenfrequency, respectively. The QNMs
are normalized through [34,35]

〈〈f̃c|f̃c〉〉 = lim
V →∞

∫
V

(
1

2ω

∂(ε(r,ω)ω2)

∂ω

)
ω=ω̃c

f̃c(r) · f̃c(r)dr

+ ic

2ω̃c

∫
∂V

√
ε(r)f̃c(r) · f̃c(r)dr, (9)

where in practice we use a computational volume of about
1.5 micron cubed. Alternative QNM normalization schemes
are presented in Refs. [32,48], which have been shown to be
equivalent [49] to the one above. For our MNP resonator,
we have assumed, and verified, that there is only one
mode in the regime of interest (near the LSP), and for
the gold nanorod, the resonance of the LSP is calculated
to be ω̃c/(2π ) = ωc/2π + iγc/2π = 324.981 − i16.584 THz
(1.344 − i0.0684 eV) [37] with quality factor Q = ωc/2γc ≈
9.8; in order to obtain the QNM numerically, a 6-fs length
(Gaussian shape in time domain) spatial plane wave near 325
THz with polarization along the axis of the nanorod is injected,
and a run-time Fourier transform with a time window 60 fs is
employed; a nonuniform conformal mesh scheme is used, with
a mesh size of 1 nm cubed is employed around the nanorod.
The spatial dependence of the mode profile, |f̃(x,y,z = 0)|, is
shown around the nanorod in Fig. 1(b).

In the calculation of the propagator, we use the regularized
mode F̃c(r,ω), since it allows one to model spatial regimes
from the near to far field regimes [37],

G → GF
c (r1,r2; ω) = ω2

2ω̃c(ω̃c − ω)
F̃c(r1,ω)F̃c(r2,ω), (10)

with the regularized field given by F̃c(r,ω) ≡∫
V

GB(r,r′; ω)�ε(r′,ω)f̃c(r′)dr′, where the volume of
the integral is now confined to the nanorod volume and
�ε(r′,ω) = ε(r′,ω) − εB . The regularized mode has a simple
physical interpretation: it is the solution to a scattering
problem when the nanorod is excited by the QNM, which
ensures the correct output characteristics in the far field.
Usually Eq. (8), which uses the divergent QNM field, gives
an excellent approximation to the full Green function as long
as the distance between the two positions is no more than a
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few hundred nm away from the surface of the nanorod; but
as the distance becomes sufficiently large, Eq. (10) should be
employed to calculate both the propagator and enhancement
of LDOS (see Ref. [37] for more details).

The enhancement of the projected LDOS, in direction na ,
is defined as

Fna
(ω) = na · Im[G(ra,ra; ω)] · na

na · Im[GB(ra,ra; ω)] · na

, (11)

and in terms of the QNM contribution, one simply replaces G
by Gc [i.e., Eq. (8)]. Figure 1(c) shows the comparison between
the enhancement of the x-projected (axis of nanorod) LDOS,
Fx , at 10 nm [ra = (60,0,0) nm] away from the nanorod [as
is shown in Fig. 1(a) by QDa], calculated via Eq. (8) (orange
solid line) and with a full numerical dipole calculation using
the finite-difference time domain method (FDTD) [50] (blue
dashed line). Clearly the mode expansion technique gives an
excellent agreement with the full-dipole FDTD calculation,
and thus includes the LSP reservoir function accurately for
use in the presented quantum master equation. The total SE
rate induced by the QNM, including radiative and nonradiative
coupling, is given by

γ qnm
a (ra) = 2da · Im[Gc(ra,ra; ωa)] · da

�ε0
, (12)

where Gc is obtained from Eq. (8).
From the analysis above, it is clear that two spatially

separated QDs could be coupled to each other by the coupling
term Lcoup[ρ] as shown in Eq. (6). In the following, we
will also give the emitted spectrum that can be measured at
the detector position rD . For a system containing N QDs,
the spectrum at the position of the detector, rD , is given
by S(rD,ω) = 〈(E+

S (rD,ω))†E+
S (rD,ω)〉, with E+

S (rD,ω) =
1
ε0

∑
n G(rD,rdn

; ω) · dnσ
−
n (in the rotating wave approxima-

tion). For continuous wave excitation (e.g., from an incoherent
pump field), in the presence of just one QD (e.g., QD n), the
spectrum is given by

Sp(rD,ω) = 1

ε2
0

|dn · G(rn,rD; ω)|2

× lim
t→∞

∫ ∞

0
dτ e−i(ω−ωa )τ 〈σ+

n (t + τ )σ−
n (t)〉.

(13)

However, for more than one QD, the power spectrum is derived
to be

Sp(rD,ω)

=
∑
n,q

Sn
0 (ω)Rq

n (rD,ω) +
∑

n<m,q

Re
[
Snm

0 (ω)Rq
nm(rD,ω)

+ Smn
0 (ω)Rq

mn(rD,ω)
]
, (14)

where R
q
n (rD,ω) = |dn · G(rn,rD; ω) · q̂|2, and R

q
nm(rD,ω) =

dn · G∗(rn,rD; ω) · q̂q̂ · G(rD,rm; ω) · dm are the generalized
propagator factors from the position of the QDs to the detector,
with m,n = 1,2,3, . . . (or a,b in the present case of two QDs)
and q = x,y,z; the incoherent spectrum due to the nth QD is
defined as Sn

0 (ω) ≡ 1
ε2

0
limt→∞ Re[

∫ ∞
0 dτ e−i(ω−ωa )τ 〈σ+

n (t +
τ )σ−

n (t)〉], and the cross term due to interference effects

between the nth and mth QD is given by Snm
0 (ω) =

limt→∞
∫ ∞

0 dτ e−i(ω−ωa )τ 〈σ+
n (t + τ )σ−

m (t)〉. For convenience,
we also define the q-polarized incoherent spectrum as

Sq
p(rD,ω) =

∑
n

Sn
0 (ω)Rq

n (rD,ω) +
∑
n<m

Re
[
Snm

0 (ω)Rq
nm(rD,ω)

+ Smn
0 (ω)Rq

mn(rD,ω)
]
, (15)

which we will use later to help explain the rich polarization
features of the emitted spectrum.

III. QUASINORMAL MODE MODEL COMPARED TO
A JAYNES-CUMMINGS MODEL

In the standard JC model both the cavity field and the
quantum emitters (e.g., two level atoms) are treated as system
operators, which makes the model suitable for studying the
physics of strong coupling between the cavity mode and the
quantum emitters. To include dissipation into the cavity, the
JC model assumes an electromagnetic environment with a
Lorentzian spectral density, and this works well for many
dielectric cavities. However, the reservoir function from metal
resonators can be highly non-Lorentzian; moreover, it is
well known that the plasmonic resonance/spectral density of
metallic nanoresonators can change as a function of position
around the resonator, which can be probed experimentally by
measuring the near field electromagnetic response at different
positions [51]. As is shown clearly through Eqs. (5), (8), and
(10), the spectral function of the LSP, which is given by the
imaginary part of the Green function at the same spatial point,
also depends on the phase of the QNM. Our general model
can actually be used to assess when the JC may work, with a
rigorous definition of the coupling parameters, and it can go
beyond the Lorentzian line shape model as well. The JC model,
if in a regime of validity, can then explore effects beyond the
second-order Born approximation, e.g., in the strong coupling
regime.

The Green function in Eq. (8) can be used to obtain the
photon reservoir function [Eq. (5)], e.g., for some dipole
position ra (assumed to be near the resonator), Gc(ra,ra; ω) =

ω2

2ω̃c(ω̃c−ω) f̃c(ra)f̃c(ra). In a rotating wave approximation, the
imaginary part of this function can be written as

ImGc(ra,ra; ω) =
ω
2 γc

(
f̃R
c (ra)

)2

(ωc − ω)2 + γ 2
c

[
1 + N (ra)(ωc − ω)

ωc

]
,

(16)

where f̃R
c and f̃I

c are the real and imaginary parts of the QNM
function at the dipole position, and we have introduced a non-
Lorentzian coupling factor defined through

N (ra) =
(
f̃I
c(ra)

)2
ωc

γc
(
f̃R
c (ra)

)2 . (17)

To better quantify the QNM line shape, consider a dipole
position ra = (60,0,0) nm, 10 nm away from the right side
of the metal nanorod, as is shown in Fig. 1(b) by the white
arrow; the non-Lorentzian coupling factor is N (ra) ≈ 1.2,
which mainly leads to a small frequency shift of the resonance
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FIG. 2. (Color online) Spectral function and the enhancement of
the LDOS/SE for a single QD position. (a) J xx

ph at position ra ,
10 nm away from the right side of the gold nanorod as shown in
Fig. 1(b) by the arrow: with the orange (solid) line given by the QNM
calculation and the blue (dashed) line being the best Lorentzian fit.
(b) QNM calculation of J xx

ph at position rb′ = (0,0,25) nm (orange
solid); the blue (dashed) line shows the same Lorentzian fit as in (a),
but rescaled in amplitude. (c) Enhancement of the LDOS/SE with the
QNM calculation (orange solid) and the Lorentzian function (blue
dashed) in (a) for an x-polarized QD at ra . (d) QNM calculation
of Fx and x-polarized dipole at position rb′ = (0,0,25) nm (orange
solid); the blue dashed line uses the Lorentzian spectral function
from (a).

frequency (which is easily captured in a Lorentzian function by
just moving the resonance frequency). Thus, for this example,
the x-projected spectral density J xx

ph obtained from Eq. (5)
(orange solid) is well described by a Lorentzian line shape
(blue dashed) as shown in Fig. 2(a). In general, however, a
position dependent non-Lorentzian spectral density will be ob-
tained around the nanorod; for example, this effect is shown in
Fig. 2(b) for J xx

ph at the example position rb′ = (0,0,25) nm, by
the solid (orange) line, and a slight blueshift of the resonance
peak is also seen which is consistent with the observation in
Ref. [51]; the dashed (blue) line is the same Lorentzian fit used
in the previous case, which clearly shows that the line shape
changes as a function of dipole position. The corresponding
enhancement of the LDOS/SE is shown in Fig. 2(c). At
position rb′ = (0,0,25) nm, the non-Lorentzian shape of the
spectral density influences the enhanced LDOS/SE as is
shown in Fig. 2(d); the non-Lorentzian coupling factor is
now N (rb′ ) ≈ −2.4, which has a more dramatic effect on
the spectral line shape. We stress that all the information
of the resonance shift and non-Lorentzian spectral function
is included in the spatial dependence of the phase factor
of the QNM; and this information naturally comes into the
calculations below through the QNM normalization condition
the analytical Green function. Although the Lorentzian fit of
the spectral function is valid at certain spatial locations, the
non-Lorentzian spectrum becomes important when N is large
enough, and one then requires the imaginary part of the QNM
as well as the real part [32].

As discussed above, and shown in Fig. 2(a), at some
positions the spectral density could be well described by a
Lorentzian line shape (for certain MNPs), so for QDs at
these positions the quantum optical interactions could be
approximately described by a dissipative JC model with the
following QD-cavity coherent interaction terms (in a rotat-
ing wave approximation): dn · f̃c(ra)aσ+ + dn · f̃∗

c (ra)a†σ−;
however, we see that these parameters (and the parameters
needed to describe QD-QD interactions) actually require
the QNM technique in order to have a rigorous definition
of the coupling parameters and the normalized field. The
single QD-cavity coupling rate will be given by the usual
rate g, where g2 ∝ d2

n |f̃c(ra)|2, while dissipation from the
cavity mode is then usually added through a Lindblad
operator that describes only Lorentzian decay. For a dissipative
Lorentzian model to work, we find that the QD positions must
be located around high symmetry points within the vicinity of
the field antinode points, but far enough away from the metal
surface. Even when the JC model approximately works, then
the decay rates still have to be obtained as a function of position
in general. This is precisely what the QNM can provide, if the
QD position is in a valid Lorentzian coupling regime.

We also caution that the JC model still neglects some essen-
tial dissipative coupling processes from the metal environment.
For example, the standard JC model does not provide an
effective description of the nonradiative and radiative decay
processes; such a description of the nonradiative/radiative
decay will be necessary in order to compute important
properties such as the quantum yield (or beta factor), e.g.,
of a single photon source. Below we demonstrate how one
can use the QNM technique to achieve the separation of the
total decay rate into radiative and nonradiative decay channels.
Moreover, we will also show how one can add in Ohmic losses
in a clear and simple way, which is needed for dipole positions
very near the resonator (e.g., a few nm from the surface) [36].
Importantly, in our approach, all of these physical rates can be
computed analytically using the QNM theory, as a function
of space and frequency. We describe and exemplify these
scattering rates below.

Without the metal nanorod, the background decay rate is

simply γ0 = 2da ·Im[GB(ra ,ra ;ωa )]·da

�ε0
= d2

a ω3
anB

3�ε0πc3 . While the nonra-
diative decay rate from the QNM is obtained from [7]

γ nrq
a (ra) = 2

�ωaε0

∫
VMNP

Re[j(r) · G∗
c (r,ra; ωa) · da]dr, (18)

where j(r) = ωaεI (r,ωa)Gc(r,ra; ωa) · da is the induced cur-
rent density in the nanorod (MNP) at position r. Thus the
radiative decay rate from the QNM is given by

γ rq
a (ra) = γ qnm

a (ra) − γ nrq
a (ra). (19)

In addition, the quasistatic decay rate can be obtained from

γ stat
a (ra) = 2da · Im[Gqs(ra,ra; ωa)] · da

�ε0
, (20)

with Gqs(ra,ra; ωa) = ∓GB(ra, − ra; ωa) ε(ωa )−εB

2(ε(ωa )+εB ) [37,52]
(∓ is for s/p-polarized dipoles, respectively). Consequently,
the total nonradiative decay is given by γnr = γ

nrq
a + γ stat

a . As
is shown above, all of the decay rates are highly position

205420-6



QUANTUM DYNAMICS OF TWO QUANTUM DOTS COUPLED . . . PHYSICAL REVIEW B 92, 205420 (2015)

0 10 20 30
0

100

200

300

400

500

600

2 nm

h (nm)

γ
rq a

,γ
n
rq

a
,γ

st
a
t

a
(γ

0
)

20 40
0

0.5

1

h (nm)

η r
a
d
,η

n
r

FIG. 3. (Color online) Decay rates (in units of the homogeneous
space radiative decay rate γ0) of an x-polarized QDa induced by
quasistatic interaction γ stat

a (magenta dashed), radiative contribution
of the QNM γ rq

a (red solid), and the nonradiative contribution of the
QNM γ nrq

a (blue chain), as a function of h [ra = (50 nm + h,0,0)]
away from the nanorod; inset shows the radiative coupling factor, ηrad

(lower red solid), and nonradiative coupling factor, ηnr (upper blue
solid), of the decay rate.

dependent, but once the QNM is calculated, the decay rates at
different positions can be computed immediately.

Figure 3 shows the decay rates as a function of distance,
h, away from the surface of the metal nanorod along the x

axis, where we see that, at extremely small distances h, the
system is in quasistatic regime where the Ohmic heating effect
due to γ stat

a (magenta dashed) is strong; as h becomes larger,
all of the decay rates decrease, but the quasistatic decay rate
decreases much faster than the others; the inset of Fig. 3 shows
the radiative coupling factor, ηrad = γ

rq
a

γ
qnm
a +γ stat

a

(lower red solid),

and nonradiative coupling factor, ηnr = γ stat
a +γ

nrq
a

γ
qnm
a +γ stat

a

(upper blue
solid), as function of h in the near field regime. We see that
the radiative output coupling efficiency is below 50%, though
this can be increased to about 60% or greater using a dimer
configuration [36]. While it is not clear how to include such
processes in a JC model, which would be further complicated
by having different parameters at different QD positions, they
could certainly help improve and guide such simpler models.
More details on such an approach will be reported in a future
publication when we will also explore effects beyond a second-
order Born approximation.

With regards to computing the spectrum in a JC model, the
spatially integrated far-field spectrum from the cavity operator
is usually given by (assuming a rotating frame as the cavity
frequency) Scav(ω) ∝ κ limt→∞

∫ ∞
0 dτ e−i(ω−ωc)τ 〈a†(t +

τ )a(t)〉; however, this assumes that the output coupling rate
via the cavity (in this case the LSP) is purely radiative. For
a metal resonator, one must include quenching effects by
solving the input/output scattering problem, which is exactly
what the Green function solution has done. In this way one can
compliment the JC model by computing the spatially depen-
dent output spectrum from the QD system operator dynamics
and the medium electric field operators, so that Scav(r,ω) ∝
|d · Gc(r,rd ; ω)|2 limt→∞

∫ ∞
0 dτ e−i(ω−ωc)τ 〈σ+(t + τ )σ−(t)〉.

Furthermore, one could obtain the spatially averaged
output spectrum (e.g., in the far-field) from Srad

cav(ω) ∝
ηcκ limt→∞

∫ ∞
0 dτe−i(ω−ωc)τ 〈a†(t + τ )a(t)〉, where κ = γc

and the radiative output coupling factor associated with the
QNM is obtained from ηc = γ

rq
a

γ
qnm
a

.
To summarize this section, we have discussed how our

model can go well beyond the standard JC model while
facilitating the simpler JC models in certain spatial regimes.
To the extent that the approximate JC could be valid, one
still has to obtain the coupling parameters from a model such
as ours, and then carefully include quenching effects into
any calculation of emitted fields far away from the system
resonator. Thus our model can be used to guide and help the
simpler JC models in certain regimes as well.

IV. RESULTS AND APPLICATIONS

A. Localized plasmon induced SE from a single
excited QD near the nanorod

Metal nanoparticles enhance the SE rate of excited single
QDs due to the coupling with the LSP (QNM). The LDOS
at positions around the nanorod changes rapidly in space
compared to the homogeneous dielectric structure, and thus
the SE rate of a QD around the nanorod can be significantly
changed [32,33,36,37], as is shown in Fig. 1(c). In this section,
we present an analysis of the SE dynamics of a single QD on
resonance with the LSP (ωa = ωc); without loss of generality,
we take the case of a QD polarized along the x axis at position
ra , 10 nm away from the nanorod as shown schematically in
Fig. 1(a) (QDa). For the single-QD nanorod system, without
an incoherent pump field (i.e., Pa = 0), the non-Markovian
master [Eq. (4)] becomes

∂ρ

∂t
=

∫ t

0
dτ ([σ−ρσ+ − σ+σ−ρ]Jph(τ ) + H.c.) + γ

′

2
L[σ 11],

(21)

where we have explicitly used the result σ±(−τ ) = σ± since
HS = 0 and the kernel function is given by Jph(τ ) = J aa

ph (τ ).
Note the population decay is not affected by pure dephasing
here so we can neglect pure dephasing for this single QD
population decay study.

We assume here that the QD is initially excited. The QD
population decay, Na = ρee = 〈e|ρ|e〉, using Eq. (4), is shown
in Fig. 4 by the light (green) solid line; the dashed (magenta)
line shows the result of a Markovian exponential decay with
the rate, γa = 2da ·Im[G(ra ,ra ;ωa )]·da

�ε0
, given by Fermi’s golden rule

with the on-resonant projected LDOS. The inset to Fig. 4
shows that the SE dynamics is recovered by Fermi’s golden
rule after a characteristic time scale of about 40 fs (shown in
the light gray region); this time scale agrees very well with the
corresponding lifetime of the LSP, τc ≈ 2π/γc.

B. Localized plasmon induced coupling between two spatially
separated QDs in homogeneous background

For two spatially separated QDs located around the nanorod
[as is shown in Fig. 1(a) by QDa and QDb], they can be
effectively coupled to each other by exchanging photons via
the LSP; in the absence of a pump field (i.e., Pn = 0), the
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FIG. 4. (Color online) Population dynamics of an excited single
QD, Na , for an x-polarized exciton with |d| = 30 D located at, ra =
(60,0,0) nm, 10 nm away from the nanorod as in shown in Fig. 1(a) by
QDa. Exponential decay with γa = 2da ·Im[G(ra ,ra ;ωa=ωc)]·da

�ε0
shown by

the blue dashed line, and the green solid line is the full non-Markovian
dynamics given by Eq. (21). The inset shows the effective exponential
decay rate, γa(t), calculated with the full decay dynamics (green
solid), and γa (blue dashed); at the crossover region, around 40 fs
(≈2π/γc), γa(t) agrees with γa within 2% as in shown by the light
gray area).

non-Markovian master equation becomes

∂ρ

∂t
=

∫ t

0

(∑
n,m

[σ−
n ei�naτ ρσ+

m − σ+
n σ−

m ei�maτ ρ]J nl
ph(τ )

+ H.c.

)
dτ +

∑
n

γ
′
n

2
L

[
σ 11

n

] + i
[
�abσ

11
b ,ρ

]
. (22)

Unless stated otherwise, we will assume the two QDs are
resonant with each other (�ab = 0), but may be off resonant
with the LSP, where ωa = ωb = ωc + �; however, later we
also study the case with different QD resonance frequencies
[e.g., in Fig. 11(d)]. Here the intercoupling between the
QDs depends on the projected cross density of optical
states (CDOS), �ab ≡ �(ra,rb; ω) ≡ na · Im[G(ra,rb; ω)] · nb

via J ab
ph , which gives one part of the characteristic coupling

strength between the QDs mediated by the electromagnetic
environment of the nanorod. Since the Green function in use
is the retarded Green function, the real and imaginary parts
are related to each other through the Kramers-Kronig relation.
The real part of the Green function between the two QDs yields
the coherent coupling, δab(σ+

a σ−
b + σ+

b σ−
a ), while the imagi-

nary part gives the incoherent coupling,
∑

n�=m
γab

2 (2σ−
n ρσ+

m −
σ+

m σ−
n ρ − ρσ+

m σ−
n ); the relevant coupling strengths are shown

in Fig. 5 with the coherent coupling (δab) and the incoherent
coupling strength (γab) given by the chain (orange) and dashed
(blue) lines, respectively, and the solid (cyan) line shows γa .
It can be seen from Fig. 5(a), for x-polarized QDs at positions
ra/b = (±60,0,0) nm, that δab may dominate over γab and γa

when � = �off , where �off is some offset frequency from
the real part of the LSP resonance; however, when QDb

is z(y) polarized, there is almost no coupling between the
QDs; but due to the complex position-dependent polarization
characteristics of the LSP, the off-diagonal element of both
the projected CDOS, �ab(ω), and the real part of the Green
function is nonzero; consequently, QDs with different polar-
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FIG. 5. (Color online) Various scattering rates as the function of
detuning from the resonance of the LSP (ωc) for two resonant QDs
with QDa at ra = (60,0,0) nm (i.e., 10 nm away from the nanorod
surface). (a) γaa (cyan solid), γab (blue dashed), and δab (orange dash-
dot) with QDb at rb = (−60,0,0) nm; the left and right short (red)
vertical lines are for later reference when we choose QD detunings of
� = ωa − ωc = −224 meV ≡ �off , and � = 0 meV, respectively.
(b) Same as (a) but with rb′ = (−45,0,23) nm [see Fig. 1(a)].

ization can be effectively coupled to each other for certain
QD positions. Figure 5(b) shows that an x-polarized QDa at
ra = (60,0,0) nm could be effectively coupled to a z-polarized
QDb at rb′ = (−45,0,23) nm. Below, we will also look at the
effect of the coherent exchange interactions in the presence of
QD pure dephasing.

We first assume that the two QDs are initially in a separable
state |eg〉 (with the first argument for QDa and the second one
for QDb); as a result of the coherent coupling, nonclassical
correlations will be induced between the QDs, and the quantum
correlations approach a maximum value at some characteristic
interaction time, which eventually decays to zero due to
the decoherence caused by the strong dissipation and the
pure dephasing of the system. As a measure of the nonlocal
quantum correlations between the separated QDs, we use the
concurrence C, which is obtained from the eigenvalues of the
flipped density matrix [53], and its maximum value in the
evolution is denoted as Cmax. The exciton population of QDn is
defined as Nn = 〈en|trmρ|en〉 with n �= m. Figure 6(a) shows
the dynamics of C for x-polarized QDs on resonance with
the LSP (� = 0) at positions ra/b = (±60,0,0)nm [shown in
Fig. 1(a) by the dark brown ellipsoids] by the green (dark)
solid line for γ ′ = 10 μeV; the exciton populations Na/b are
shown by the blue dashed line and orange (light) solid line,
respectively; the maximum Cmax as a function of the pure
dephasing rate γ ′ is shown in the inset and, for this case, Cmax

is always less than 0.5 in agreement with previous work for
entangled atoms in weakly coupled reservoirs [54]. As shown
in Fig. 5(a), when the QDs are on resonance with the LSP, the
incoherent coupling rates are much larger than the coherent
coupling rate |γab|,|γa| � |δab|, but as they are detuned away
from the LSP resonance, the coherent coupling strength begins
to dominate over the incoherent coupling. Figure 6(b) shows
the same calculation as 6(a) but with � = �off , and now we
see that Cmax could be much larger than the previous limit of 0.5
[54]; indeed our calculations show that it could be even larger
than 0.7 if the pure dephasing rate were smaller; in addition,
we see that the concurrence exhibits an oscillating behavior,
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FIG. 6. (Color online) Dynamics of two resonant QDs with
x-polarized excited QDa and unexcited QDb, |eg〉, at ra =
(60,0,0) nm, rb = (−60,0,0) nm, respectively. (a) Time evolution
of the exciton population of QDa/QDb, Na/b (blue dashed/orange
solid), and entanglement C (dark green solid) with pure de-
phasing rate γ ′ = 10 μeV for � = 0. The inset shows Cmax

as a function of γ ′ and the circle shows the position at
which the dynamics is studied. (b) Same as (a) except for
� = �off .

which is similar to that of the coherent system indicating that
the two QDs are effectively coupled through the LSP-induced
photon exchange.

For the exciton-plasmon detuning value of � = �off , the
incoherent rates are around γa/b ≈ 14 μeV, the incoherent
coupling rate γab ≈ 6 μeV, while the coherent coupling
strength is δab ≈ 17.5 μeV; in contrast, for the on resonance
case (i.e., � = 0), we have γa/b ≈ 148 μeV,γab ≈ 146 μeV,
and δab ≈ 14 μeV. It can be seen that the relative coherent
coupling strength with a finite detuning (� = �off) is much
larger than it is at ωc (neglecting γ ′). However, as γ ′
increases, the effective coherent coupling strength for � =
�off decreases much faster than for � = 0. Thus when γ ′ = 0,
Cmax for � = �off is larger than that for � = 0, but it decreases
faster as well since γ ′ increases—as shown in the insets of Fig.
6.

It is also demonstrated in Fig. 6 that, due to the presence of
QDb, the decay of QDa in the long time limit slows down. This
effect can be explained through the effective Hamiltonian, Heff ,
which in the absence of dissipation results in four eigenstates
|ee〉,|gg〉,|±〉 = 1√

2
(|eg〉 ± |ge〉). The initial state, |eg〉, lies in

the subspace composed of |±〉 which manifest in a superradiant
and subradiant emission depending on the relationship among
the enhanced SE rate, γa , and the incoherent coupling, γab.
Thus the decay of the excited QD may be enhanced at the
beginning (t → 0) due to the faster decay of the component of
superradiant state in the initial state; while, at long times, the
dynamics is dominated by the slower decay of the component
of subradiant state in the initial state, which gives a suppressed
emission if there is a considerable amount of the subradiant
component in the initial state.

Figure 7 shows the dynamics of the resonant QDs located
symmetrically at ra/b = (±60,0,0) nm with the initial states
|±〉, with a pure dephasing rate γ ′ = 10 μeV. It is shown in
Fig. 7(a) that, when the QDs are on resonant with the LSP, |+〉
is the superradiant state (γa/b ≈ γab � γ ′), and Na/b (blue
dashed/orange solid) decay twice as fast than QDa alone. The
dynamics with the initial state |−〉 is shown is Fig. 7(c), which
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FIG. 7. (Color online) Population decay dynamics of the initial
Bell initial states |±〉 for both x-polarized QDs with the same
resonance frequency, at positions ra/b = (±60,0,0)nm, respectively;
the pure dephasing rate is γ ′ = 10 μeV. (a) For the initial state |+〉
with � = 0 the dark green solid line is C, and the blue dashed/orange
solid lines show the exciton population of QDa/QDb, respectively;
(b) same as (a) but with � = �off (see Fig. 5); (c) same as (a) but
with the initial state |−〉; (d) same as (c) but with � = �off .

is now the subradiant state. With a detuning of �off , we have
γa/b ≈ 2γab, which are much less than γa at � = 0, so there is
not much difference between the superradiant and subradiant
states as is shown in Figs. 7(b)–7(d). To establish if there
are any non-rotating-wave effects not captured by our master
equation approach, we have also checked that an exact wave
function method based on the Schrödinger equation [55,56]
(with no rotating wave approximation, but restricted to weak
excitation with no pure dephasing) gives the same solution as
above with no noticeable difference.

We stress that with the QNM formulation above, one
does not need additional simulations to calculate Green func-
tions for different QD positions, which makes the approach
convenient for exploring the position-dependent behavior
of QDs (as we have demonstrated earlier for the position
dependent decay rates). For the initial state |eg〉, numerical
calculations (with �ab = � = 0, γ ′ = 10 μeV) show that the
maximum achievable entanglement, Cmax, is not a monotonic
function of distance h from the QDs to both sides of the
nanorod, ra/b = (±50 ± h,0,0) nm. It is found that, at first
Cmax increases as h becomes larger, and reaches its maximum
around h = 10 nm; then, it decreases as h increases further; for
example, Cmax(h = 2 nm) ≈ 0.38, Cmax(h = 10 nm) ≈ 0.45,
and Cmax(h = 18 nm) ≈ 0.39. This could be explained by
analyzing the radiative and nonradiative decay rates earlier.
As is shown in Fig. 3, at extremely small h, the system is in
the quasistatic coupling regime where Ohmic losses due to γ stat

a

(magenta dashed) are strong; as h becomes larger, the Ohmic
losses become smaller and the effective coupling between the
QDs becomes larger and thus Cmax increases; however, as
the spatial distance increases further, the effective coupling
strength becomes weaker and weaker with respect to the pure
dephasing rate, γ ′, which causes Cmax to decrease again.
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C. Emitted spectrum from an incoherent pump

As is analyzed in Sec. II and shown explicitly in Sec. IV B,
two spatially separated QDs can be effectively coupled to
each other due to the characteristics of the CDOS (incoherent
coupling) and the real part of the Green function (coherent
coupling) of the gold nanorod. In the following, we will
concentrate on the spectrum that can be measured using
excitation from an incoherent pump field.

For our first incoherent pump investigation, we assume
both the two x-polarized QDs are resonant with the LSP
of the nanorod (�ab = � = 0), and they are symmetrically
located at 10 nm (ra/b) away from the both sides of the
nanorod (γa = γb, �ωa = �ωb) as is shown in Fig. 1(a). We
first assume only QDa is incoherently pumped (Pb = 0), and
we will compare this result with the spectrum emitted when
both QDs are incoherently excited. The emitted spectra are
shown in Fig. 8, with γ ′ = 1 μeV and Pb = 0. Without the
presence of QDb, the bare spectrum of QDa, Sa

0 , is shown
in Fig. 8(a) by the black solid line, and its full width at half
maximum (FWHM) is much larger than for a homogeneous
medium due to the LSP coupling; the green (dark) dashed line
is Sa

0 from QDa including the presence of QDb. The linear
spectra, Sp, at different positions are shown in Fig. 8(b) for
rD = (0,0,0.1/0.3/2) μm (magenta solid, blue dashed, green
solid). It is interesting that the spectrum in the near field regime,
rD = (0,0,0.1) μm, shows a sharp spectral peak; but as the
detector position is located further away from the nanorod,
at rD = (0,0,0.3) μm, a broadened peak with a sharp peak
located at the same spectral position as in the near field is
observed; as the spectrum propagates to the far field regime,
at rD = (0,0,2) μm, then the sharp peak develops into a dip,
which indicates that there is interference between the sharp
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FIG. 8. (Color online) Incoherent spectra for QDs at ra/b =
(±60,0,0) nm, respectively (ωa/b = ωc) with γ ′ = 1 μeV. (a) S1

0 with
P1 = 0.1 μeV: the black solid/green dashed are results with/without
the presence of QDs, respectively; (b) In coherent spectra Sp

at position rD = (0,0,0.1/0.3/2) μm (magenta/blue dashed/green)
with Pa = 0.1 μeV. (c) Polarization dependent spectra Sx

p (orange
chain) and Sz

p (cyan) at rD = (0,0,0.1) μm with Pa = 0.1 μeV. (d)
SP at position rD = (0,0,0.1/0.3) μm (magenta/blue dashed); Sx

p

(orange chain) at rD = (0,0,0.1) μm with Pa = 10 μeV.

peak and the broad resonance which is a Fano resonance effect.
From the analysis in Sec. IV B, |±〉 are eigenstates of the Heff ,
which are the superradiant and subradiant states, respectively.
The sharp peak is the result of decay from |−〉 to |gg〉, and the
broad peak is the decay from |+〉 to |gg〉, while Sp is the total
contribution from the two including interference effects; the
separation between the peaks is given by 2�|δab| in the linear
regime, and the asymmetry of the position with respect to ωa

depends on the induced Lamb shift �ωa/b. In Figs. 8(a) and
8(b), the bare spectrum is almost the same as the sharp peak,
which means the population of |−〉 is much larger than |+〉 in
the linear regime where Pa � γa/b,γ

′,γab. In fact, under this
situation, the rate equations of ρ++ and ρ−− are simply

dρ++
dt

= γ ′

2
(ρ−− − ρ++) + γ (ρee − ρ++)

+ Pa

2
(ρgg − ρ++) + γab(ρee − ρ++), (23a)

dρ−−
dt

= γ ′

2
(ρ++ − ρ−−) + γ (ρee − ρ−−)

+ Pa

2
(ρgg + ρ−−) + γab(ρ−− − ρee). (23b)

Since at the steady state ρgg ≈ 1, ρee ≈ 0 for a small pump
rate, Pa , then the ratio of steady state population ρ−− to ρ++
is given by ρ−−

ρ++
≈ γ ′+γ+γ12

γ ′+γ−γ12
� 1.

Figure 8(c) shows the polarization dependent spectra Sz
p

(cyan solid), and Sx
p (orange chain); it is seen that the sharp

peak is mainly z polarized, while the broad peak is primarily
x polarized. So, at the far field, the Sp displays mainly the
broad peak as a result of the dipole radiation that is observed
in Fig. 8(b). In the presence of a nonlinear pump field, with
Pa = 10 μeV, the computed spectrum Sp, is shown in Fig. 8(d)
at rD = (0,0,0.1) μm by the magenta solid line, and the orange
chain is the x-polarized spectrum Sx

p.
We next consider both QDs incoherently excited by the

same pump field, with Pa = Pb. In the linear regime (weak
pump limit), we get basically the same result as the case with
one QD incoherently pumped, as shown in Fig. 9(a). As long
as the pump rate is small, the incoherent spectrum is similar
with one or two pump fields. However, as the pump field
is increased, the power broadening with two QDs excited is
notably larger, as depicted in Fig. 9(b). While there are many
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FIG. 9. (Color online) Incoherent spectra, SP , at position rD =
(0,0,0.1/0.3) μm (magenta/blue dashed) for QDs at ra/b =
(±60,0,0) nm respectively (ωa/b = ωc) with γ ′ = 1 μeV. (a) Pa/b =
0.1 μeV. (d) Pa/b = 10 μeV.
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FIG. 10. (Color online) Incoherent spectra for resonant QDs
(ωa/b = ωc + �off ) at positions ra/b = (±60,0,0) nm, respectively,
with γ ′ = 1 μeV. (a) Sp at position rD = (0,0,0.1/0.3/2) μm
(thick magenta solid/thick blue dashed/thin gray solid) with Pa =
0.1 μeV. (b) Sp (magenta) and Sx

p (orange dashed) at position
rD = (0,0,0.1) μm with Pa = 10 μeV.

pumping scenarios that we could study, in what follows, we
will concentrate on the case that only QDa is incoherently
excited.

As we detune the QDs from the LSP resonance, using
� = �off , a double peak is observed for the total spectrum,
Sp, at rD = (0,0,0.1) μm as is shown in Fig. 10(a) by the
magenta solid line; as before, the right (higher frequency)
peak is suppressed as we evolve to the far field regime. The
corresponding high pump spectrum Sp is shown in Fig. 10(b)
by the magenta solid line at rD = (0,0,0.1) μm, and the two
peaks are now less accessible than in the low pump (linear)
regime; for a pump rate around Pa = 40 μeV, the steady state
populations are around Na ≈ 0.7,Nb ≈ 0.5, and the double
peaks merge into a single resonance peak; in contrast, the
populations of both QDs are negligible for the pump rate as low
as Pa = 0.1 μeV. It is interesting to note that similar physics
occurs in an incoherently pumped quantum-dot–cavity system
[57], though in that case there was no incoherent coupling
contribution (γ12 = 0), so the two peaks (vacuum Rabi splitting
peaks) were at the same height. In the present case, the doublet
feature is entirely due to photon exchange effects, mimicking
the well known vacuum Rabi doublet.

As is discussed above, by using the QMN technique we
can efficiently conduct a detailed study of the positional
dependence on the dynamics of the system. By way of an
example, we next study the incoherent spectra of orthogonal
QDs at the detector position rD = (0,0.3,0) μm, with an x-
polarized QDa is at ra = (60,0,0) nm, and using a z-polarized
QDb at rb′ = (−45,0,23) nm; for this configuration, note that
QDb (polarized in the z direction) obtains an even larger
SE enhancement induced by the QNM couplings, γ

qnm
b ≈

500 (γ0), and furthermore, a smaller nonradiative contribution
of γ

nrq
b ≈ 212 (γ0) when �ab = 0; the spectra, Sp, with Pa =

0.1/10 μeV, γ ′ = 1 μeV, and � = 0 are shown in Fig. 11(a)
by the (dark) green dashed/magenta solid lines, respectively.
While the spectra, Sp, at � = �off are shown in Fig. 11(b)
by the green dashed line (Pa = 0.1 μeV) and magenta solid
line (Pa = 10 μeV), the inset shows Sz

p with the same color
scheme; we see that it is now much easier to access the double-
peak structure with the polarization dependent spectrum. For
a larger pure dephasing rate of γ ′ = 5 μeV, Sp is presented in
Fig. 11(c) by the magenta solid line at � = �off , and it shows
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FIG. 11. (Color online) Incoherent spectra observed at rD =
(0,0.3,0) μm for x-polarized QDa at position ra = (60,0,0) nm and
z-polarized QDb at rb′ = (−45,0,23) nm (a) Sp for resonant QDs
(� = 0) with Pa = 0.1 μeV (green dashed) Pa = 10 μeV (magenta
solid); γ ′ = 1 μeV. (b) Same as (a) but with � = �off ; inset shows
Sz

p with the same color scheme. (c) Sp (magenta solid) and Sz
p

(orange dashed) for resonant QDs (� = �off ) with Pa = 10 μeV and
γ ′ = 5 μeV. (d) Sp (magenta solid) and Sz

p (orange dashed) for off
resonant QDs (�ab = −10 μeV, ωa = ωc + �off ) with Pa = 10 μeV
and γ ′ = 1 μeV.

the double-peak structure is less visible as the pure dephasing
rate increases; the orange dashed line displays Sz

p. Finally,
we have also studied the effect of detuning between the QDs
on the spectra. Figure 11(d) shows the spectra with QD-QD
detuning �ab = −10 μeV, Pa = 10 μeV, and γ ′ = 1 μeV:
the detuning changes both the separation and position of the
peaks, and the double peak structure is seen to be robust against
detuning as long as it is not too large (with respect to δab) as
is shown by the magenta solid line (Sp). But as the detuning
becomes larger and larger the double-peak inevitably begins to
disappear. However, this robustness is in general much larger
than for narrow band dielectric cavity systems.

In general the splitting of the incoherent spectrum Sp

could be effectively controlled by the coherent coupling
strength between the QDs (δab ∝ Re[Gn̂a n̂b

12 (ωa)]), which can
be achieved by changing both the location and polarization of
the QDs (or moving the nanorod); the relative height of the
double peak will be changed at the same time since the position
dependent behavior of the plasmon-induced decay rate (γn ∝
Im[Gn̂nn̂n

kk ](ωn)) and the cross decay rate (γ12 ∝ Im[Gn̂a n̂b

ab (ωa)])
will also change.

V. CONCLUSION

In summary, we have presented an efficient master equation
formalism to include the effect of coupling artificial atoms
(QDs) to the dissipative electromagnetic response of a gold
nanorod or general shaped metal resonator, which was aided
through a QNM expansion of the medium Green function.
Using the derived master equation we studied the dynamics
of two QDs, and showed that due to the complicated position-
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dependent polarization characteristics of the LSP, QDs could
be efficiently coupled together even with orthogonal polariza-
tion. Our results first show that the non-Markovian regime can
be important for time scales of the order of the LSP lifetime,
after which the dynamics of the SE rate is well described by the
exponential decay law with decay rate given by the imaginary
part of the Green function at the frequency of the QD. We
have also discussed how our model differs and compares with
a simpler JC approach, and the potential limitations of the JC
model are highlighted. In certain regimes where a JC model
could work, then the required parameters can also be obtained
directly from the QNM theory. Using our more general theory,
we then presented a selection of examples to study the quantum
dynamics of two QDs coupled to a gold nanorod, and discussed
the various radiative and nonradiative coupling rates as a
function of QD position. For separate initial states with one
of the QDs excited, maximum entanglements of greater than
0.7 could be achieved within a few ps, which also shows a
nonmonotonic behavior as a function of distance from the QDs

to the nanorod; we also showed that in order to get the QDs
more effectively coupled, the QDs should be detuned away
from the resonance of the LSP. With an incoherent pump field,
Fano resonance features are predicted in the emitted spectrum,
with a rich polarization dependent behavior and a double-peak
structure that signals strong photon exchange effects between
the LSP coupled QDs. Importantly, our theory can quickly
treat the coupling dynamics between multiple QDs at various
spatial locations over a wide range of frequencies and allows an
intuitive understand of the underlying physics of LSP coupling,
including a proper decoupling of radiative and nonradiative de-
cay channels. As shown by Kewes et al. [58], the ability to sep-
arate such processes is important to accurately model emerging
nanoplasmonic quantum optical devices such as SPASERS.
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