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Nontrivial magnetoresistive behavior of a single-wall carbon nanotube
with an attached molecular magnet
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The spin-resolved transport properties of a single-wall carbon nanotube quantum dot, with an attached single
molecular magnet, are studied theoretically. With the aid of the real-time diagrammatic technique in the lowest-
order perturbation expansion with respect to the tunnel coupling, the current, differential conductance, and the
tunnel magnetoresistance (TMR) are determined in both the linear and nonlinear response regimes. It is shown
that transport properties depend greatly on both the shell filling sequence of the carbon nanotube and the type
of exchange interaction between the molecular magnet and nanotube. This results in highly nontrivial behavior
of the TMR, which is especially visible in the low bias voltage regime. Depending on the gate voltage and
parameters of the system, we find transport regimes where either a greatly enhanced or negative TMR develops.
The mechanism leading to such behavior is associated with nonequilibrium spin accumulation, which builds up
in the antiparallel magnetic configuration of the device. We show that it is crucial whether the spin accumulation
occurs in the highest-weight spin states or in states with lower spin values. While in the former case it leads to
enhanced TMR, in the latter case it may result in negative tunnel magnetoresistance. In addition, we analyze
how the above effects depend on the magnitude of the molecular magnet’s spin, and show that this dependence
is generally nonmonotonic.
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I. INTRODUCTION

Rapid progress in nanotechnology has enabled implemen-
tation and measurements of individual nanoscale objects, such
as quantum dots or molecules coupled to external leads, with
controllable parameters [1–6]. Transport properties of such
nanostructures depend greatly on the quality of contact to
external leads and on the nanostructure’s intrinsic properties
and parameters. When the coupling is relatively weak, single-
electron tunneling and Coulomb blockade effects become
visible in transport characteristics [1], whereas in the case
of strong coupling, the electronic correlations can give rise to
the Kondo effect [7–9]. Further interesting phenomena arise
when external leads are ferromagnetic [10–15]. In magnetic
nanostructures the magnitude of the flowing current is deter-
mined by the magnetic configuration of the device. Due to the
mismatch in the spin-resolved densities of states, the current
is usually larger in the case of parallel magnetic configuration
compared to an antiparallel one, leading to spin-valve-like
behavior [16]. In fact, nanoscale spin valves, built from dots
or molecules, can be regarded as basic building blocks of
modern spin nanoelectronics and molecular spintronics, which
nowadays are attracting considerable attention [17–19].

While in simple quantum dot spin valves a positive tunnel
magnetoresistance (TMR) was predicted [20,21], more com-
plex behavior can be expected in molecular spin valves [22].
In particular, recent theoretical studies have shown that in
the case of magnetic molecules with large spin, such as
single molecular magnets (SMM) [23–25], magnetoresistive
properties of the device depend strongly on the intrinsic
properties of SMM, leading to more complex spin-resolved
transport characteristics [26–34]. Moreover, it has been
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demonstrated in a system built from a carbon nanotube
(CNT) coupled to two single molecular magnets that not only
the magnetic configuration of external leads can affect the
transport properties, but also mutual alignment of SMMs’
spins can play a similar role [5]. In such supramolecular
spin valves, the conductance through the system can be then
controlled by changing the alignment of SMMs’ spins in
an external magnetic field. All these clearly indicate that
there is a lot of interest in various molecular spin valve
devices. This is stimulated by the fact that, besides fascinating
physics, such nanostructures are potential candidates for
future applications in, e.g., information storage and processing
technologies [35,36]. Nevertheless, despite great progress in
both theoretical and experimental investigations, there are still
some aspects that need further exploration.

In this paper we thus analyze the spin-resolved transport
properties of a single-wall carbon nanotube, with an attached
single molecular magnet, coupled to external leads. The
considered system bears a strong resemblance to a recently
implemented supramolecular spin valve [5]. Here, however,
instead of two SMMs attached to CNT, only one is considered.
In this regard, the present analysis can be viewed as an
intermediate step in understanding more complex transport
behavior of supramolecular spin valves. As shown in the
following, it turns out that transport properties of CNT even
with one single molecular magnet exhibit many nontrivial
effects, such as, e.g., great enhancement of the TMR or
its suppression and sign change. While transport through
SMMs or CNTs coupled to external ferromagnetic leads
have already been studied recently [22,37–44], spin-resolved
transport characteristics of complex CNT-SMM molecules
remain still rather unexplored. Filling this gap is therefore
the main goal of this work.

To perform the calculations, we employ the real-time
diagrammatic technique in the lowest order of perturbative
expansion with respect to the tunnel coupling to external
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leads [45–47]. We determine the bias and gate voltage
dependence of the current, differential conductance, and the
tunnel magnetoresistance in the case of both ferromagnetic and
antiferromagnetic exchange interaction between the nanotube
and single molecular magnet. In particular, we study how the
transport properties depend on the sequence of ground states
of isolated carbon nanotube, which in a two-electron state can
be either in a spin singlet or a spin triplet state, depending
on CNT’s parameters [48–51]. We predict a highly nontrivial
behavior of the TMR, which depends on the nanotube ground
state sequence and is determined by the type of exchange
interaction between CNT and SMM and the magnitude
of SMM’s spin. Moreover, our analysis shows that bias
spectroscopy can provide additional information about the
exchange interaction between CNT and SMM and internal
parameters of the nanosystem.

The paper is organized in the following manner. Section II
is devoted to theoretical formulation of the problem, where the
model and Hamiltonian of the system (Sec. II A), calculation
method (Sec. II B), and system parameters (Sec. II C) are
described. The main part of the paper is presented in Sec. III,
which contains numerical results and their discussion. First,
the case when the two-electron ground state of nanotube is
spin singlet is considered (Sec. III A), and then the case of spin
triplet is analyzed (Sec. III B). Finally, concluding remarks can
be found in Sec. IV.

II. THEORETICAL DESCRIPTION

A. Model and Hamiltonian of the system

The considered system consists of a single-wall carbon
nanotube quantum dot with an attached magnetic molecule,
such as a single molecular magnet, characterized by the
spin operator S, see Fig. 1. The exchange coupling between
the molecule and nanotube is denoted by JS and can be
either of ferromagnetic or antiferromagnetic type. Such a
nanostructure is coupled to the left and right ferromagnetic
leads with coupling strengths �σ

L and �σ
R , respectively. The

magnetizations of the leads are assumed to form either
parallel or antiparallel magnetic configuration, as indicated
in Fig. 1, and the easy axis of the molecule is assumed to
coincide with the magnetization of the left electrode. The
magnetic configuration of the device can be changed upon
applying a small external magnetic field, provided that the two
ferromagnets have different coercive fields. Such a magnetic
field is assumed to have negligible effect on the energy levels
of the considered molecular system.

The total Hamiltonian of the system can be written as

H = HLead + HMol + HTun, (1)

where

HLead =
∑
rkσ

εrkσ c
†
rkσ crkσ (2)

describes the noninteracting electrons in the leads, with
c
†
rkσ being an operator for creating a spin-σ electron with

momentum k in electrode r (r = L,R) of energy εrkσ . The
second term of the total Hamiltonian describes the molecular

FIG. 1. (Color online) Schematic of the considered system. It
consists of a single-wall carbon nanotube quantum dot, with an
attached single molecular magnet (with coupling JS) characterized
by the spin operator S, coupled to external ferromagnetic leads with
coupling strengths �σ

L and �σ
R . The easy axis of the molecule coincides

with the magnetization of the left lead, while the magnetization
of the right lead can change direction, resulting in two magnetic
configurations: the parallel and antiparallel one. The two subbands of
the nanotube are sketched with dashed lines, δ denotes the energy
mismatch between the subbands, while � is the nanotube level
spacing. A voltage drop V is applied symmetrically between the
leads.

part of the system and is given by [22,48,52,53]

HMol =
∑
αjσ

εαjnαjσ + EC

2
N2+JN↑N↓

−JSS·s − DS2
z , (3)

where the first three terms model the carbon nanotube quantum
dot, the fourth one describes the exchange coupling between
the nanotube and molecular magnet, while the last term
accounts for the molecule’s magnetic anisotropy. The carbon
nanotube is characterized by two spin-degenerate subbands of
linear dispersion, as sketched in Fig. 1. Its discrete energy lev-
els are denoted by εαj , with εαj ≡ ε + δ(α − 1) + �(j − 1),
where δ is the energy mismatch between the subbands of the
nanotube denoted by α (α = 1,2), � is the level spacing, and
j numbers the energy levels belonging to a given subband.
The corresponding particle number operator of the nanotube
is denoted by nαjσ = d

†
αjσ dαjσ , with d

†
αjσ creating a spin-σ

electron in energy level j of subband α, and Nσ = ∑
αj nαjσ ,

with N = N↑ + N↓. The charging energy of the nanotube is
denoted by EC , while J is the intrinsic exchange interaction
in the nanotube [48–51]. On the other hand, JS describes the
exchange coupling between molecular magnet and nanotube,
with S denoting the spin operator of the former, while s =
1
2

∑
αj

∑
σσ ′ d

†
αjσ �σσσ ′dαjσ ′ is the spin operator of the latter,

with �σ being the vector of Pauli spin matrices. Finally,
D stands for the uniaxial magnetic anisotropy of SMM
and Sz is the zth component of the spin operator S. The
magnitude of the SMM and CNT spins is denoted by S and s,
respectively.

The last term of the total Hamiltonian (1) takes into
account tunneling processes between the molecule and the

205419-2



NONTRIVIAL MAGNETORESISTIVE BEHAVIOR OF A . . . PHYSICAL REVIEW B 92, 205419 (2015)

leads

HTun =
∑
rαj

trαj

∑
kσ

(c†rkσ dαjσ + d
†
αjσ crkσ ), (4)

where the tunnel matrix elements between the j th level of the
carbon nanotube belonging to subband α and the rth lead are
described by trαj . The coupling strength between the leads and
the corresponding levels of the nanotube is given by �σ

rαj =
2πρσ

r t2
rαj , where ρσ

r denotes the spin-dependent density of
states of lead r . The coupling can be expressed in terms of
the spin polarization of the leads pr = (ρ↑

r − ρ
↓
r )/(ρ↑

r + ρ
↓
r ),

as �σ
rαj = (1 ± pr )�rαj , with �rαj = (�↑

rαj + �
↓
rαj )/2. In this

work the system is assumed to be symmetric, i.e., pr ≡ p,
�rαj ≡ �, and the voltage drop is applied symmetrically
between the leads.

We note that the Hamiltonian of the isolated SMM-
CNT molecule is not diagonal in the eigenbasis spanned
by {|α,j,q,σ 〉 ⊗ |S,Sz〉}, where |α,j,q,σ 〉 (|S,Sz〉) are the
eigenstates of the nanotube (molecular magnet) itself, with q

denoting charge in level j for spin σ belonging to subband α.
Therefore, we first perform numerical diagonalization of HMol

to find its eigenstates and eigenenergies HMol|χ〉 = εχ |χ〉,
where |χ〉 denotes a many-body eigenstate of HMol and εχ is
the respective eigenenergy. Note that the dimension of the full
molecule’s Hilbert space is 4(N1+N2)(2S + 1), where Nα is the
number of states in subband α. We also notice that, although
only carbon nanotube is coupled directly to the leads, due to
the exchange interaction JS , tunneling processes occur through
molecular states |χ〉 of the whole molecular magnet-carbon
nanotube system.

In our analysis we focus on a relatively low bias voltage
range |eV | < �, therefore in calculations we take into account
two orbital levels of the nanotube, each belonging to a
different subband, i.e., j = 1 and α = 1,2. It is then convenient
to relabel the energy levels as ε11 ≡ ε and ε21 ≡ ε + δ.
The dimension of the local Hilbert space is reduced to
42(2S + 1). Since the Hamiltonian commutes with total spin
zth component S tot

z = sz + Sz, and nanotube particle number
operators, we can use those quantum numbers to label the
molecular states of the Hamiltonian HMol, |χ〉 ≡ |q1,q2,S

tot
z 〉,

where qj denotes charge on the j th orbital level. Note that
this notation is not entirely unique, since there may be more
states with the same quantum numbers, however, since in
the following discussion we will consider mainly the lowest
energy states, this notation is sufficient to describe all the
interesting transport properties of the system.

B. Method of calculations

In order to determine the transport characteristics of the
considered system we employ the real-time diagrammatic
technique [45–47]. This approach relies on a systematic per-
turbation expansion of occupation probabilities and operators
of interest with respect to the coupling strength �. The
calculation starts with the determination of self-energies in
a given order of expansion, which are then used to determine
the density matrix elements and, finally, the current flowing
through the system. In these considerations we assume that
the molecule is weakly coupled to external leads, such that
transport occurs mainly due to incoherent sequential tunneling

processes. Therefore, we consider only the lowest-order terms
of perturbative expansion. Moreover, here we also adopt a
recently introduced notation, which allows us to express the
occupation probabilities and the current in terms of appropriate
self-energy matrices W and WI, the elements of which
describe transitions between corresponding many-body states
|χ〉 [46,47].

The elements of matrix W are given by Wχχ ′ = WL
χχ ′ +

WR
χχ ′ , where [54]

Wr
χχ ′ = 2π

∑
σ

ρσ
r

⎧⎪⎨
⎪⎩

fr (εχ − εχ ′)

∣∣∣∣∣∣
∑
αj

trαj 〈χ |d†
jσ |χ ′〉

∣∣∣∣∣∣

2

+ [1 − fr (εχ ′ − εχ )]

∣∣∣∣∣∣
∑
αj

trαj 〈χ |djσ |χ ′〉
∣∣∣∣∣∣

2
⎫⎪⎬
⎪⎭

,

for χ 
= χ ′ and Wr
χχ = −∑

χ ′ 
=χ Wr
χ ′χ , with fr (ε) =

1/[e(ε−μr )/T + 1] being the Fermi-Dirac distribution function
and μr denoting the electrochemical potential of lead r .
Knowing the self-energy matrix W, one can calculate the
steady-state occupation probabilities Pχ of many-body states
|χ〉 from the equation [46,47]

(WP) = 0, (5)

together with the normalization condition Tr(P) = 1, where P
denotes vector of probabilities. The current flowing through
the system can be then found from [46,47]

I = e

2�
Tr{WI P}, (6)

where the elements of self-energy matrix WI are defined
as [54]

W I
χχ ′ = [�(Nχ ′ − Nχ ) − �(Nχ − Nχ ′ )]

(
WR

χχ ′ − WL
χχ ′

)
,

with Nχ denoting the number of electrons in state |χ〉 and
�(N ) is the step function.

C. Quantities of interest and parameters of the system

In this paper we will in particular study how the spin-
resolved transport properties of the system change when the
magnetic configuration is varied between the parallel and
antiparallel alignment. This change can be described by the
tunnel magnetoresistance, which is defined as [55]

TMR = I P − IAP

IAP
, (7)

where I P (IAP) denotes the current flowing in the parallel
(antiparallel) magnetic configuration of the system.

To model the carbon nanotube we take EC ≡ 1 to be the
energy unit and assume J = 0.4 [49,50]. Since δ is a rather
arbitrary parameter, which describes the mismatch between
the subbands of the nanotube that can be caused by, e.g., the
interfaces, we will analyze the transport properties for two
values of δ: δ = 0 and δ = 0.8. In the former case, δ < J , when
the nanotube is occupied by two electrons, its ground state is
spin triplet, however, in the latter case (δ > J ) the ground state
becomes spin singlet [50]. As will be shown in the next section,
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the sequence of ground states of an isolated nanotube has a
strong impact on the spin-resolved transport characteristics.
On the other hand, the single molecular magnet is described by
a hypothetical spin S = 2 and we assume D = 0.1 and |JS | =
0.15. However, we will also consider how the magnitude of
the SMM’s spin S affects the transport behavior of the system.
Note also that JS can be of either ferromagnetic (JS > 0) or
antiferromagnetic (JS < 0) type. Moreover, in calculations we
assume T = 0.05, � = 0.01, and the lead’s spin polarization
p = 0.5.

III. RESULTS AND DISCUSSION

In this section we present and discuss the numerical results
on the current and differential conductance in the parallel and
antiparallel magnetic configurations as well as the resulting
tunnel magnetoresistance as a function of the bias and gate
voltages. Since the position of the molecule’s orbital levels
can be changed upon application of a gate voltage, the
dependence on ε effectively resembles the dependence on
the gate voltage. Moreover, since single-wall carbon nanotube
quantum dots exhibit four-electron periodicity as a function
of gate voltage [49–51], by considering two orbital levels we
are able to analyze one period of this oscillatory behavior.
Transport characteristics of the system are expected to be
periodic with the gate voltage. Let us first analyze the case
when δ > J , such that the two-electron ground state of the
isolated nanotube is spin singlet.

A. Results in the case of δ > J

When δ > J , the isolated nanotube has the following
sequence of spin ground states s = 0, 1

2 ,0, 1
2 ,0 when changing

its occupancy from zero to four, that is, the ground state is
spin singlet for even occupancy and spin doublet for odd
occupancy. Of course the total spin of the CNT-SMM system
is modified by the presence of the molecular magnet’s spin
S and depends on the sign of exchange interaction JS . If one
assumes D(2S − 1) � T , such that SMM is in spin states of
the lowest energy and JS is of ferromagnetic type, then the
total spin of the system is simply given by Stot = S + s. On
the other hand, antiferromagnetic exchange coupling tends to
lower the total spin. In the following we analyze the transport
properties in the case of ferromagnetic JS , JS > 0, and then
proceed to the case of antiferromagnetic JS , JS < 0.

1. Ferromagnetic exchange interaction JS

For JS > 0, when assuming D(2S − 1) � T and δ − J �
T , one can estimate the parameters for which the ground state
of the molecular system changes as a function of ε. These
energies correspond to resonances which appear in the gate
voltage dependence of the linear conductance. They occur
whenever ε = εqq+1, where q = q1 + q2 denotes the charge
state of the system and εqq+1 is given by

ε01 = −EC

2
+ JSS

2
,

ε12 = −3EC

2
− J − JSS

2
,

ε23 = −5EC

2
− δ − J + JSS

2
,

ε34 = −7EC

2
− δ − 2J − JSS

2
. (8)

In this notation, e.g., ε01 denotes the energy for which the
charge states with zero and one electron are degenerate. This
is associated with a first resonance in the linear conductance
when lowering the level position ε. The middle of the four-
electron sequence occurs for εm = (ε12 + ε12)/2 = −2EC −
J − δ/2. For the left-right symmetric system and in the
absence of magnetic field, the transport characteristics are
symmetric with respect to this point. One can see that the
presence of the molecular magnet generally leads to shifting
of resonances. In particular, the width of the middle region,
where the system is in a two-electron state, becomes decreased
with JS , while the singly occupied region increases with raising
JS . Nevertheless, it needs to be emphasized that besides this
effect, the presence of SMM has much stronger influence on
the spin states of the system and, thus, on its spin-resolved
transport properties, which reveal most pronouncedly in the
behavior of TMR. Moreover, the exchange coupling with the
molecular magnet can also affect the sequence of ground states
of the nanotube. The two-electron state of the nanotube is spin
singlet only if δ − J > JSS. When δ − J < JSS (for JS > 0),
it is more favorable for the nanotube to be occupied by two
electrons on different levels with the same spin, resulting in
spin triplet. Thus, the formulas for resonant energies (8) are
valid only when δ − J > JSS.

The bias voltage and level position dependence of the
differential conductance in both magnetic configurations and
of the TMR in the case of δ > J and for ferromagnetic
exchange coupling JS is shown in Fig. 2. Figures 2(a) and 2(b)
present typical Coulomb stability diagrams of the device. The
diamonds at low bias voltage correspond to transport regions
where the system is in the Coulomb blockade regime with
a fixed number of electrons. The Coulomb blockade can be
lifted by either changing the gate voltage to resonance energy
or by applying a bias voltage. If, for a given ε, the bias
voltage reaches a threshold voltage for sequential tunneling,
there is a step in the current which results in peak in the
differential conductance. On the other hand, the lines visible
for larger voltages are due to various excited states taking
part in transport. At low bias voltage, when changing the
level position ε, the system becomes consecutively occupied
with electrons. The resonances occur at energies given by
Eq. (8). The distance between the first and second (and third
and fourth) resonance is given by ε01 − ε12 = EC + J + JSS,
while the distance between the second and third resonance
is ε12 − ε23 = EC + δ − JSS. Thus, by changing either the
spin of SMM or its coupling to the nanotube, the size
of the Coulomb diamonds becomes modified. In particular,
increasing both S and JS leads to an enlargement of the first
and third diamonds, while the middle diamond gets decreased.

We note that in the Coulomb blockade regime at low
temperatures the sequential tunneling is suppressed and the
dominant contribution to the current comes from cotunneling
processes [56,57]. However, for a relatively large ratio of
T/�, as considered here, one can expect that the rate of
thermally activated sequential processes is large enough to
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FIG. 2. (Color online) The bias voltage and energy level de-
pendence of the differential conductance in (a) the parallel and
(b) antiparallel magnetic configuration and (c) the resulting TMR
calculated in the case of ferromagnetic exchange coupling (JS > 0)
between the CNT and SMM. The parameters are: J/EC = 0.4,
δ/EC = 0.8, JS/EC = 0.15, D/EC = 0.1, T/EC = 0.05, �/EC =
0.01, with EC ≡ 1 the energy unit and p = 0.5.

give reasonably good insight into the transport behavior of
the system. Nevertheless, some small modification due to
cotunneling processes should still be expected [12,39].

As can be seen in Fig. 2, the general structure of the
stability diagram is qualitatively similar in both magnetic
configurations, since it is mainly determined by the charge
states of the system. Nevertheless, some minor differences
can still be seen for lines in differential conductance at larger
voltages, especially in their intensity, which are due to excited
states. However, the main difference between the parallel
and antiparallel configuration is related to a change in the
magnitude of the conductance, which is generally smaller in
the antiparallel configuration compared to the parallel one.
This is a direct consequence of the mismatch between the
densities of states in the antiparallel configuration where the
majority-spin (minority-spin) electrons of one lead tunnel
the minority-spin (majority-spin) subband of the other lead.
The difference between transport properties in both magnetic
configurations is captured by the TMR, the dependence of
which on bias and gate voltages is shown in Fig. 2(c). One can
see that the TMR takes rather well defined values in-between
the lines of the differential conductance. Since each line in
dI/dV corresponds to a step in the current, between those
lines the current is rather constant and exhibits a plateau, and
so does the TMR.

Let us now discuss the behavior of the TMR in more
detail. First, general observation is that out of the Coulomb
blockade the TMR is always positive and takes values smaller
than that predicted by the Julliere model [55] TMRJull =

2p2/(1 − p2), which is characteristic of a single ferromagnetic
tunnel junction, and for assumed spin polarization equals
TMRJull = 2/3. This is due to the fact that in the considered
system the electrons are transferred between the left and
right leads through a complex large-spin nano-object and, in
addition, sequential tunneling processes are incoherent. This
results in spin relaxation and, consequently, one finds TMR
smaller than TMRJull. We would like to note that a similar
tendency has also been observed for carbon nanotubes in the
absence of a single molecular magnet [38] and for individual
SMMs attached to external ferromagnetic leads [22]. As in the
large bias voltage regime the behavior of TMR is rather typical,
a completely different situation is observed in the low bias
voltage regime where the system is in the Coulomb blockade,
see Fig. 2(c). Here the TMR can either take values greatly
exceeding the Julliere value or become negative, depending
on the occupancy of the nanotube. In particular, in the case of
ferromagnetic JS , we find suppressed TMR for the Coulomb
blockade region with two electrons (note that for assumed
parameters the isolated nanotube is then in spin singlet state
s = 0). In this transport regime, the TMR can in fact take
negative values. Moreover, for odd occupancy of the nanotube,
i.e., when it hosts an unpaired electron (s = 1/2), the TMR
becomes greatly enhanced, with TMR > TMRJull. Since the
behavior of TMR is directly associated with corresponding
spin states that are relevant for transport, one can expect
that, e.g., changing the type of exchange interaction between
the CNT and SMM will have a profound influence on the
TMR. This is indeed the case, as we will show in the next
sections. We also note that the effect of negative TMR has
also been reported in carbon nanotubes in the absence of
an additional molecule [13,37,42]. Here, however, negative
TMR is exclusively due to the exchange coupling with a single
molecular magnet.

To understand the behavior of the TMR depending on the
charge state of the nanotube, in Fig. 3 we present the bias
voltage dependence of the current, differential conductance,
and the TMR for ε = εm = −2EC − J − δ/2 (ε/EC = −2.8)
and ε = −EC − J/2 (ε/EC = −1.2). These two values cor-
respond to the middle of the second and the first Coulomb
diamonds, as marked by vertical arrows in Fig. 2. Let us
first discuss the former case. At equilibrium the system is
then in a two-electron state, with electrons fully occupying
a lower orbital level of the nanotube (s = 0), while the
molecule is in high spin state. Because there is no external
magnetic field, the ferromagnetic ground state of the system is
twofold degenerate |2,0,±S〉. In addition, due to finite and
relatively large temperature, at equilibrium there is also a
small occupation of the excited states |1,1,±S ± 1〉. With
increasing the bias voltage, in the parallel configuration mainly
the states |2,0,±S〉 (with equal probabilities) are relevant for
transport, until the voltage reaches threshold voltage and more
states start participating in the current flow. The situation is
completely different in the antiparallel configuration, where
a strong nonequilibrium spin accumulation develops. For
positive bias voltage (the electrons tunnel from right to left)
tunneling of spin-down electrons from the right lead to the
molecule is relatively fast, while further tunneling to the left
lead is slow. This leads to accumulation of spin-down electrons
in the system. As a consequence, one observes large spin
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FIG. 3. (Color online) The bias voltage dependence of (a) and
(d) the current, (b) and (e) differential conductance in both magnetic
configurations, and (c) and (f) the TMR for (left column) ε/EC =
−2.8 and (right column) ε/EC = −1.2. The other parameters are the
same as in Fig. 2.

accumulation due to enhanced occupation of states |2,0,−S〉
and |1,1,−S − 1〉. The charge fluctuations between the above
states result in increased thermally activated transport through
the system, such that the current can become even greater than
that in the parallel configuration, leading to negative TMR,
see Fig. 3(c). In fact, the maximum spin accumulation occurs
for a relatively low bias voltage, which coincides with the
minimum in TMR, and then slowly decreases with raising
V due to growing occupation of other states. This is seen
as a gradual increase of the TMR, until it reaches a local
maximum for voltages slightly above the threshold voltage.
For negative bias voltage the mechanism is the same, except
that the spin accumulation has the opposite sign. Because
transport characteristics are symmetric with respect to the bias
reversal, from now let us only discuss the results for positive
bias voltage.

Opposite to the case shown in the left column of Fig. 3,
a completely different situation can be observed when the
nanotube occupancy is odd, see the right column of Fig. 3.
In this case at equilibrium the system is occupied with equal
probability by the states |1,0,±S ± 1

2 〉. With increasing the
bias voltage in the antiparallel configuration nonequilibrium
spin accumulation builds up and the system is in the state
|1,0,−S − 1

2 〉 with almost full probability. We note that in
the parallel configuration, small nonequilibrium spin accu-
mulation is also present, however, both states |1,0,±S ± 1

2 〉
have finite and large occupation probabilities. Consequently,
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FIG. 4. (Color online) The bias voltage dependence of the TMR
in the case of (a) ε/EC = −2.8 and (b) ε/EC = −1.2 for different
magnitude of the molecular magnet’s spin S. The other parameters
are the same as in Fig. 2.

because in the antiparallel configuration the system becomes
trapped in a single high-spin state, while in the parallel
configuration more states are relevant for transport processes,
there is a large difference in conductance in both magnetic
configurations, with I P � IAP. This results in TMR enhanced
much above the Julliere value, see Fig. 3(f).

One could expect that the larger the spin of the molec-
ular magnet the more pronounced spin-resolved effects are
revealed in transport properties. A naive and straightforward
expectation would be an increase of the TMR when attaching
molecules with larger spin S. This is however not necessarily
true and, in fact, the situation can be even opposite, i.e.,
increasing spin S may lead to a lowering of the TMR. Such
behavior can be observed in the bias voltage dependence of the
TMR calculated for several values of SMM’s spin S, ranging
from S = 0 to S = 5

2 , which is depicted in Fig. 4. The top
panel corresponds to the middle of the second diamond, while
the bottom panel presents the results in the case when at
equilibrium the nanotube is singly occupied. First, we note that
the change of S has the most pronounced effect on the TMR
in the low bias voltage regime, while for voltages above the
threshold voltage the influence of spin S is not that spectacular.
Second, although here we present and discuss the data for
a hypothetical spin S, the values considered in Fig. 4 can
correspond to real physical systems, e.g., molecule of iron
FeIII has spin S = 3/2, while cobalt has spin S = 1 [4,58].
Needless to say that there is a large class of SMMs with
different spins [23].

When ε/EC = −2.8, one can see how the TMR becomes
suppressed with increasing S. When S � 1

2 , the TMR is
positive in the whole range of bias voltage, see Fig. 4(a).
However, when S > 1

2 , negative TMR develops in some range
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of the bias voltage. Interestingly, negative TMR is present
only for 1 � S � 2 and for S = 5

2 the TMR again becomes
positive in the whole range of the bias voltage considered. The
mechanism leading to the suppression of TMR is the same as
discussed earlier, the main difference is in the magnitude of
spin S, therefore it will not be repeated here. Instead, let us
focus on the increase of the TMR with raising S. It turns out that
this effect is related to a decrease in energy difference between
the twofold degenerate ground state |2,0,±S〉 and excited
states |1,1,±S ± 1〉. For S = 5

2 , these excited states have
relatively high occupation probability even at equilibrium.
This leads to the situation that despite strong nonequilibrium
spin accumulation in the antiparallel configuration, in the
parallel configuration transport processes are more effective
due to finite occupation of the above four states. Note that
for smaller spin S, e.g., S = 2, in the parallel configuration
mainly the states |2,0,±S〉 are relevant in the low bias voltage
range.

A nonmonotonic dependence of the TMR on the magnitude
of molecule’ spin S can be also seen in the case when the
nanotube is occupied by a single electron at equilibrium, see
Fig. 4(b). Here one can observe gradual enhancement of the
TMR with increasing S, however, for the largest value of S

considered here, an opposite trend can be seen—the TMR
becomes then slightly lowered. The mechanism leading to
an increase of the TMR with spin S is related to the fact
that in the parallel configuration the four states |1,0,±S ± 1

2 〉
and |1,0,±S ∓ 1

2 〉 are relevant for transport, while in the
antiparallel configuration mainly the state |1,0,−S − 1

2 〉 is
active. Moreover, occupation probability of this state increases
with raising S and for S � 2 it is essentially equal to unity. A
small decrease of the TMR visible for S = 5

2 is due to the fact
that in the parallel configuration only the spin highest-weight
states |1,0,±S ± 1

2 〉 become relevant and, thus, the number
of possible states for thermally activated transport is reduced.
This results in a small suppression of the TMR compared to
the case of S = 2, see Fig. 4(b), and to related nonmono-
tonic dependence of TMR on the magnitude of the SMM’s
spin S.

2. Antiferromagnetic exchange interaction JS

We now analyze how the spin-resolved transport char-
acteristics change when the exchange coupling between
the nanotube and molecular magnet is of antiferromagnetic
type JS < 0. The bias and gate voltage dependence of the
differential conductance in both magnetic configurations and
the TMR is shown in Fig. 5. First of all, one can note that the
size of the Coulomb diamonds is now slightly changed. This
is simply related to the fact that the ground state of the system
is no longer given by spin states of highest weight. Instead,
depending on the nanotube’s occupancy, antiferromagnetic
exchange coupling can lead to lowering of the total spin by
s = 1

2 or even s = 1 when the nanotube is doubly occupied by
a triplet state. Moreover, differences can also be seen in lines
in differential conductance for higher voltages due to excited
states, see Figs. 5(a) and 5(b). In a similar way, as done in the
previous section, one can estimate the energies at which the
resonant peaks in linear conductance appear, corresponding
to the degeneracy between consecutive charge states. These

FIG. 5. (Color online) The same as in Fig. 2 calculated in the
case of antiferromagnetic exchange coupling (JS < 0) between the
molecular magnet and the nanotube, JS/EC = −0.15.

energies are now given by

ε01 = −EC

2
+ |JS |

4
− �ε

2
,

ε12 = −3EC

2
− J − |JS |

4
+ �ε

2
,

(9)

ε23 = −5EC

2
− δ − J + |JS |

4
− �ε

2
,

ε34 = −7EC

2
− δ − 2J − |JS |

4
+ �ε

2
,

with �ε = (2S − 1)D − [D(D + |JS |)(2S − 1)2 + (JS/2)2

(2S + 1)2]1/2 [22]. Note that the middle of the stability
diagram, which is given by εm, is still the same as in the
case of JS > 0 and only the size of diamonds is modified.
Nevertheless, as far as the behavior of TMR is considered,
the changes are more dramatic. In particular, the situation is
now just the opposite, i.e., we find negative TMR in transport
regime where the nanotube is oddly occupied at equilibrium,
while in the doubly occupied regime the TMR is positive and its
magnitude is not as large as in the case of ferromagnetic JS (for
the oddly occupied system). To understand this behavior, in
Fig. 6 we present the relevant cross sections of Fig. 5 (indicated
by arrows) for Coulomb blockades with one and two electrons.
Let us first focus on the latter case.

At equilibrium, the ground state of the system is twofold
degenerate |2,0,±S〉. However, due to finite temperature, there
is also relatively high occupation probability of excited states
|1,1,±S ∓ 1〉. In the parallel configuration these four states
are relevant for transport in the Coulomb blockade regime.
On the other hand, in the case of antiparallel configuration,
nonequilibrium spin accumulation sets in and the occupation
of two states |2,0,−S〉 and |1,1,−S + 1〉 is increased. Because
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FIG. 6. (Color online) The bias voltage dependence of (a) and
(d) the current, and (b) and (e) differential conductance in both
magnetic configurations, as well as (c) and (f) the TMR for (left
column) ε/EC = −2.8 and (right column) ε/EC = −1.2. The other
parameters are the same as in Fig. 2 with JS/EC = −0.15.

the number of states relevant for transport is much larger in
the parallel configuration, there is an enhancement of the
TMR [see Fig. 6(c)]. However, since the spin accumulation
is now smaller than in the case of ferromagnetic JS for
odd occupation of the molecule, lower TMR is consequently
observed. On the other hand, when the system is occupied
by a single electron, the twofold degenerate ground state
is |1,0,±S ∓ 1

2 〉. With increasing the bias voltage, in the
antiparallel configuration, strong spin accumulation develops,
with occupation probability of state |1,0,−S + 1

2 〉 close to
unity. Moreover, spin accumulation is also present in the case
of parallel configuration, but it is smaller than in the antiparallel
configuration. We note that this situation is now somewhat
similar to the case of ferromagnetic JS , except for spin states
that are relevant for transport, which is in fact the key factor
in observing a completely different behavior. In the case of
ferromagnetic coupling, the spin accumulation developed in
highest-weight spin states, while now this is not the case. The
state |1,0,−S + 1

2 〉 is a linear combination of local states of
the nanotube and appropriate spin multiplets of the molecular
magnet. Consequently, while for JS > 0 in the antiparallel
configuration the system was trapped in a single state, which
led to the suppression of transport and resulted in negative
TMR, here we observe an enhancement of the TMR.

The effect of both TMR enhancement and negative TMR
strongly depends on the magnitude of SMM’s spin S. This is
presented in Fig. 7, which shows the bias voltage dependence
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FIG. 7. (Color online) The bias voltage dependence of the TMR
in the case of (a) ε/EC = −2.8 and (b) ε/EC = −1.2 for different
magnitude of the SMM’s spin S. The other parameters are the same
as in Fig. 2 with JS/EC = −0.15.

of the TMR for the corresponding two values of ε and
for different S, as indicated in the figure. In the case of
ε/EC = −2.8, for S = 0, the TMR is rather low in the low bias
voltage regime. With increasing the molecule’s spin however it
starts increasing and becomes larger than TMRJull for S = 3

2 .
However, further increase of S results in suppression of the
TMR, such that for S = 5

2 its behavior resembles that in
the case of S = 0, see Fig. 7(a). The reason for it is again
related to excitation energies, which become modified by
changing the value of spin S. It turns our that for S = 3

2 , in
the parallel configuration, the states |2,0,±S〉 are relevant for
transport, while in the antiparallel configuration, due to strong
nonequilibrium spin accumulation, a single state |2,0,−S〉 is
responsible for the current flow. With increasing the magnitude
of spin, nonequilibrium spin accumulation becomes decreased
and occupation probability of states |1,1±S ∓ 1〉 increases.
This leads to the suppression of TMR and to its related
nonmonotonic dependence on S.

When ε/EC = −1.2, the system is singly occupied and the
TMR becomes negative with increasing the value of spin S,
see Fig. 7(b). This is related to the fact that in the antiparallel
configuration the nonequilibrium spin accumulation in states
|1,0,±S ∓ 1

2 〉 increases with increasing S and, since these
states are superpositions of local spin states, the thermally
activated current becomes enhanced. As a consequence, one
finds IAP > I P and the TMR becomes negative. Interestingly,
nonequilibrium spin accumulation also develops in the parallel
configuration and becomes enhanced with increasing S. This
is why for the largest value of S considered in Fig. 7(b), the
TMR gets decreased.

We note that in the case of δ > J , i.e., when the evenly
occupied isolated nanotube is in the spin singlet state, the
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FIG. 8. (Color online) The bias and gate voltage dependence of
the differential conductance in (a) the parallel and (b) antiparallel
magnetic configuration and (c) the resulting TMR calculated in
the case of ferromagnetic exchange coupling (JS > 0) between the
nanotube and molecular magnet. The parameters are the same as in
Fig. 2 with δ/EC = 0.

type of exchange coupling JS results in completely different
behavior of spin-resolved transport characteristics. When the
nanotube is occupied by two electrons, for (anti)ferromagnetic
JS , the TMR becomes (large and positive) negative. The
difference is even more pronounced in the case of the odd
occupancy of the nanotube. In the case of ferromagnetic
JS the TMR is then greatly enhanced (with values much
exceeding the Julliere value), while for antiferromagnetic
JS the TMR becomes negative. Thus, by analyzing the
tunnel magnetoresistance behavior one may extract additional
information about the type of exchange coupling between the
nanotube and the attached molecular magnet.

B. Results in the case of J > δ

When J > δ, the sequence of ground states of an isolated
nanotube as a function of ε is different. Now the two-electron
state is a spin triplet, with electrons occupying different orbital
levels. Clearly the type of exchange interaction between the
nanotube and molecule will play an important role, especially
in the two-electron triplet regime. To assure that the condition
J > δ is fulfilled, in the following we assume that there is no
energy mismatch between the two subbands of the nanotube,
i.e., we set δ = 0.

The bias and gate voltage dependence of the differential
conductance in both magnetic configurations and the TMR in
the case of ferromagnetic exchange interaction JS is shown in
Fig. 8. Figures 8(a) and 8(b) present the Coulomb stability dia-
grams in the parallel and antiparallel configurations. Similarly
to the case of δ > J , one generally finds GP > GAP. Moreover,

FIG. 9. (Color online) The same as in Fig. 8 calculated in the
case of antiferromagnetic exchange coupling (JS < 0) between CNT
and SMM, JS/EC = −0.15.

it can be seen that the size of the diamonds is now changed.
The middle diamond (with two electrons) is much larger than
the two neighboring ones. With similar assumptions as made
when deriving Eq. (8), one can find the respective resonance
energies where two charge states become degenerate. They
can be expressed as

ε12 = −3EC

2
− δ + JSS

2
,

(10)

ε23 = −5EC

2
− 2J − JSS

2
,

while ε01 and ε34 are given by Eq. (8). The middle of
the stability diagram is again for εm = −2EC − J − δ/2,
however, due to different parameters (δ = 0), it occurs for a
different value of ε, namely, ε/EC = −2.4, as indicated by an
arrow in Fig. 8. The size of the diamonds with an odd number
of electrons is given by ε01 − ε21 = EC + δ, while the size of
the middle diamond is ε12 − ε23 = EC − δ + 2J + JSS. Thus,
changing the magnitude of SMM’s spin or exchange coupling
JS affects the size of the second diamond, while the first and
third Coulomb diamonds remain unaltered.

The dependence of the TMR on bias and gate voltages is
shown in Fig. 8(c). As already mentioned, most spectacular
behavior of the TMR can be seen in diamond with two
electrons, when the isolated nanotube is in the triplet state. Fer-
romagnetic exchange interaction with the molecule increases
the spin of the system by s = 1. Because of that, transport
is mainly determined by the highest-weight spin states, which
consequently results in highly nontrivial behavior of the TMR.
In addition, one can also notice small enhancement of the
TMR in the case of Coulomb blockade with an odd number of
electrons, see Fig. 8(c).
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Before discussing in more detail the mechanism leading to
the enhanced TMR, let us first analyze the general transport
behavior in the case of antiferromagnetic exchange coupling,
where a completely different dependence of the TMR is
observed. By directly comparing the behavior of the TMR
in the case of JS > 0 and JS < 0, it will then be more
straightforward to grasp the main features and mechanisms
responsible for those effects.

The differential conductance in both magnetic configura-
tions and the TMR as a function of bias and gate voltages in the
case of antiferromagnetic JS are shown in Fig. 9. As before,
one can find the conditions for the resonant energies εqq+1.
The energies ε01 and ε34 are given by Eq. (9), while to get ε12

and ε23 one needs to find the condition for degeneracy between
antiferromagnetic states with one electron of spin S − 1

2 and
with two electrons of total spin S − 1. The SMM-dependent
part of these formulas is however quite cumbersome, therefore
we will not present it here.

One can see that the bias and gate voltage dependence of the
differential conductance is qualitatively similar to that shown
in Fig. 8 with a large middle Coulomb diamond and small
neighboring diamonds. The main differences can be seen in
the behavior of the TMR. Very interestingly, now in the two-
electron Coulomb blockade regime, one finds negative TMR,
which reaches values much below zero, TMR ≈ −TMRJull.
Moreover, suppressed TMR can be also observed in the
transport regime where the system is occupied by an odd
number of electrons. In other transport regimes, the TMR is
generally positive and not particularly large.

Since the most spectacular and nontrivial behavior of the
TMR is observed in the case when the system is occupied by
two electrons, let us now analyze the relevant cross sections
of Figs. 8 and 9. The bias voltage dependence of the current
and differential conductance in both magnetic configurations
as well as the TMR is shown in Fig. 10 in the case of ε =
εm, i.e., in the middle of the Coulomb blockade with two
electrons (as indicated by the arrows in Figs. 8 and 9). The
left column presents the results for ferromagnetic exchange
coupling, while the right column corresponds to the case of
antiferromagnetic coupling. One can see that while the current
voltage characteristics are qualitatively similar, with Coulomb
steps occurring at comparable threshold voltages, the TMR
behavior is completely different. Besides, one can also notice
a small shift of the peak in differential conductance in the
antiparallel configuration compared to the parallel one. More
precisely, in the case of ferromagnetic JS the peak is shifted
upwards, while for antiferromagnetic JS this peak is shifted
downwards.

Let us now focus on the behavior of the TMR. For
ferromagnetic exchange interaction, the ground state of the
system is twofold degenerate and given by the highest-
weight spin states, |1,1,±S ± 1〉. In the parallel configuration,
only these two states, with equal probabilities, take part
in transport. However, in the antiparallel configuration, due
to nonequilibrium spin accumulation, the system becomes
trapped in state |1,1,−S − 1〉, which suppresses the thermally
activated transport. As a result, the TMR becomes greatly
enhanced, with values much exceeding the Julliere value, see
Fig. 10(c). A completely opposite situation is observed in the
case of antiferromagnetic exchange interaction JS < 0. Now
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FIG. 10. (Color online) The bias voltage dependence of (a) and
(d) the current, (b) and (e) differential conductance in both magnetic
configurations, and (c) and (f) the TMR in the case of ferromagnetic
(JS > 0, left column) and antiferromagnetic (JS < 0, right column)
exchange interaction. The other parameters are the same as in Fig. 8
with |JS |/EC = 0.15 and ε/EC = −2.4.

the system has antiferromagnetic twofold degenerate ground
state |1,1,±S ∓ 1〉. Again, with increasing the bias voltage,
nonequilibrium spin accumulation builds up in the antiparallel
configuration, such that the state |1,1,−S + 1〉 is almost fully
occupied. However, because this is not highest-weight spin
state but a state which is a superposition of some local
spin states, the thermally activated sequential transport then
becomes enhanced in the antiparallel configuration compared
to the parallel one. As a consequence, IAP > I P, giving rise to
negative TMR. Note that the effect of negative TMR is now
more pronounced compared to the case of δ > J , such that
TMR reaches almost TMR ≈ −TMRJull, see Fig. 10(f).

Finally, we analyze how the magnitude of the molecular
magnet’s spin S affects the above mentioned effects. The
corresponding bias voltage dependence of the TMR in the
case of both ferromagnetic and antiferromagnetic exchange
interaction is shown in Fig. 11 for ε/EC = −2.4. It is clearly
visible how the effects of both enhanced TMR and negative
TMR gradually develop with increasing S. For JS > 0, one
finds TMR > TMRJull, even in the case of S = 0 [38]. Further
increase of S enhances the TMR, such that for S � 1 one
finds TMR � TMRJull, see Fig. 11(a). On the other hand,
for JS < 0, the enhanced TMR for S = 0 becomes suppressed
with increasing the magnitude of spin S, such that for S � 1 the
TMR becomes negative, see Fig. 11(b). The TMR dependence
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FIG. 11. (Color online) The tunnel magnetoresistance as a func-
tion of the bias voltage in the case of (a) ferromagnetic and
(b) antiferromagnetic exchange interaction calculated for ε/EC =
−2.4 and for different values of SMM’s spin, as indicated. The other
parameters are the same as in Fig. 8 with |JS |/EC = 0.15.

on spin S reflects the fact that the effect of nonequilibrium
spin accumulation becomes enhanced with increasing S

and, thus, the above-described mechanisms responsible for
corresponding TMR behavior become even more effective.
Here, however, it is crucial whether the spin accumulation
develops in highest-weight spin states or in states with lower
spin values. In the former case this leads to greatly enhanced
TMR, while in the latter case negative TMR can occur.

IV. CONCLUSIONS

In this paper we have considered the spin-resolved transport
properties of a single-wall carbon nanotube quantum dot, with
an attached single molecular magnet, coupled to external ferro-
magnetic leads. By using the real-time diagrammatic technique
in the lowest-order perturbative expansion with respect to
the tunnel coupling, we have determined the bias and gate
voltage dependence of the current, differential conductance,
and the tunnel magnetoresistance, which is associated with

a change of magnetic configuration from a parallel into an
antiparallel one. In particular, we have analyzed two possible
scenarios for a carbon nanotube shell filling sequence, which
can be realized depending on nanotube intrinsic parameters.
In the first scenario, the doubly occupied ground state of the
nanotube is a spin singlet, while in the second scenario, the
doubly occupied ground state becomes a spin triplet. We have
shown that the sequence of the nanotube’s ground states and
the type of exchange interaction JS between the nanotube and
molecule have a strong influence on the spin-resolved transport
properties of the system, which is most visible in the TMR.

In the case when the two-electron ground state of the
nanotube is spin singlet, in the low bias voltage regime we
found negative (enhanced) TMR in the case of ferromagnetic
(antiferromagnetic) exchange coupling JS . On the other hand,
when the nanotube occupancy is odd, an opposite situation
was observed—an enhanced (negative) TMR was found in
the case of ferromagnetic (antiferromagnetic) JS . An even
more spectacular dependence of the TMR on the type of
exchange interaction JS was observed in the case when the
two-electron ground state of the nanotube was spin triplet.
Then, in the case of ferromagnetic exchange interaction, a
greatly enhanced TMR developed, while for antiferromagnetic
JS , a negative TMR was observed. The mechanisms leading
to the above mentioned effects are generally associated
with nonequilibrium spin accumulation that builds up in
the antiparallel configuration. A crucial point is whether the
spin accumulation develops in highest-weight spin states or
in states with lower spin values. Spin accumulation in the
highest-weight spin states generally leads to the suppression
of conductance in the antiparallel configuration, which results
in an enhancement of the TMR. On the other hand, the spin
accumulation in states with lower spins, enhances thermally
activated transport in the antiparallel configuration, leading to
suppressed or even negative TMR.

In addition, we have also studied how the effects of
both enhanced and suppressed (negative) TMR depend on
the magnitude of the molecular magnet’s spin S. A general
observation is that those effects become enhanced when
attaching molecules with larger spin, which is associated with
the fact that the nonequilibrium spin accumulation becomes
stronger with increasing the magnitude of SMM’s spin S.
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224420 (2009).
[23] D. Gatteschi, R. Sessoli, and J. Villain, Molecular Nanomagnets

(Oxford University Press, New York, 2006).
[24] L. Bogani and W. Wernsdorfer, Nat. Mater. 7, 179 (2008).
[25] S. Sanvito, Chem. Soc. Rev. 40, 3336 (2011).
[26] M. Misiorny and J. Barnaś, Europhys. Lett. 78, 27003
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[39] I. Weymann, J. Barnaś, and S. Krompiewski, Phys. Rev. B 78,

035422 (2008); I. Weymann, S. Krompiewski, and J. Barnaś,
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