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Conductance of a single electron transistor with a retarded dielectric layer in the gate capacitor
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We study the conductance of a single electron transistor (SET) with a ferroelectric (or dielectric) layer placed
in the gate capacitor. We assume that the ferroelectric (FE) has a retarded response with arbitrary relaxation
time. We show that in the case of “fast” but still retarded response of the FE (dielectric) layer an additional
contribution to the Coulomb blockade effect appears leading to the suppression of the SET conductance. We take
into account fluctuations of the FE (dielectric) polarization using Monte Carlo simulations. For “fast” FE, these
fluctuations partially suppress the additional Coulomb blockade effect. Using Monte Carlo simulations, we study
the transition from “fast” to “slow” FE. For high temperatures, the peak value of the SET conductance is almost
independent of the FE relaxation time. For temperatures close to the FE Curie temperature, the conductance peak
value nonmonotonically depends on the FE relaxation time. A maximum appears when the FE relaxation time
is of the order of the SET discharging time. Below the Curie point the conductance peak value decreases with
increasing the FE relaxation time. The conductance shows the hysteresis behavior for any FE relaxation time at
temperatures below the FE transition point. We show that conductance hysteresis is robust against FE internal
fluctuations.
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I. INTRODUCTION

Single electron devices such as single electron transistors
(SET), single-electron (and Cooper pair) boxes, chains of
metallic islands, etc., are currently in the focus of scientific
interest due to their deep and complex physics and numerous
promising applications [1–10]. One of the most interesting
aspects of these systems is their dynamics. Due to charge
quantization, even dc current in a metallic chain of islands
leads to a complicated dynamics and to the appearance of
voltage oscillations similar to those existing in Josephson
junctions [11,12]. The great progress in the fabrication of
nanoscale metallic circuits allows the creation of single
electron devices coupled to nanomechanical resonators. In
addition, SETs with moving metallic islands exist. In these
systems, the electrical and mechanical degrees of freedom are
coupled leading to a complex dynamics of the whole device.
An SET with a mobile metal particle shows the “shuttling”
effect [13–17]. Numerous groups studied SET with mobile
gate electrodes, which have their own dynamics [10,18–22].
Even a weak electromechanical coupling strongly influences
the SET conductance, which is promising for a very sensi-
tive mechanical sensor. A strong electromechanical coupling
causes bistability and hysteresis effects, which are useful for
memory applications.

Recently, an SET coupled to a ferroelectric (FE) layer
was proposed and studied [23,24]. The FE layer can be
placed either in the leads-island capacitors or in the gate
capacitor. SETs show a high sensitivity of conductivity to the
FE dielectric properties. This allows us to consider SETs as an
effective way to study the properties of nanosized FE materials.
FE hysteresis in combination with its dynamics suggests that
a “turnstile” effect should exist in an SET with an FE. This
effect is the basis for a precise current standard [25].

When an FE layer is placed in the tunneling junctions, it
serves as tunnel barriers for electrons, but the polarization of
the FE layers has its own dynamics in contrast to the usual
SET where the insulator polarization follows the electric field
in the capacitors.

An FE placed in the gate capacitor of an SET [see Fig. 1(a)
also has its own dynamics. In this case, the SET has much
in common with an SET having a mobile gate where the
movement of the electrode causes a change of the gate induced
charge. Variations of the FE polarization influence the SET in a
similar way. However, there are several important differences
between these two systems. Nanomechanical resonators are
usually studied as linear oscillators. In contrast, the FE layer
shows a nonlinear response since the electric fields in the SET
capacitors can exceed the FE saturation field [23,24]. Another
important difference is related to the fact that the characteristic
time scales of FE materials can be essentially lower than those
of the nanomechanical systems and can be even comparable
with the characteristic times of the SET. These characteristic
time scales of the FE layer and the SET determine the transport
properties of the whole system.

Different kinds of FE materials show different dynamics.
Shift-type FEs are described by a second-order (in time)
differential equation [26]. These materials behave similar to
oscillators with a certain resonant frequency ωFE

0 (in the linear
regime) and a damping time tFE. Order-disorder-type FEs
obey the first-order differential equation. These materials are
described by the damping time tFE only.

The shortest time scale for SET is tc ∼ �/Ec, where Ec is
the charging energy. For a metallic grain of few nanometers,
this time is of order 10−14 s. An intermediate time scale is
the electron lifetime on the grain (grain discharging time),
td ∼ R C� , where R and C� are the resistance and the total
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FIG. 1. (Color online) (a) Circuit diagram of SET coupled to a FE
layer. C1,2 are the tunnel junctions capacitance, C0

g is the geometrical
gate capacitance, p(t) is the time-dependent polarization of the FE
layer inside the gate capacitor, V and Vg are the bias and the gate
voltages, respectively. (b) Number of excess electrons on the SET
metal island n vs time t . SET has the following characteristic times:
the electron lifetime on the island (grain discharging time) td and the
excitation time tex.

capacitance of the system, respectively. This time depends on
the geometry of the system and usually is in the range 10−12–
10−8 s. The longest time tex is the time between electron jumps
to the grain. In general, this time depends on the gate voltage.
For strong Coulomb blockade, it is exponentially large, tex ∼
R C� eEc/T , while for weak Coulomb blockade, due to applied
gate voltage, it is comparable to the electron lifetime on the
grain, td.

The limit, tFE � tc, corresponds to the “classical” theory
of SET. In this case, the polarization of insulators follows
the electric field in the SET capacitors. When the grain charge
changes from n to n ± 1 it is implicitly assumed that the polar-
ization of insulators instantly changes from some equilibrium
value peq|n to a different equilibrium value peq|n±1. Thus the
“classical” theory of SET considers transitions between states
(n,peq|n) and (n ± 1,peq|n±1).

The limit, tFE � tex, was studied in Refs. [23,24] using the
mean-field theory. In this case, the polarization of the FE layers
“feels” only the average electric field produced in the SET
capacitors. The coupling of an SET with a slow dynamical
system causes hysteresis phenomena even in the absence of
FE polarization hysteresis. In Ref. [27], an SET with a “slow”
dielectric in the gate capacitor was considered.

The region in between the limits discussed above can be
divided into three subregions with the following boundaries:
(1) tFE ≈ tc, (2) tFE ≈ td, and (3) tFE ≈ tex. The first region

requires consideration of a single tunneling event by taking
into account the time dispersion of the dielectric response.
This case is beyond the orthodox theory. Next, two regimes
can be treated within the orthodox theory if the polarization
time dynamics is taken into account. In the present paper, we
consider an SET with a dielectric or an FE layer inside the gate
capacitor with relaxation time larger than tc (tFE � tc) but with
an arbitrary ratio of tFE and td,ex.

Two different methods are usually used to study the
dynamical effects in an SET. The first approach calculates the
probabilities of all possible states of the system using a master
equation [19,28]. These probabilities are time-dependent in
general. This method is mostly used for the investigation
of SETs coupled to a mechanical nanoresonator or with
a mobile metal island. The mechanical subsystem can be
treated classically [15,17,18,21,22] or quantum mechani-
cally [14,16,20,29,30]. The second approach simulates the
time evolution of the whole system directly using the Monte
Carlo method [11,31]. This approach provides a complete in-
formation about the SET behavior and allows us to analyze
the time evolution of the system parameters. Currently, single
electron counting is possible and the time dependence of the
metal island charge can be extracted from the experiment [32].
Therefore the results of Monte Carlo simulations can be
compared to real experimental data.

In the present paper, we use Monte Carlo simulations along
with analytical consideration to study an SET coupled to a FE
layer behaving classically. In particular, we study the influence
of the retarded response of the FE layer in the gate capacitor
on the Coulomb blockade effects.

The paper is organized as follows. In Sec. II, we describe
the model of an SET with an FE (dielectric) layer in the gate
capacitor. In Sec. III, we discuss our results: we consider
analytically and numerically the SET conductance in the
intermediate region tc � tFE � td. We discuss the evolution
of the SET conductance with increasing FE relaxation time
from tFE � td to tFE � tex. We investigate the influence of the
FE (dielectric) internal noise on the SET conductance.

II. MODEL

We consider the SET shown in Fig. 1(a). Left and right
electrodes (source and drain) are connected to a metallic
island via tunnel junctions. The source and the drain are
biased with voltage ±V/2. For simplicity, we assume that
all junctions have the same capacitances C1 = C2 = C/2
and resistances R1 = R2 = R. An insulator with an instant
response is placed inside the tunnel junctions. The polarization
of the insulator instantly reacts to the electric field, p1,2 =
χjun(±V/2 − φ)/d, where φ is the grain potential, d is the
junctions thickness, and χjun is the dielectric susceptibility of
the insulator in the junctions. The polarizability of the tunnel
barriers is incorporated into capacitances C1,2. A gate electrode
is capacitively coupled to the metallic island. A voltage Vg is
applied to the electrode. An FE (dielectric) with a retarded
response is placed between the island and the gate. The
characteristic time scale of the material, tFE, is larger than tc.
We assume that the polarization p(t) of the FE (dielectric) layer
in the gate capacitor is uniform and time dependent. We use the
notation C0

g = Sg /(4πdg) for the geometrical capacitance of

205416-2



CONDUCTANCE OF A SINGLE ELECTRON TRANSISTOR . . . PHYSICAL REVIEW B 92, 205416 (2015)

the gate-island capacitor, where Sg and dg are the gate capacitor
area and thickness, respectively.

Below, we will distinguish two different temperatures: (1)
TFE is the FE layer temperature and (2) Te is the leads and
the island temperature. In general, these temperatures can be
different on one hand due to the current flowing through the
source-island-drain circuit, which heats the island and the
leads [33–35] and on the other hand different temperatures
can be created artificially using local heating/cooling tech-
niques [36–39].

A. Free energy of an SET with an FE (dielectric) layer
in the gate capacitor

The equations governing the behavior of an SET with an
FE (dielectric) layer can be derived using the free energy
of the system. The free energy increment can be expressed
via the charges qi and the potentials φi of all the metal-
lic electrodes δF = δR = ∑

φiδqi . Here, the charges are
considered as independent variables. In an SET, the three
metallic electrodes are biased with a voltage source and the
island potential should be found self-consistently. Following
the standard approach [40], we introduce a thermodynamic
potential where the island charge, the potentials of the
leads and the gate potential are considered as indepen-
dent variables δFm = δF − δ(Vg Qg) − δ(V1q1) − δ(V2q2) =
φδq − Qg δVg − q1δV1 − q2δV2, where Qg is the charge of the
gate electrode, q1,2 and V1,2 are the charges and the potentials
of the leads, and q and φ are the metal island charge and
potential, respectively. Below, we use the notation Fm for free
energy.

At zero-bias voltage, the increment of this mixed ther-
modynamic potential has the form δFm = φδq − Qg δVg.
Integration of δ Fm over the δq and δVg provides the total free
energy. Using electrostatic considerations for the charge at the
gate electrode, we find Qg = (CC0

gVg − qC0
g − p Sg C)/ C� ,

where C� = C + C0
g is the total capacitance of the system.

The grain potential is given by φ = (C0
gVg + q − p Sg)/ C� .

Thus

Fm =F0 + q2

2 C�

+ qC0
gVg

C�

− p Sg q

C�

+ p Sg CVg

C�

− CC0
gV

2
g

2 C�

,

(1)

where F0 is the system free energy at zero gate voltage and
zero grain charge:

F0 = ( αP p2/2 + βP p4/4 + p2 Sg /(2 C� dg)) Sg dg. (2)

The first two terms in Eq. (2) are the usual contributions to the
free energy describing the dielectric materials and FEs close
to the paraelectric-ferroelectric phase transition [26]. Here αP

and βP are the phenomenological constants. For dielectric
materials both constants are positive. For FEs, the constant
αP linearly depends on the temperature and crosses zero at the
FE phase transition point. The last term in Eq. (2) is due to
the nonzero electric field E0 = −4πC0

gp/ C� acting on the FE
layer at q = 0 and Vg = 0.

At finite bias voltage V , the free energy Fm needs to be
modified: Fm gets an additional contribution ±eV/2 when an
electron is added to the grain.

From the linear instant relation between the polarization
p and the electric field, p(t) = χ i

0(φ(t) − Vg)/dg, we obtain
the free energy of the SET with the properly renormalized
capacitances Cg = C0

gε0 and C̃� = C + Cg, where ε0 = 1 +
4πχ i

0 is the effective dielectric constant of the layer in the gate
capacitor.

B. Ferroelectric dynamics

Varying the free energy in Eq. (1) with respect to the
polarization p, we find the equation governing p. Below, we
consider FEs (dielectrics) of the order-disorder type. These
materials are described using the first-order time-dependent
equation [26]

γ ṗ = −∂ Fm

∂p
+ ̃L, (3)

where γ is the relaxation constant related to the relaxation
time, tFE = γχ0, with χ0 = α−1

P being the linear response of
the polarization to the external electric field. ̃L describes an
intrinsic noise of the FE layer. Substituting the free energy Fm

into Eq. (3) we obtain the following nonlinear equation for the
polarization:

γ ṗ + αPp + βPp
3 = q − CVg − p Sg

C� dg
+ ̃L. (4)

We introduce the paraelectric-ferroelectric Curie temperature
at which the coefficient in front of the linear term is zero,
χ−1 = αP + 4πC0

g/ C� = α̃P(TFE − TC) = 0. We call the ma-
terial inside the gate capacitor as a FE material if the Curie
temperature is positive TC > 0. For TFE > TC, Eq. (4) has only
one solution, while for TFE < TC the spontaneous polarization
appears leading to multiple solutions of the equation.

Another Curie temperature T 0
C can be introduced using

the relation χ−1
0 = α̃0

P(TFE − T 0
C ) = 0. It corresponds to the

same FE but confined by the shorted metal electrodes. One
can see that TC < T 0

C . When an FE is placed in between
the shorted metal electrodes, the potential difference and the
electric field are fixed across the FE layer. In contrast, in
the SET problem, the potential of the metal island should
be found self-consistently. Therefore the equation governing
the FE layer gives the lower Curie temperature. Physically, this
reflects the fact that the depolarizing electric field inside the FE
layer is not fully screened by the metal island in the SET. This
complicates the appearance of the spontaneous polarization.

We notice that χ0 is the susceptibility of the FE (dielectric)
layer with respect to the external electric field, while χ is
the susceptibility with respect to the external charges q and
Q0 = −C0

g Vg. Below, we will refer to Q0 as the gate charge.
However, Q0 is not the real charge at the gate electrode and it
differs from Qg which was introduced above. For TFE > TC,
two susceptibilities χ and χ0 are related as follows χ−1 =
χ−1

0 + 4πC0
g/ C� . For FE (dielectric) materials with instant

response, the constant χ0 defines the dielectric permittivity,
χ i

0 = χ0 and ε0 = 1 + 4πχ0.
We regard the material in the gate capacitor as a dielectric

if the quantity, αP + 4πC0
g/ C� > 0, is positive for any

temperature. In general, we can consider the dielectric material
as the material with the negative Curie temperature, TC < 0.
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In our Monte Carlo simulations, we solve the nonlinear
Eq. (4) directly. For analytical consideration at temperatures
TFE > T 0

C , we linearize Eq. (4):

γ q̇p + χ−1qp = 4πC0
g(q − CVg)

C�

+ L. (5)

Here, we introduce the charge qp = p Sg and L = Sg̃L.
We mention that below T 0

C the susceptibility χ0 becomes
negative. However, the FE layer is still in the paraelectric
phase for temperatures TC < TFE < T 0

C . We show that in this
temperature region Eq. (5) is not valid since it produces
divergent solutions for qp and q. The nonlinear term βPp

3

should be taken into account to restrict variations of qp and q.

C. Langevin forces

Internal fluctuations of the FE layer occur due to the
interaction of FE (dielectric) polarization with all other
degrees of freedom in the FE layer. This interaction has two
components. The “regular” component leads to the appearance
of polarization relaxation. This term can be written in the
form γ q̇p even for nonlinear systems [41]. Another noise
component is responsible for fluctuations of the FE layer
polarization. It appears in the RHS of Eq. (4) as a random
Langevin force ̃L. If the polarization varies slowly in time in
comparison to the characteristic time of internal FE processes
the correlation function of the Langevin forces can be chosen as
CL = 〈̃L(t)̃L(t ′)〉 = 2γ kBTFEδ(t − t ′)/(Sgdg). The relation
between the relaxation constant γ and the Langevin forces dis-
persion is valid even for nonlinear systems [41]. The dispersion
of the polarization fluctuations in the linear response regime
(βP � αPp

2) can be written using the FE layer susceptibility
as follows Dp = 〈(�p)2〉 = χkBTFE/(Sg dg). Below, we will
use this expression for estimates. For strong nonlinear effects
(βP ∼ αPp

2), the polarization dispersion is given by a more
complicated expression [42].

D. SET dynamics

The probability of electron hop to/from the metallic island
is given by the expression

G±
1,2 = 1

e2R

�F±
1,2

e�F±
1,2/Te − 1

, (6)

where

�F±
1 = 2Ec

(
±

(
n + C0

gVg

e
+ C� V

2e
− qp

e

)
+ 1/2

)
,

(7)

�F±
2 = 2Ec

(
±

(
n + C0

gVg

e
− C� V

2e
− qp

e

)
+ 1/2

)
.

Subscript (1,2) denotes the electrode from which (or to which)
an electron jumps. Superscript + describes electron hopping
from a certain lead to the particle. Superscript “−” describes
electron hopping from the island to a certain lead. n = q/e

is the island population. Ec = e2/(2 C�) is the bare charging
energy.

An important assumption made when we calculate �F is
that the polarization p does not change during the electron
hop since tFE � tc. Equation (7) describes the processes

(n,p(t))→(n ± 1,p(t)). This is in contrast to the “classical”
SET situation where the polarization p adjusts during the
hop and the following processes occur: (n,peq|n)→(n ±
1,peq|n±1).

Two characteristic times can be introduced using Eq. (6):
(1) the excitation time tex corresponding to the island charging
event at zero gate voltage, Vg = 0 (this event is suppressed due
to the Coulomb blockade effect, tex = G+

1 |n=0,Vg=0,qp=0,V =0 ∼
R C� eEc/Te ); and (2) the relaxation time td, which corresponds
to the discharging of the charged island. This time is much
shorter, tex � td, since there is no exponential factor in
this case, td = G−

1 |n=1,Vg=0,qp=0,V =0 ∼ R C� . We mention that
excitation time depends strongly on the gate voltage Vg and
for certain voltages both times are comparable.

The island population is defined by the random electron
jumps from and to the island:

ṅ(t) =
∑

i

Ziδ(t − ti). (8)

Here, Zi has three possible values ±1 and 0. The probability
for an electron to hop per unit time is defined by Eq. (6). It
depends on the bias voltage V , the gate voltage Vg, the number
of electrons on the island n(t), and the FE layer induced charge
qp(t). The last two quantities depend on the time leading to
time dependent hopping probabilities. Thus one has to solve
self-consistent equations for the FE layer and the SET.

We use numerical Monte Carlo simulations [11] to solve
coupled SET and FE equations. Equation (8) can be written in
the discrete form

n(ti) = n(ti−1) + Z(n(ti−1),qp(ti−1))dt,
(9)

Z =
⎧⎨
⎩

1,x < G+
1 + G+

2 ,

0, G+
1 + G+

2 < x < 1 − (G−
1 + G−

2 ),
−1, x > 1 − (G−

1 + G−
2 ),

where x is the random value uniformly distributed between
0 and 1, dt = ti − ti−1. The time interval dt is much shorter
than all characteristic times in the problem, dt � td,tFE.

The average electric current through the SET can be
calculated as follows:

I = e

Tm

∑
i

ζ (ti),

(10)

ζ =
⎧⎨
⎩

1, Z(ti) > 0 ∧ y < G+
1 /(G+

1 + G+
2 ),

−1, Z(ti) < 0 ∧ y < G−
1 /(G−

1 + G−
2 ),

0, Z(ti) = 0,

where y is the random number uniformly distributed between
0 and 1; Tm is the measurement time interval.

III. CONDUCTANCE OF SET WITH RETARDED FE
(DIELECTRIC) LAYER

We investigate the behavior of the SET conductance as a
function of the gate voltage Vg for different ratios of the FE
(dielectric) relaxation time tFE and SET characteristic times tex

and td.
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A. Suppression of Coulomb blockade due to internal noise of FE

The conductance peaks as a function of the gate charge
Q0 have a finite width at finite temperatures. The width of
these peaks is defined as �QL

0 ≈ ekBTe/Ec. The polarization
of the FE (dielectric) layer enters the SET equations as an
additional gate capacitor charge. Therefore the FE (dielectric)
polarization fluctuations can be considered as fluctuations
of the gate charge Q0. These fluctuations average the SET
conductance over the region �Q

p
0 ∼ √

Dp ∼ √
TFE. Due to the

square root dependence of �Q
p
0 on temperature, the internal

fluctuations of the FE polarization produce much stronger
effect on the conductance than the finite temperature of the
leads. If the temperature of the FE layer TFE equals to the source
and drain electrodes temperatures, Te, then the FE fluctuations
are negligible for temperatures kBTFE � 2πχC0

gEc/ C� . Also,
FE fluctuations can be neglected for temperatures, TFE � Te.

If �Q
p
0 exceeds the half of an electron charge, the Coulomb

blockade effect is smeared and the conductance peaks as
a function of the gate voltage disappear. Thus the general
condition for observation of charge quantization effects relates
the polarization dispersion and the electron charge, Sg

√
Dp �

e/2. Below, we show that FE fluctuations can increase the SET
conductance in some cases.

B. SET with “instant” FE (dielectric) in the gate capacitor

We call FEs (dielectrics) with tFE � tc as FEs (dielectrics)
with instant response, for brevity, we call them “instant” FEs
(dielectrics). In contrast, we call FEs “retarded” if tFE � tc.
An SET with “instant” dielectrics was studied in many papers
using the orthodox theory. In this case the conductance is
a periodic function of the gate charge Q0. The conductance
maxima are located at points Q0 = e(l + 1/2)/ε0, where l is
an integer number. The peak value of the SET conductance
in this case is σ0 = 1/(4R). The conductance is suppressed
between peaks due to the Coulomb blockade effect.

If an SET is coupled to an FE with a relaxation time tFE ≈
tc, the SET can not be studied within the orthodox theory.
This case requires the calculation of tunneling matrix elements
of electrons interacting with the FE (dielectric) polarization,
which varies on time scale tc. Tunneling in the presence of
time dispersion was considered in the past [43–45]. It was
shown that time dispersion, caused by the dissipation in the
tunnel junction circuit, leads to the decrease of the junction
conductance and to the appearance of an effective Coulomb
blockade effect.

C. SET with “fast” FE (dielectric) in the gate
capacitor (tFE � td)

In the case of “fast” FE (dielectric), tc � tFE � td, each
electron jump to the grain or out of grain occurs when
the polarization is in its equilibrium state at a given grain
population n. However, during the jump, the FE (dielectric)
polarization preserves its value since tFE � tc, meaning that
the state of the FE polarization is not at equilibrium after the
jump. We define the state of the SET at each moment with
the pair (n(t),p(t)). The following transitions correspond to
the events of grain charging and discharging (n,p|eq

n )→(n ±
1,p|eq

n ), where p|eq
n stands for equilibrium polarization at given

n and Q0:

χ−1peq|n + βP(peq|n)3 = en + CQ0/C0
g

C� dg
. (11)

We mention that for an SET with “instant” insulators, different
kind of transitions occur (n,p|eq

n )→(n ± 1,p|eq
n±1).

Consider the free energy difference in Eq. (7) as a function
of the island population n at V = 0. The stable population of
the island is approximately defined by the conditions

�F+(n + 1,peq|n+1) > �F−(n + 1,peq|n+1),
(12)

�F+(n,peq|n) < �F−(n,peq|n).

We find approximately the “equilibrium” value of n and
polarization p at a given value of Q0 using the following
equation:

�F+(neq,peq|neq ) = �F−(neq,peq|neq ). (13)

Here, neq stands for approximately the most probable
population of the island, it may have a noninteger value.
Equation (13) can be rewritten in the form

eneq − Q0 − qeq
p

∣∣
neq = 0, (14)

where q
eq
p |neq = Sg peq|neq . Using Eq. (11), we can relate the

“equilibrium” polarization and the gate charge Q0:

αP
(
qeq

p

∣∣
neq

) + β̃P
(
qeq

p

∣∣
neq

)3 = 4πQ0, (15)

where β̃P = βP/S
2
g . Equation (15) has a unique solution for

temperatures TFE > T 0
C . For TFE < T 0

C , it has three different
solutions. Introducing peq|neq into Eq. (14), we find the “equi-
librium” population neq. At a given Q0, the whole system state
most probably will be in the vicinity of neq. To find approx-
imately the SET conductance, we take into account only two
states n1 and n2 (n1 < n2) nearest to neq. Using the expression

σ = e

V

G̃+
2 G̃−

1 − G̃+
1 G̃−

1

G̃+
1 + G̃+

2 + G̃−
1 + G̃−

2

, (16)

we find the SET conductance. We use the following notations
in Eq. (16): G̃+

1,2 = G+
1,2|n=n1 , G̃−

1,2 = G−
1,2|n=n2 . Below, we

consider the behavior of the SET conductance at different
temperatures.

1. TFE > T 0
C .

In this temperature region, the parameter αP is positive and
Eq. (15) has only one solution leading to one “stable” state for
the whole system. Figure 2 shows the free energy difference
as a function of the island population n for C0

g = 0.2 C� ,
αP = 1.5, e2β̃P = 0.13, and Q0 = 0.5e. Inequalities (12) are
satisfied for n = 3 only. Equation (15) gives the “equilibrium”
population neq slightly higher than 3. The most probable
states are n = 3 and n = 4. Figure 3 shows the SET con-
ductance [Eq. (16)] as a function of the gate charge Q0 for
parameters C0

g = 0.005 C� , αP = 0.12, e2β̃P = 0.0013, and
Te = 0.2 Ec. These parameters correspond to TTF-CA FE
at TFE = 120 K [46]. This FE has a rather small relaxation
time in the picosecond region [47], which can be comparable,
smaller, or larger than the discharging time of the SET. The
conductance appears as a series of peaks. The period and
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FIG. 2. (Color online) Free energy difference, Eq. (7), at V =
0 and Q0 = 0.5e vs n. The solid line shows �F +(n), the dashed
line shows �F −(n). Intersection of �F + and �F − shows the most
probable state of the SET at a given Q0.

the height of the peaks are not constant due to the nonlinear
term in Eq. (4). The red circle shows a typical region where
Eq. (16) is not valid. In this region, at least three states are
involved in the electron transport, whereas Eq. (16) accounts
for only two states. The dashed line shows the conductance
calculated using numerical Monte Carlo (MC) simulations.
We use γ = 0.05R C� . The numerical and analytical results
coincide in the vicinity of the conductance peaks, where
Eq. (16) works well. Close to the conductance deeps, the
numerical result is more accurate since all possible states are
taken into account in the simulations.

FIG. 3. (Color online) SET conductance vs the gate charge Q0

for temperatures TFE > T 0
C . The solid blue line is calculated using

Eq. (16) at an electron temperature Te = 0.2Ec. The dashed red line
and and the dotted black line are obtained using MC simulations. The
dashed line is calculated in the absence of FE internal fluctuations.
The dotted black line is calculated in the presence of fluctuations. The
green dash dotted line is calculated with Eq. (16) at Te = 0.26Ec. The
red circle shows a typical region where Eq. (16) is not valid.

The conductance peaks value is smaller than σ0 for “fast”
FE. Below, we show that this is a consequence of an effective
additional Coulomb blockade appearing due to the retarded
response of the FE layer.

It is important that Eq. (16) does not take into account the
internal fluctuations of the FE polarization. This approxima-
tion is valid, for example, for temperatures TFE � Te. To fit
the blue curve in Fig. 3 with MC simulations, we turned off the
Langevin forces in Eq. (4). The result is the red dashed line.

The dotted black line in Fig. 3 shows the result of the
MC modeling for TFE = Te in the presence of FE internal
fluctuations. One can see that the FE fluctuations are important
for electron transport. The internal fluctuations suppress the
additional Coulomb blockade increasing the conductance.
For comparison, we show the conductance calculated using
Eq. (16) for the same SET parameters but with higher electron
temperature, Te = 0.26 Ec (dash dotted green line).

For a small enough parameter βP, we can neglect nonlinear
effects and use the linearized equation for the FE polarization,
Eq. (5). In this case, the SET conductance is a periodic function
of parameter Q0 with a period �Q0 = e/ε0. Consider the
conductance in the vicinity of the first peak position Q0 =
−e/(2ε0). Figure 4 shows different processes contributing to
the electron transport of the SET with a “retarded” FE layer.
This figure shows a number of branches of the SET free energy
as a function of the gate charge Q0. These branches correspond

FIG. 4. (Color online) Free energy as a function of gate charge
Q0. Blue branch (1) corresponds to the state (0,peq|0), red branch
(3) corresponds to the state (1,peq|1), brown branch (2) shows the
free energy for the state (1,peq|0), and black branch (4) shows the
state (0,peq|1). At ε0Q0 = e/2, in the SET with “instant” insulators,
the grain charging and discharging events correspond to the transition
from blue to the red branch. The energy gap in this case is zero leading
to a large conductance. For an SET with a “retarded” FE, another kind
of transitions occur. The island charging event (1) corresponds to the
transition from the blue branch (1) to the brown branch (2). After
the transition, the FE polarization relaxes to a new equilibrium state
[process depicted by the horizontal arrow (2)]. The grain discharging
event (3) corresponds to the transition from the red (3) to the black
(4) branch. Finally, the FE polarization relaxes again [process (4)].
�F0 = 4πχC0

gEc/C� , �qp = (4πχC0
g/ C�)e.
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to the island population n = 0,1 and the FE polarization
peq|0,1. For an SET with a “retarded” FE, the transitions
(charging and discharging events) occur between the states
with nonequilibrium polarization of the FE (dielectric) layer.
This leads to the appearance of a nonzero energy gap (see
Fig. 4) for any gate voltage. Such a gap can be considered as
an additional effective Coulomb blockade appearing due to the
“retarded” FE (dielectric) response.

At ε0Q0 = e/2, the charging event (0,p|eq
0 )→(1,p|eq

0 )
[process (1) in Fig. 4] requires an additional energy �F0 =
4πχC0

gEc/C� . The FE layer relaxes to its equilibrium state
p|eq

1 [the process (2) in Fig. 4] after the grain charging
event. The discharging process (3) (1,p|eq

1 )→(0,p|eq
1 ) is also

inelastic. It requires the same energy �F0. This energy gap
suppresses the conductance of the SET with the “retarded”
FE layer. For an SET with an “instant” FE (dielectric) layer,
the charging and discharging transitions occur directly from
branch (1) to branch (3) and do not require any energy at
ε0Q0 = e/2 leading to a higher conductance.

For temperatures Te � Ec(4πχC0
g/C�), the maximum

conductance value is

σmax ≈ 1

R

2πχC0
g

C�

Ec

Te
e− �F0

Te . (17)

The magnitude of the conductance peak increases exponen-
tially with temperature, however, it stays smaller than the
“classical” value of the SET conductance σ0. We mention that
for the SETs with “instant” insulators the magnitude of the
conductance peak is temperature independent.

2. TC < TFE < T 0
C

In this temperature region, the susceptibility χ0 is negative
and Eq. (15) has three different solutions meaning that there are
more than one stable state in the whole SET system. Figure 5

FIG. 5. (Color online) Free energy difference, Eq. (7), at V =
0 vs n. Solid lines show �F +(n,peq|n), dashed lines show
�F −(n,peq|n). Red lines correspond to Q0 = 0, blue lines show
�F ± at Q0 = 0.13e, and black lines show the case of Q0 = 0.25e.
Negative χ0 provides the negative slope of �F + and positive slope
of �F − in the vicinity of n = 0.

shows �F±(n,peq|n) for different Q0 for the following SET
parameters αP = −2, χ−1 = 0.513, e2β̃P = 0.13, and C0

g =
0.2 C� .

Here the dependencies are nonmonotonic in contrast to
the case TFE > T 0

C . Consider the blue curves corresponding
to Q0 = 0.13e. One can see that the state with zero island
population is not stable. Two stable states, shown by the green
circles, occur in the vicinity of n

eq
(1) ≈ 4.5e and n

eq
(2) ≈ −3.5e.

Depending on the initial system state both “equilibrium”
populations can be realized. In this case, one can expect the
hysteresis behavior of the SET conductance as a function of
the gate voltage. Figure 5 shows that for high enough gate
voltage (black lines) only one stable state remains meaning
that conductance hysteresis exists only around Q0 = 0. This
is in contrast to the case of SET with “slow” FE considered
in Refs. [23,24], where hysteresis appears in the vicinity of
each conductance peak. The nature of hysteresis in the case of
“slow” FE in the gate capacitor is very different from the case
of “fast” FE (dielectric). For “fast” FE the hysteresis is related
to the instability (χ0 < 0) of the FE dielectric properties, while
for “slow” FE the hysteresis occurs even in the absence of FE
instability due to the interaction of the fast SET system with
the slow FE layer.

Note that in the region TC < TFE < T 0
C the nonlinear term

in Eq. (4) for the FE polarization can not be neglected since
the population n(t) and the polarization p(t) will be divergent
functions.

Figure 6 shows the SET conductance as a function of
the gate charge Q0 for the following parameters: αP =
−0.12, e2β̃P = 0.0013, and C0

g = 0.02 C� . These parameters
correspond to TTF-CA FE at TFE ≈ 50 K [46]. Solid lines
demonstrate the result obtained using Eq. (16) at Te = 0.2Ec

[panel (a)] and Te = 0.3Ec [panel (b)]. One can see that there
are two branches of the conductance as a function of the gate
voltage. Dashed and dotted lines demonstrate the conductance
obtained using MC simulations in the absence of FE internal
fluctuations [panel (a)] and in the presence of fluctuations
[panel (b)]. To obtain the red dashed lines, we increase Q0 from
−0.5e to +0.5e. The initial polarization and the island popu-
lation at each Q0 were taken from the last simulation point at
previous Q0. Dotted lines correspond to the case of decreasing
Q0. MC simulations confirm the existence of the conductance
hysteresis. The analytical and numerical curves agree well
with each over. Part of the conductance branches, for example,
between Q0 = 0.1e and 0.25e, obtained using Eq. (16) is not
realized in numerical simulations within the chosen protocol.
To observe these branches, we need to set special initial condi-
tions in our system, which is hard to realize in an experiment.

Panel (b) shows the result of simulations in the presence
of FE internal fluctuations (TFE = Te). One can see that
fluctuations suppress the Coulomb blockade and increase
the conductivity. The peak positions stay the same. The FE
fluctuations at given parameters do not smear the hysteresis.

3. TFE < TC

In this region, the solution of Eq. (4) becomes ambiguous
leading to a more complicated behavior of the SET. Two
different equilibrium polarizations p

eq
1,2|n correspond to a

single island population value n. Consider the free energy
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FIG. 6. (Color online) The conductance of an SET as a function
of the gate charge Q0 for temperatures TC < TFE < T 0

C . Solid blue
lines are calculated using Eq. (16). In the vicinity of Q0 = 0, there
are two branches of the conductance due to the SET instability.
The dashed red line and dotted black line are calculated using MC
simulations. The dashed line is obtained for an increasing parameter
Q0 during simulations, while the dotted line is obtained for decreasing
Q0. (a) shows results obtained using Eq. (16) at Te = 0.2Ec and
results of MC simulations at Te = 0.2Ec in the absence of FE
internal fluctuations. (b) shows results obtained using Eq. (16) at
Te = 0.3Ec and results of MC simulations in the presence of FE
internal fluctuations and at Te = 0.2Ec.

difference as a function of n at αP = −7, e2β̃P = 0.5, C0
g =

0.1 C� , and Q0 = 0 (Fig. 7). Quantities �F± have two
branches depicted by red and black curves. These branches
correspond to equilibrium polarization states p

eq
1 |n and p

eq
2 |n.

Blue lines show unstable solutions. “Equilibrium” population
n

eq
(1) is defined by the intersection of two red lines. In contrast

to the case of TFE > TC, there is an additional allowed state
at n = n

eq
(1) corresponding to another FE polarization. Due to

inequalities (12), this second state is unstable with respect to
variations of n. The internal fluctuations of the FE polarization
may cause switching of the polarization [process (1) in Fig. 7]
leading to the transition to another “equilibrium” population
state n

eq
(2). We depict a possible dynamical process in the SET

FIG. 7. (Color online) Free energy difference, Eq. (7), at V =
0 and Q0 = 0 vs n. Solid lines show �F +(n,p

eq
1,2|n), dashed lines

show �F −(n,p
eq
1,2|n). Various colors correspond to different FE layer

polarization states. Blue lines show the unstable polarization state,
p

eq
3 |n, which can not be realized in an experiment. Red line stands for

positive polarization, black line corresponds to negative polarization.
Black arrows show possible behavior of the SET.

in Fig. 7 by the black arrows. The system switches back and
forth between two population states, n = n

eq
(1) and n = n

eq
(2).

The temperature driven transition between two FE equi-
librium polarization states is defined by the energy barrier
between these two states, which can be estimated as �Wp ≈
2Sgdgα

2
P/(βp) = 2α2

P/(4πβ̃C0
g). Varying parameters one can

make this barrier much higher than Ec, thus prohibiting the
polarization switching. In this case, there is no population
“wandering” and the whole system behaves similarly to
the case of TFE > TC. In particular, the conductance shows
hysteresis as a function of Q0. For parameters used in Fig. 7,
�Wp > 100Ec. Therefore processes (1) and (2) are almost
prohibited. The hysteresis behavior in the system with the
above parameters is rather robust.

The hysteresis can also be smeared through the consecutive
change of n. The transition between n = n

eq
(1) and n = n

eq
(2)

through such changes requires at least energy of order 16Ec.
This estimate is obtained using Fig. 7 as a maximum value of
the red dashed curve. Moreover, the SET should go through
several transitions (n)→(n − 1) to reach the equilibrium
state n = n

eq
(1) from n = n

eq
(2). Thus the probability of such a

switching between equilibrium states is negligible.
For barrier �Wp ∼ kBTFE the system switches between

states n = n
eq
(1) and n = n

eq
(2). This behavior is shown in Fig. 8

where we depict functions n(t) and p(t) obtained using an
MC simulation with the following parameters αP = −0.15,
e2β̃P = 0.2, C0

g = 0.002 C� , and Q0 = 0. Our MC simulations
show that in this case there is no hysteresis behavior of
the conductance as function of Q0. This happens because
the switching between different polarization states p

eq
1,2|n

means that on the long-time scale the FE layer behaves as a
paraelectric layer due to strong fluctuations. Note that such
a mechanism of hysteresis suppression does not exist for
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FIG. 8. (Color online) Island population n (blue dashed line) and
FE layer induced charge, qp/e, (red solid line) vs time t for the
following parameters αP = −0.15, e2β̃P = 0.2, C0

g = 0.002 C� , and
Q0 = 0. The FE layer polarization switches between two equilibrium
states due to thermal fluctuations.

temperatures TC < TFE < T 0
C . In this region, the polarization p

has always a single value. The suppression of hysteresis due to
consecutive change of n is very improbable too. Therefore
the conductance hysteresis is rather robust in the region
TC < TFE < T 0

C , however, it is not very stable for TFE < TC.

D. SET with “slow” FE (dielectric) in the gate
capacitor (tFE � tex)

The characteristic time tex is the time between consecutive
electron jumps to the grain. It depends on the gate voltage and
it is comparable with td for weak Coulomb blockade.

The intermediate region, td � tFE � tex, shows similar
results for the conductance peak value as the region tFE �
tex. However, the peak shape in the intermediate region is
quantitatively different since by changing the gate voltage Vg

the ratio tFE/tex changes too. However, our calculations show
that the difference in the shape of the peaks is not qualitative.
Therefore it is difficult to observe it in an experiment. Thus
we consider both the intermediate and the “slow” FE regions
simultaneously.

The limit of slow FE was studied before using the
mean-field theory. In particular, two different situations were
discussed in Refs. [24,27]. In Ref. [27], the SET with a linear
dielectric material in the gate capacitor was discussed. It was
shown that due to coupling of a fast SET system with a
slow dielectric system, the hysteresis of the conductance as
a function of Q0 appears at a large positive susceptibility
of the dielectric layer [χ0 > χ cr

0 = Te C� /(πC0
g(Ec + T ))].

Reference [24] studied the SET with a strongly nonlinear FE
material in the gate capacitor. Similar to the case of “fast”
FE layer, the hysteresis in the vicinity of the point Q0 = 0
was predicted. In the present paper, we study the conductance
behavior moving from “fast” to “slow” FE (dielectric) in the
presence of FE (dielectric) polarization fluctuations. These
fluctuations substantially modify the behavior of SET even in
the case of “slow” FE.

Following the mean-field theory of the SET with “slow” and
weak dielectric layer (0 < χ0 < χ cr

0 ) [24] in the gate capacitor,

the conductance in the vicinity of Q0 = e/(2ε0) has the form

σ MF/σ0 ≈ eδQ0/(C� kBTe)

sinh (eδQ0/(C� kBTe))
≈ 1 − 1

6

(
eδQ0

C� kBTe

)2

,

(18)
where δQ0 = Q0 − e/(2ε0). Equation (18) is valid for small
deviations δQ0. The FE fluctuations lead to averaging of
the maximum over a finite region of Q0. This region is
proportional to the square root of the FE fluctuations disper-
sion, Sg

√
Dp ∼ √

TFE. For equal temperatures TFE = Te = T ,
the averaging gives the following maximum value for the
conductance:

σ av
max = σ0

[
1 − 1

18

(
eSg

√
Dp

C� kBT

)2]

= σ0

(
1 − 1

18

4πC0
ge

2χ

C�
2 kBT

)
. (19)

Equation (19) shows that the averaging over fluctuations
leads to a decrease of the conductance peak value. Moreover,
with decreasing the temperature, the conductance peak value
decreases. This unexpected behavior is related to the fact that
fluctuations of FE polarization behave as

√
T leading to the

“strong” ∼√
T free energy difference fluctuations. Below,

we will show that FE fluctuations also smear the hysteresis
appearance for χ0 > χ cr

0 .

E. Transition from “fast” to “slow” FE (dielectric)

The analytical consideration is difficult for tFE ∼ td. There-
fore we use MC simulations to study this region.

1. TFE > T 0
C .

In the case of “fast” FE (dielectric), the conductance appears
as a series of peaks as a function of the gate charge Q0.
Here, we consider the case of linear FE (dielectric) response.
In this case, the period of peaks and height is constant and
does not depend on Q0. The peak height is defined by
an effective additional Coulomb blockade. In the case of
“slow” FE (dielectric), the conductance is also a periodic
function of Q0 (see Refs. [24,27]) with the same period as
in the case of a “fast” dielectric. However, the shape of the
conductance peaks strongly depends on the magnitude of
the dielectric susceptibility, χ0. For large susceptibility, the
conductance shows a hysteresis behavior as a function of Q0

while for small susceptibility the hysteresis is absent. The
hysteresis behavior was demonstrated in Refs. [24,27] using
the mean-field theory in the absence of fluctuations of the
FE (dielectric) polarization. Our numerical simulations show
that FE fluctuations destroy the hysteresis for temperatures
TFE = Te = T . Lowering the FE temperature TFE decreases the
fluctuations of Q0 but the hysteresis width also decreases with
electronic temperature Te. Therefore, to observe the hysteresis
in the case of a “slow” dielectric, it is necessary to use the
SET with different temperatures of the dielectric layer and the
current conducting circuit, TFE < Te.

Figure 9 shows the evolution of function σ (Q0) with
increasing parameter γ for large susceptibility χ0 for the
following parameters: C0

g = 0.03 C� , αP = 0.5, e2β̃P =
3 × 10−4, Te = 0.06Ec. Panel (a) shows the ideal case in
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FIG. 9. (Color online) Conductance of SET as a function of Q0

for different tFE. (a) FE fluctuations are absent (TFE � Te). Red arrows
show the path around the hysteresis loop. Both hysteresis branches
are shown for tFE/td = 16. (b) FE fluctuations are present (TFE = Te).
The inset in the panel (b) shows the dependence of the peak value of
the conductance on tFE.

the absence of FE fluctuations and temperatures TFE � Te.
For large FE relaxation time, tFE � td, the hysteresis is very
pronounced, see blue dashed and blue dotted lines. Red
solid arrows show the path around the hysteresis loop. The
hysteresis width and the maximum value of conductance
decrease with decreasing time tFE (γ ). For tFE � td, the
hysteresis disappears and the conductance is suppressed due
to an additional Coulomb blockade effect. The situation is very
different for finite FE fluctuations and temperatures TFE = Te,
see panel (b). In this case, the conductance hysteresis is
absent for tFE � td. The conductance as a function of Q0 has
a peak in the vicinity of ε0Q0 = e/2. The peak value has a
nonmonotonic behavior with tFE. The inset in panel (b) shows
the conductance peak value, σmax = σ |ε0Q0=e/2, as a function
of tFE. The curve has a peak at tFE ≈ td.

If susceptibility, χ0, is small and the hysteresis is absent
at tFE � td, the conductance is a periodic function of Q0

[in the absence of nonlinear term in Eq. (4)]. Figure 10
shows the dependence of the peak value of the conductance,
σmax = σ |ε0Q0=e/2, on the FE relaxation time, tFE. The curves

FIG. 10. (Color online) Conductance peak value vs tFE for small
FE (dielectric) susceptibility, χ0. The inset shows the conductance
peak value at tFE/td = 8 as a function of temperature Te = TFE. The
dashed black line shows the result of MC simulations. The red solid
line corresponds to the modified Eq. (19).

in Fig. 10 are plotted in the presence of FE fluctuations for
the following parameters: αP = 2, C0

g = 0.01 C� , Te = TFE =
0.2Ec. One can see that in this case the peak value does not
depend on the FE relaxation time tFE. The inset in Fig. 10 shows
the dependence of the conductance peak value on temperature
for time tFE � td, see the black dashed line. The peak value
increases with temperature. It is in a qualitative agreement with
Eq. (19). The red line in the inset shows the same function
as in Eq. (19), however, with a different coefficient (1/7)
instead of (1/18). All curves in the inset are plotted for fixed
susceptibility, χ0.

2. TFE < T 0
C .

Above, we have shown that for “fast” FE, the conductance
has hysteresis as a function of Q0. Our MC simulations show
that this hysteresis exists even for “slow” FE. The hysteresis is
robust against the FE fluctuations (see red and black lines in the
inset in Fig. 11). The inset in Fig. 11 shows the SET conduc-
tance versus the gate charge Q0 and the FE relaxation time tFE

in the presence of FE polarization fluctuations for the following
parameters: C0

g = 0.2 C� and Te = TFE = 0.2Ec, αP = −2,
e2β̃P = 0.13. The conductance peak value decreases with
increasing the FE relaxation time (see the curve in Fig. 11).

F. Discussion of some experimental problems

The important question about an implementation of the SET
with an FE layer in the gate capacitor is related to the FE Curie
temperature. This temperature and the dielectric permittivity
decrease with decreasing FE layer thickness [48,49]. A critical
thickness exists for most of FE materials. Below this thickness,
the FE phase transition does not exist (T 0

C becomes negative).
Moreover, the boundary conditions at the FE layer surface in
the SET also contribute to the degradation of FE properties.
Since the grain voltage is not fixed, the FE internal electric field
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FIG. 11. (Color online) Conductance, σmax = σ |Q0=e/2, vs tFE for
negative susceptibility, χ0, (Te = TFE < T 0

C ). Inset: conductance of
SET as a function of Q0 for different tFE. Red solid curve stands for
increasing Q0. All other curves stand for decreasing Q0. Solid red
and black lines are for tFE � td. Blue dashed line shows the opposite
case, tFE/td = 0.1. All other curves correspond to intermediate tFE.

is not screened effectively leading to the reduction of the FE
temperature and dielectric permittivity. The question about the
electric properties of an FE material confined in such a small
volume is currently open. In our consideration, we assume
FEs with low Curie temperature. One example is the TTF-
CA FE material. Bulk TTF-CA under close circuit boundary
conditions has a Curie temperature T 0

C = 80 K [46,50]. For this
FE material, T 0

C can be of order of (0.1 − 0.2)Ec. In Ref. [51],
a TTF-CA film was confined at one surface with a granular
film. Therefore there was no effective screening of the internal
FE field. In this system, the FE Curie temperature has a lower
value T 0

C = 50 K.
For Coulomb blockade effects to exist at such a high

temperature (∼50 K), it is necessary to produce a rather small
island in the SET with a size of approximately 5 nm. Assuming
that the insulator thickness in the tunnel junctions is about 1 nm
and εjun ≈ 5, we find C ∼ 10−18 F. Usually, the resistance
of the tunneling junction is about 106 Ohm leading to the
discharging time td ∼ 10−12 s. Using tunnel junctions with
resistance ∼107 Ohm, one can increase the FE discharging
time to td ∼ 10−11 s.

It is known that the dielectric relaxation time in materials
depends on the mechanism of dielectric response. Two groups
of materials are most promising for our purposes. In the
first group, the dielectric response is caused by the elastic
mechanisms. The electronic mechanism does not produce a
very high dielectric permittivity, instead it gives a very fast
response with tFE ∼ 10−15 s. Usual insulators such as Si,
SiO2, and Al2O3 have such a response mechanism. These
materials can not be used as “retarded” in an SET. An
SET with these insulators can be described using “classical”
theory. The ionic elastic mechanism gives a higher dielectric
permittivity but slower response with tFE ∼ 10−11–10−14 s.
This mechanism substantially contributes to the dielectric
response of semiconductors (GaAs and CdS) and ionic crystals

such as NaCl. Insulators with this type of dielectric response
can be used to investigate the limits tFE � td and tFE ∼ td.
A second group of materials have thermal mechanisms of
dielectric response. These mechanisms give a rather high
permittivity but longer relaxation time, tFE ∼ 10−4–10−10 s.
Moreover, the relaxation time in these materials increases with
decreasing temperature. The dielectric response of relaxor
FEs (such as PMN-PSN [52] with tFE ∼ 10−9 s at room
temperature) are usually due to a thermal mechanism. These
materials can be considered as slow FEs with tFE � td.

Most FEs materials are rather slow with a dielectric
relaxation time well below 1 THz. This is due to the ionic
nature of their dielectric response. However, recently, new
types of electronic FEs were discovered. One of them is
TTF-CA. This material has dielectric relaxation time in the
terahertz region [47]. This material can be used to study the
interaction of an SET with retarded FEs.

IV. CONCLUSION

We studied the SET with an FE or a dielectric placed
in the gate capacitor. In contrast to the previous papers, we
investigated the system behavior for an arbitrary ratio between
the FE relaxation time, tFE, and the SET characteristic time td.
We used analytical methods and Monte Carlo simulations to
study the SET behavior.

We considered the case of “fast” FE (dielectric) with
�/Ec � tFE � td. We showed that this case is different
from the “classical” SET theory, where the instant response,
�/Ec � tFE, of a dielectric material is assumed. Thus a “fast”
FE has a retarded response. We showed that a retarded FE
(dielectric) response leads to the appearance of an additional
contribution to the Coulomb blockade effect and suppresses the
SET conductance. The conductance as a function of the gate
charge Q0 behaves differently at different temperatures. Below
a certain temperature T 0

C (which is the Curie temperature of
the FE inside the gate capacitor), the conductance shows the
hysteresis behavior. Above T 0

C , no hysteresis appears in the
case of “fast” FE. Monte Carlo simulations allowed us to take
into account fluctuations of the FE (dielectric) polarization.
For “fast” FE, these fluctuations partially suppress the addi-
tional Coulomb blockade effect. We showed that conductance
hysteresis is robust against these fluctuations.

We studied the case of a “slow” FE (dielectric), tFE � td.
This limit was discussed in literature using the mean-field
approach in the past. An interesting feature is related to the
fact that due to the coupling of a fast SET subsystem with
a slow FE subsystem the conductance of the SET showed
a hysteresis behavior even for temperatures T > T 0

C . Thus
the nature of the hysteresis is not related to the spontaneous
polarization of the FE layer and may appear even with a simple
dielectric being placed in the gate capacitor. We used Monte
Carlo simulations to reinvestigate this case. We found that FE
(dielectric) fluctuations suppress the hysteresis. The only way
to observe this hysteresis is to produce an FE (dielectric) layer
temperature lower than the temperature of electrons in the SET
leads (source and drain) and the island (TFE � Te).

We showed that for “slow” FE and low temperature, T <

T 0
C , the SET conductance as a function of the gate charge Q0
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shows a hysteresis due to FE instability. This hysteresis is
robust against FE fluctuations.

Using the Monte Carlo simulations, we studied the tran-
sitional region between “fast” and “slow” FE. The transition
depends on the temperature [or the susceptibility of the FE
(dielectric) layer]. At high temperatures (low susceptibility),
the peak value of the SET conductance is almost independent
of the FE relaxation time. For temperatures close to T 0

C (high
susceptibility), the conductance peak value nonmonotonically
depends on the FE relaxation time. A maximum appears close
to tFE = td. Below the Curie point (T < T 0

C ), the conductance
peak value decreases with increasing tFE.
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