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Active magneto-optical control of spontaneous emission in graphene
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We investigate the spontaneous emission rate of a two-level quantum emitter near a graphene-coated substrate
under the influence of an external magnetic field or strain induced pseudomagnetic field. We demonstrate that the
application of the magnetic field can substantially increase or decrease the decay rate. We show that a suppression
as large as 99% in the Purcell factor is achieved even for moderate magnetic fields. The emitter’s lifetime is
a discontinuous function of |B|, which is a direct consequence of the occurrence of discrete Landau levels in
graphene. We demonstrate that, in the near-field regime, the magnetic field enables an unprecedented control of
the decay pathways into which the photon/polariton can be emitted. Our findings strongly suggest that a magnetic
field could act as an efficient agent for on-demand, active control of light-matter interactions in graphene at the
quantum level.
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The possibility of tailoring light-matter interactions at a
quantum level has been a sought-after goal in optics since the
pioneer work of Purcell [1], where it was first shown that the
environment can strongly modify the spontaneous emission
(SE) rate of a quantum emitter. To achieve such objective,
several approaches have been proposed so far. One of them
is to investigate SE in different system geometries [2–11].
Advances in nanofabrication techniques have not only allowed
the increase of the spectroscopic resolution of molecules in
complex environments [12], but have also led to the use of
nanometric objects, such as antennas and tips, to modify the
lifetime and enhance the fluorescence of single molecules
[13–16]. The presence of metamaterials may also strongly
affect quantum emitters’ radiative processes. For instance, the
impact of negative refraction and of the hyperbolic dispersion
on the SE has been investigated [17–19]. Also, the influence
of cloaking devices on the SE of atoms has been recently
addressed [20].

Progress in plasmonics has also allowed for an unprece-
dented control of light-matter interactions at a quantum level.
When the emitter is located near a plasmonic structure it
may experience a strong enhancement of the local field. This
effect can be exploited in the development of important ap-
plications in nanoplasmonics [11,21–24]. However, structures
made of noble metals are hardly tunable, which unavoidably
limit their application in photonic devices. To circumvent
these limitations, graphene has emerged as an alternative
plasmonic material due to its extraordinary electronic and
optical properties [25–30]. Indeed, graphene hosts extremely
confined plasmons, facilitating strong light-matter interactions
[27–30]. In addition, the plasmon spectrum in doped graphene
is highly tunable through electrical or chemical modification
of the charge carrier density. Due to these properties, graphene
is a promising material platform for several photonic appli-
cations, especially in the THz frequency range [29]. At the
quantum level, the spatial confinement of surface plasmons
in graphene has been shown to modify the SE rate [31,32].

The electromagnetic (EM) field pattern excited by quantum
emitters near a graphene sheet [33] further demonstrates
the huge field enhancement due to the excitation of surface
plasmons. A graphene sheet has also been shown to mediate
sub- and superradiance between two quantum emitters [34].
Recently, the electrical control of the relaxation pathways and
SE rate in graphene has been observed [35]. Despite all these
advances, the achieved modification in the emitter’s decay
rate remains modest so far. Most of the proposed schemes
consider emitters whose transition frequencies are in the
optical/near-infrared range, usually far from graphene’s in-
traband transitions. As a consequence, the effects of graphene
on the SE rate are only relevant when the emitter is no more
than a few dozen nanometers apart.

Here we propose an alternative mechanism to actively tune
the lifetime of a THz quantum emitter near a graphene sheet
by exploiting its extraordinary magneto-optical properties. We
show that the application of a magnetic field B allows for
an unprecedented control of the SE rate for emitter-graphene
distances in the micrometer range. This is in contrast to
previous proposals, in which the modification of the SE rate
was achieved by electrically or chemically altering graphene’s
doping level. The fact that we consider a low-frequency emitter
enables us to probe the effects of intraband transitions in
graphene on the decay rate, which have also been unexplored
so far. In summary, our key results are (i) a striking 99%
reduction of the emitter SE rate compared to the case where
B = 0; (ii) a new distance-scaling law for the decay rate
that corrects the typical 1/d4 behavior and is valid for a
broad range of distances and magnetic fields; (iii) a highly
nonmonotonic behavior of the SE rate as a function of |B|, with
sharp discontinuities in the regime of low temperatures; and
(iv) the possibility of tailoring the decay channels into which
the photon can be emitted. These findings can be physically
explained in terms of the interplay among the different EM
modes and of electronic intraband transitions between discrete
Landau levels in graphene.
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FIG. 1. (Color online) Quantum emitter at a distance d above a
graphene sheet on the top of a substrate of permittivity εs(ω). The
whole system is under the influence of a magnetic field B = B ẑ.

I. METHODS

Let us consider the situation depicted in Fig. 1. The half
space z < 0 is composed of a nonmagnetic, isotropic, and
homogeneous material of permittivity εs(ω), on top of which
(z = 0) a flat graphene sheet is placed. The system is under
influence of a uniform static magnetic field B = B ẑ. The upper
medium z > 0 is vacuum and an excited quantum emitter is
located at a distance d above the interface.

We consider that the quantum emitter dynamics is well
described by two of its energy eigenstates (|g〉 and |e〉). Within
the electric dipole approximation and weak-coupling regime,
one can show that the SE rates �⊥ and �‖ for transition
dipole moments perpendicular and parallel to the XY plane,
respectively, are (Appendix A) [36–38]
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where �0 = |deg|2ω3
0/(3πε0�c3) is the free space SE rate, deg

is the emitter’s electric dipole matrix element, ω0 = k0c is
the transition frequency, kz =

√
k2

0 − k2, and rs,s, rp,p are the
graphene-coated wall polarization-preserving reflection coef-
ficients. Although the cross-polarization reflection coefficients
rs,p and rp,s are nonvanishing in the case of graphene under the
influence of an uniform static magnetic field, being responsible
for Faraday and Kerr rotations, they do not contribute to the
emitter’s lifetime in the present situation (see Appendix A).
The diagonal reflection coefficients are given by (Appendix B)
[38–40]
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0 − k2, and k = |k| = |kx x̂ + ky ŷ|. σL, σT , and

σH are the longitudinal, transverse, and Hall conductivities
of graphene, respectively, which are, in general, functions of
both frequency and transverse wave vector k. Although the
dependence of the material properties on wave vector may be
relevant in the near field [41], we have checked that this is not

the case for the distances we consider. Indeed, the evanescent
waves contribution to the SE process is suppressed by a e−2kd

factor, whereas nonlocal effects on graphene’s conductivity
become significant for k � max (

√
eB/�,ω0/vF ,τ−1/vF )

[42,43]. Here vF � 106 m/s and τ is a phenomenological
relaxation time of electrons in graphene. Therefore, provided
d � min (

√
�/eB,vF /ω0,vF τ ), we can safely set k = 0 in

the conductivities, in which case σL = σT .
We study the lifetime of quantum emitters in the low-

temperature (kBT 	 μc) and low-frequency (�ω0 	 μc)
regimes, where μc is the graphene’s chemical potential. As
a result, graphene’s conductivities can be approximated by
their intraband terms [29,44–46]

σL = σT � σ intra
L � e3v2
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[
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where �intra =Mnc+1−Mnc
, Mn = √

nM1 are the Landau
energy levels, M2

1 = 2�eBv2
F , and nc = int[μ2

c/M
2
1 ] denotes

the number of occupied Landau levels.

II. RESULTS

Following previous experimental work on SE [47], we
consider from now on an emitter with a strong transition
at ω0 = 4.2 × 1012 rad/s (∼0.7 THz). We set τ =0.184 ps
[48], μc = 115 meV and, inspired by recent experiments on
magneto-optical effects in graphene [49], consider a silicon
carbide (SiC) substrate. It is important to clarify that ω0

may be a function of d (the emitter energy levels can be
Lamb shifted) and of B (the levels may also be Zeeman
shifted). However, for the purposes of the present work,
both effects may be neglected. A numerical estimate shows
that for the distances considered here, the influence of the
Lamb shift on the SE rate is unnoticeable, regardless of the
value of B. Concerning the Zeeman shift, we have checked
that although some energy levels may be altered in their
absolute values, the suppression and enhancement factors of
the SE rate due to the application of B are insensitive to this
shift.

In Fig. 2 we plot the normalized SE rate �⊥/�0 as a function
of the distance d between the emitter and the half space for
several values of B. For d � 100 μm the coupling between the
emitter and the graphene-coated wall is mediated by propagat-
ing modes (k � k0) of the vacuum EM field. In this regime of
distances the emitter’s lifetime is barely affected by B. This
behavior results from the fact that in the far field the phase
e2ikzd gives a highly oscillatory integrand in Eq. (1), except for
kz ∼ 0. In this case, however, rs,s ∼ rp,p ∼ −1 + O(kz/k0), so
that the reflectivity of the graphene-coated half space is almost
saturated. Hence, B hardly affects the reflection coefficients in
this regime. A transition from the oscillating pattern at large
distances to a sharp growth at small distances takes place
for d � 100 μm. In this regime of distances the emission is
dominated by evanescent modes (k > k0) of the vacuum EM
field. Interestingly, for d � 10 μm changing B strongly affects
the lifetime of the quantum emitter. A striking suppression of
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FIG. 2. (Color online) Normalized decay rate �⊥/�0 as a func-
tion of distance d between the emitter and the graphene-SiC half
space for different magnetic fields. The inset presents the relative SE
rate ��⊥ as a function of d for the same values of B.

99% in the Purcell factor, when compared to the case where
B = 0 T, occurs for 1 μm � d � 10 μm and B � 10 T. Even
for smaller values of B the Purcell effect is greatly reduced. For
example, for d = 3 μm the influence of the graphene-coated
wall on �⊥ can be reduced by a factor of 10 for B = 5 T.
These results are highlighted in the inset of Fig. 2, where we
plot ��⊥ = [�⊥(d,B) − �⊥(d,0)]/�⊥(d,0) as a function of
d for the same values of B. For even smaller distances an
enhancement of the SE rate takes place as the magnetic field
increases. For clarity this effect is not shown in Fig. 2, although
it can be noticed in the inset for d � 1 μm. For instance, for
B = 5 T and d = 0.2 μm the SE rate is enhanced by ∼500%.

It is also interesting to analyze the distance-scaling law of
the SE rate for graphene under an external magnetic field. In
the near-field regime, one can show that (Appendix C)

�⊥
�0

� 3ε0c
3Re[σL]

ω4
0(εs + ε0)2

1

d4
F

[ |ImσL|
ω0(εs + ε0)d

]
, (6)

where F (x) is defined in Appendix C, provided Re[σL] 	
ω0(εs + ε0)d and Im[εs(ω0)] � 0. The validity of this equation
is not restricted to the case when a magnetic field is present;
rather it is valid whenever correction due to Im σL are non-
negligible. Equation (6) explains the results in Fig. 2 for a broad
range of distances (0.3 μm � d � 1.4 μm) and magnetic fields
(5 T � B � 20 T) with error �10%. The distance scaling law
�⊥ ∝ d−4F (d0/d) [where d0 = |ImσL|/ω0(εs + ε0)] differs
from the recently observed result �⊥ ∝ d−4, obtained in the
case B = 0 [32]. This difference arises due to (low frequency)
intraband transitions and losses in graphene, whose signature
is coded in the function F (x) appearing in Eq. (6). Indeed,
while in the high-frequency regime (ω0 � τ−1) graphene’s
conductivity is approximately a real function, this is not true
at the frequency considered here (ω0 ∼ τ−1). However, the
�⊥ ∝ d−4 can be derived provided |Im σL| 	 ω0(εs + ε0)d.
Since Im[σL] is greatly affected by B, the magnetic field
could be exploited to tailor the distance ranges where this
condition is satisfied, allowing for a real-time control of the
distance-scaling law in the near field. Note that the effects
of B on the SE are predominantly related to changes in
σL. We have verified that σH can be neglected in Eq. (3)
for the chosen material parameters. In this case, the same

modifications in the SE rate could be obtained by applying a
trigonal distortion to graphene, which would generate a strain
induced pseudomagnetic field, giving rise to the formation
of Landau levels in graphene’s electronic spectrum, while
keeping σH = 0 due to time-reversal invariance [50,51].

To understand such an influence of B on the SE rate in
the near-field, it is necessary to delve a little deeper into
the decay process itself. The spontaneous decay of a source
is often associated to the emission of radiation to the far
field, but that is not necessarily the case. In particular, in
the near-field regime the emitter decays preferentially into
nonradiative channels, like surface waves characterized by
k �

√
εs/ε0k0 [52]. For the transition frequency we are con-

sidering, |Re σL| ∼ |Im σL|, so that surface magnetoplasmon
polaritons [42] are strongly damped, playing essentially no
role in the SE process [53]. Nevertheless, the so-called lossy
surface waves (LSWs) [41,54,55] are crucial here. These
waves correspond to nonradiative processes and emerge in
the case where the emitter’s energy is transferred directly
to the substrate or graphene, generally giving origin to an
excitation (e.g., electron-hole pair). Such waves are quickly
damped, with their energy being usually converted into heat
[41,55]. In the extreme near-field regime, absorption in the
materials governs the SE process and the LSWs (k � k0)
are usually the main channel into which the emitter loses its
energy.

In Fig. 3 we unveil the role played by the different decay
channels in the emitter’s lifetime. Figure 3(a) depicts the decay
probabilities pP

⊥, pTIR
⊥ , and pLSW

⊥ of energy emission in a
propagating (P), totally internal reflected (TIR), or LSW mode,
respectively, as functions of d for two different values of B.
These probabilities are given by the ratio between the partial
decay rates into the aforementioned modes and the total SE
rate. The partial contribution of propagating, TIR, and LSW

FIG. 3. (Color online) The decay channel probabilities as a func-
tion of (a) d and (b) B for μc = 115 meV. In (a) solid and dotted
curves are for B = 5 T and B = 15 T, respectively. In (b) the distance
is fixed at d = 4 μm. �⊥(d,B)/�0 as a function of B is plotted in
(c) d = 200 nm and (d) d = 1 μm. The vertical lines show the position
of the peak of �⊥(d,B)/�0 obtained via Eq. (11).
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modes to the SE rate can be respectively well approximated
by (Appendix D)
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⊥
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where r
p,p
QS are the reflection coefficients of the graphene-on-

substrate system in the quasistatic limit [equivalent to take
c → ∞ in Eq. (3)].

We note in Fig. 3 that changing B can severely affect the
possible decay channels in the 1 μm � d � 10 μm range,
essentially swapping the role of the LSW and TIR modes as
the dominant decay pathway. Indeed, for d = 4 μm we note
that pLSW

⊥ drops sharply from 75% to 15% when B changes
from 5 to 15 T. On the other hand, pTIR

⊥ (pP
⊥) increases from

20% (5%) to 67% (18%). This effect is evinced in Fig. 3(b),
where we plot the decay probabilities as a function of B, for
d = 4 μm. It is then clear the overall downward (upward) trend
of pLSW

⊥ (pTIR
⊥ ) as B is increased, with a dominance exchange

at B � 10 T.
Figures 3(c) and 3(d) show �⊥(d,B)/�0 as a function of B

for d = 200 nm and d = 1 μm, respectively, and two distinct
values of μc. The SE rate presents sharp discontinuities, which
are directly linked to the discrete character of the Landau levels
brought about by the application of B. These discontinuities
occur whenever a given Landau level energy crosses μc

[40,44–46]. Moreover, there exists a critical magnetic field
Bc = μ2

c/(2�ev2
F ) above which the discontinuities are no

longer present. This is due to the fact that for B > Bc all
positive Landau levels are above μc, so no more crossings
can occur. Note that the curves merge in the final plateau,
regardless of the value of μc. For B > Bc we have �intra = M1,
which does not depend on μc. Hence, provided kBT 	 μc both
σL and σH are approximately independent of μc for B > Bc.
As a function of B, the SE rate presents a maximum whose
position depends on both μc and d. This behavior can be
understood recalling that for short distances the SE rate is
[32,38]

�⊥
�0

� 3

2k3
0

∫ ∞

0
dkρ(k)Im[rp,p(k,ω0,B)], (10)

where ρ(k) = k2e−2kd has a maximum at kmax
1 = 1/d. In the

large k limit Im[rp,p] presents a peak at kmax
2 � ε0ω0[εs/ε0 +

1]/|σL|. Since |σL(ω0,B)| decreases with B (for B > 1 T in
our case) we note that kmax

2 moves to high values of k as B

increases. Therefore, for a fixed emitter-graphene separation,
the overlap between ρ(k) and Im[rp,p] grows with B until
kmax

2 ∼ kmax
1 . After that, this overlap diminishes and so does

�⊥, which explains the behavior of the SE rate in Fig. 3. The
value of the magnetic field Bm that maximizes �⊥ can be
estimated by setting kmax

1 = kmax
2 . This leads to

|σL(ω0,μc,Bm)| � ε0ω0d[εs(ω0)/ε0 + 1]. (11)

FIG. 4. (Color online) Three-dimensional plot of the relative SE
��||(μc,B) as a function of both μc and B for d = 2 μm.

The accuracy of this equation is clearly seen in Figs. 3(c)–
3(d) where we show Bm calculated through Eq. (11) for μc =
115 meV and μc = 150 meV.

Similar results hold for �‖ in the near-field regime.
Indeed, for d 	 2π/k0 the contribution of rs,s to �‖ is
negligible and the approximation kz � ik is valid. Hence, apart
from a factor 1/2, �‖ can also be written as in Eq. (10)
(see Appendix C) [32]. In Fig. 4 we plot ��‖(μc,B) =
[�‖(μc,B) − �‖(μc,0)]/�‖(μc,0) as a function of both μc and
B for d = 2 μm. In this case, the reduction in the Purcell factor
in the μm range can be as high as 98%, when compared to
the case B = 0. Figure 4 corroborates our conclusions that
an astounding control on the radiative properties of quantum
emitters can be achieved via magneto-optical properties in
graphene. Moreover, Fig. 4 reveals that the SE rate can be
modified by keeping B constant while changing μc, which
could be implemented by applying a gate voltage on graphene
[25–29].

III. CONCLUSION

In conclusion, we have shown that the application of a
magnetic field allows for a great control over the Purcell
effect and decay pathways of quantum emitters near graphene.
Altogether, our findings demonstrate the viability of actively
dictating optical energy transfer processes with magnetic fields
or strain. By demonstrating that these results are within the
reach of state-of-the-art experiments on quantum emission
in the THz range, we expect that they may find further
applications in quantum photonics and may even serve to probe
other light-matter phenomena.
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APPENDIX A: SPONTANEOUS EMISSION NEAR
AN ANISOTROPIC INTERFACE

The SE decay rate of a two-level emitter can be written in
terms of the EM dyadic Green’s function as

� = 2ω2
0

ε0�c2
Im[d∗

ge · G(r0,r0; ω0) · dge], (A1)

where r0 = (0,0,d) is the position of the quantum emitter and
G(r,r′; ω) is the EM dyadic Green’s function, which allows
one to write the electric field at position r that is generated by
a point dipole at position r′, oscillating with frequency ω as

E(r; ω) = μω2G(r,r′; ω) · d(ω), (A2)

where μ is the permeability of the medium where the dipole
is embedded. In vacuum the dyadic Green’s function satisfies
the inhomogeneous Helmholtz equation

∇ × ∇ × G(r,r′; ω) − ω2

c2
G(r,r′; ω) = Iδ(r − r′), (A3)

with I being the unit dyad.
We are interested in the case where the emitter is located at

a distance d above a semi-infinite homogeneous medium with
flat surface at z = 0, where the graphene layer lies. Since the
dyadic Green’s function obeys the same boundary conditions
as the electric field, we can write it for z,z′ > 0 as

G(r,r′; ω0) = G(0)(r,r′; ω0) + G(r)(r,r′; ω0), (A4)

where G(0)(r,r′; ω0) is the free space Green’s function and
G(r)(r,r′; ω0) is the reflected one. For z′ > 0 and z < 0, the
dyadic Green’s function can be written as a transmitted Green’s
function, G(t)(r,r′; ω0). Each of these Green’s functions can be
conveniently expressed in terms of its spatial two-dimensional
Fourier transform G̃

(0/r/t)
(k,z,z′; ω) as [36]

G(0/r/t)(r,r′; ω)=
∫

d2k
(2π )2

eik·(x−x′)G̃
(0/r/t)

(k,z,z′; ω), (A5)

where k = kx x̂ + ky ŷ and x = xx̂ + yŷ. The free space
Green’s function is given by

G̃
(0)

(k,z,z′; ω)= i

2kz

eikz|z−z′ |(ε±
p ⊗ ε±

p + ε±
s ⊗ ε±

s ), (A6)

with kz defined as

kz =
⎧⎨
⎩

√
k2

0 − k2, k < k0,

i

√
k2 − k2

0, k > k0,
(A7)

and we have introduced the polarization vectors for s- and
p-polarized waves (the + and − signs correspond to z > z′
and z < z′, respectively),

ε±
s = ky x̂ − kx ŷ

k
, ε±

p = k

k0
ẑ ∓ kz

k0

kx x̂ + ky ŷ
k

. (A8)

Note that these vectors are orthogonal, but they are normalized
only for propagating modes (k < k0).

The reflected Green’s function can be written as

G̃
(r)

(k,z,z′; ω) = i

2kz

eikz(z+z′)
∑

i,j=s,p

r i,jε+
i ⊗ ε−

j , (A9)

where r i,j are the reflection coefficients for an incoming
j-polarized wave that is reflected as an i-polarized wave.
Similarly, the transmitted Green’s function is given by

G̃
(t)

(k,z,z′; ω) = i

2kz

e−iks
zzeikzz

′ ∑
i,j=s,p

t i,jε−
i,t ⊗ ε−

j , (A10)

where t i,j are the transmission coefficients (incoming j-
polarized wave, transmitted i-polarized wave) and ε±

i,t are
the polarization vectors in the substrate, given by Eq. (A8)
after replacing k0 by k0

√
εs/ε0 and kz by ks

z . The reflection
and transmission coefficients are obtained by imposing the
usual boundary conditions on the EM field at z = 0 and by
modeling graphene as a two-dimensional current distribution
(see Appendix B).

The evaluation of the SE rate requires the evaluation of
the dyadic Green’s function at the coincidence r′ = r = r0.
In this case the integration over the momentum angular
variable in Eq. (A5) can be easily performed. The only
nonzero components of G(0)(r0,r0; ω0) are the diagonal ones.
The contribution of G(r)(r0,r0; ω0) to the SE rate presents
polarization-preserving terms (which involve ε+

p ⊗ ε−
p and

ε+
s ⊗ ε−

s ) and cross-polarization terms (which involve ε+
p ⊗

ε−
s and ε+

s ⊗ ε−
p ). After performing the angular integration, the

polarization-preserving terms only select the diagonal terms of
d∗

ge ⊗ dge. The cross-polarization terms select the d∗
ge,xdge,y −

d∗
ge,ydge,x components of the dipole matrix elements. As the

transition dipole matrix elements of a two-level system can be
made real by a proper choice of the relative phase between
|g〉 and |e〉, the cross-polarization terms do not contribute to
the SE rate. Therefore, only the reflection coefficients rp,p and
rs,s give a nonvanishing contribution to the SE process even
though cross-polarization coefficients rs,p and rp,s are nonzero.
Similar conclusions hold even in the case of a semi-infinite
anisotropic substrate. By plugging Eqs. (A4)–(A9) into (A1)
it is straightforward to obtain Eqs. (1) and (2).

APPENDIX B: FRESNEL’S COEFFICIENTS FOR
AN INTERFACE COATED WITH A TWO-DIMENSIONAL

CONDUCTIVE FILM IN THE PRESENCE OF AN APPLIED
MAGNETIC FIELD

Let us consider that an incoming arbitrarily polarized EM
wave propagating in a dielectric medium with permittivity
ε1 and permeability μ1 impinges on the flat interface with
a second homogeneous medium, with permittivity ε2 and
permeability μ2, occupying the half space z � 0 coated by
a two-dimensional (2D) conductive film. For an impinging
EM wave with frequency ω and in-plane wave vector k, the
electric and magnetic fields can be expressed as

EI = [
Es

I ε
+
s,1 + E

p
I ε

+
p,1

]
e−ikz,1zei(k·x−ωt), (B1)

HI = 1

Z1

[
E

p
I ε

+
s,1 − Es

I ε
+
p,1

]
e−ikz,1zei(k·x−ωt), (B2)
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where Es
I , E

p
I are the transverse electric and transverse

magnetic incoming amplitudes, respectively. kz,n and ε±
s/p,n are

given by Eqs. (A7) and (A8) replacing k0 with kn = ω
√

εnμn,
with n = 1,2. Zn = √

μn/εn is the impedance of medium n.
Similarly, the reflected and transmitted fields are written as

ER = [
Es

Rε−
s,1 + E

p
Rε−

p,1

]
eikz,1zei(k·x−ωt), (B3)

HR = 1

Z1

[
E

p
Rε−

s,1 − Es
Rε−

p,1

]
eikz,1zei(k·x−ωt), (B4)

and

ET = [
Es

T ε+
s,2 + E

p
T ε+

p,2

]
e−ikz,2zei(k·x−ωt), (B5)

HT = 1

Z2

[
E

p
T ε+

s,2 − Es
T ε+

p,2

]
e−ikz,2zei(k·x−ωt). (B6)

We should determine the reflected E
s(p)
R and transmitted

E
s(p)
T amplitudes in order to calculate the reflection and

transmission coefficients,

r i,j = Ei
R

E
j
I

and t i,j = Ei
T

E
j
I

, (i,j) = (s,p). (B7)

The reflected and transmitted amplitudes are obtained by
solving Maxwell’s equations and imposing the appropriate
boundary conditions on the interface at z = 0. Taking into
account the presence of a 2D conductive film at the z = 0, the
boundary conditions that must be satisfied by the EM field are

ẑ × [ET − ER − EI ] = 0, (B8)

ẑ × [HT − HR − HI ] = J2D = σ · ET , (B9)

where J2D is a 2D current density that is induced on the
conductive field and σ is the 2D conductivity tensor of the film
[56]. In the most general case (a 2D homogeneous anisotropic
material in the presence of a magnetic field) the conductivity
tensor can be written as

σ = σLê‖ ⊗ ê‖ + σT ê⊥ ⊗ ê⊥
+ σH (ê⊥ ⊗ ê‖ − ê‖ ⊗ ê⊥)

+ σ sym
xy (ê⊥ ⊗ ê‖ + ê‖ ⊗ ê⊥), (B10)

where ê‖ = (kx x̂ + ky ŷ)/|k| and ê⊥ = (ky x̂ − kx ŷ)/|k|. σL

(σT ) is the longitudinal (transverse) conductivity, σH is the Hall
conductivity and σ

sym
xy is only nonzero in anisotropic materials

such as black phosphorus [57]. In the case of graphene we
have σ

sym
xy = 0, but, in order to keep the discussion as general

as possible and due to the rising interest in black phosphorus,
we allow for a finite σ

sym
xy . Using Eqs. (B1)–(B6) in Eq. (B8)

and Eq. (B9), one can demonstrate that the reflected and
transmitted amplitudes satisfy the following equations:

Es
I + Es

R = Es
T , (B11)

kz,1

k1

(
E

p
I − E

p
R

) = kz,2

k2
E

p
T , (B12)

1

Z1

kz,1

k1

(
Es

I − Es
R

) =
(

σT + 1

Z2

kz,2

k2

)
Es

T

+(
σ sym

xy + σH

)kz,2

k2
E

p
T , (B13)

1

Z1

(
E

p
I +E

p
R

) =
(

σL

kz,2

k2
+ 1

Z2

)
E

p
T + (

σ sym
xy − σH

)
Es

T .

(B14)

Considering separately the cases of s and p incident
polarization, one can decouple previous equations and show
that Fresnel’s coefficients in the presence of an external
magnetic field are given as

rp,p = �T
+�L

− + �2

�T+�L+ + �2
, rs,s = −�T

−�L
+ + �2

�T+�L+ + �2
, (B15)

tp,p = Z2ε2

Z1ε0

2kz,1�
T
+

�T+�L+ + �2
, t s,s = μ2

μ0

2kz,1�
L
+

�T+�L+ + �2
, (B16)

rs,p = t s,p = −2
Z2

0

Z1

μ1μ2

μ2
0

kz,1kz,2
(
σ

sym
xy + σH

)
�T+�L+ + �2

, (B17)

rp,s = −k1kz,2

k2kz,1
tp,s = 2

Z2
0

Z1

μ1μ2

μ2
0

kz,1kz,2
(
σ

sym
xy − σH

)
�T+�L+ + �2

, (B18)

with

�L
± = (kz,1ε2 ± kz,2ε1 + kz,1kz,2σL/ω)/ε0, (B19)

�T
± = (kz,2μ1 ± kz,1μ2 + ωμ1μ2σT )/μ0, (B20)

�2 = Z2
0μ1μ2kz,1kz,2

[
σ 2

H − (σ sym
xy )2

]
/μ2

0. (B21)

For graphene σ
sym
xy = 0 and, in the case where medium 1 is

vacuum (ε1 = ε0, μ1 = μ0) and medium 2 is nonmagnetic
(μ2 = μ0), the reflection coefficients reduce to the ones given
in the main text, Eq. (3).

APPENDIX C: DISTANCE-SCALING LAW IN THE NEAR
FIELD FOR TERAHERTZ EMITTERS

In the near field, the main contribution for the SE rate
in Eqs. (1) and (2) comes from large in-plane wave vectors
k � k0. In this case the quasistatic approximation holds (c →
∞) and kz and ks

z can be well approximated by ik. Besides,
the Hall conductivity gives a negligible contribution to the
quasistatic reflection coefficients so that we can set σH � 0.
Within these approximations the dominant terms in �⊥ and �‖
originate from the polarization-preserving transverse magnetic
reflection coefficient and can be cast as

�⊥
�0

� 3

2

∫ +∞

0
dk

k2

k3
0

e−2kd Im
[
r

p,p
QS

]
, (C1)

�‖
�0

� 3

4

∫ +∞

0
dk

k2

k3
0

e−2kd Im
[
r

p,p
QS

]
, (C2)

where

r
p,p
QS = i(εs − ε0)ω0 − kσL

i(ε0 + εs)ω0 − kσL

. (C3)

In a regime where |Re[σL]| 	 (ε0 + εs)ω0d the imaginary
part of r

p,p
QS can be approximated by

Im
[
r

p,p
QS

] � 2ε0ω0kRe[σL]

{(εs + ε0)ω0 − kIm[σL]}2 . (C4)
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Substituting Eq. (C4) into Eqs. (C1) and (C2) one can show
that the Purcell factor in the near-field regime is given by

�⊥
�0

� 3ε0c
3Re[σL]

(ε0 + εs)2ω4
0

1

d4
F

{ |Im[σL]|
(ε0 + εs)ω0d

}
, (C5)

�‖
�0

� 3ε0c
3Re[σL]

2(ε0 + εs)2ω4
0

1

d4
F

{ |Im[σL]|
(ε0 + εs)ω0d

}
, (C6)

with the function F (x) defined as

F (x) =
∫ +∞

0
dy

y3e−2y

(1 + yx)2
. (C7)

APPENDIX D: DECAY CHANNEL PROBABILITIES

In order to determine the different decay pathways prob-
abilities, one must study how the total power emitted is
distributed into the different channels. Two processes can be
distinguished: (i) radiative decay, which involves the emission
of a photon that can be detected by a far away detector;
(ii) nonradiative decay, where the emitted power does not
reach the far field, but is instead absorbed by graphene or
substrate and creates a material excitation. In order to compute
each channel contribution to the decay process, we use the
fact that the total SE rate given by Eq. (A1) corresponds
also to the power emitted by a classical oscillating dipole,
d(t) = de−iω0t + d∗eiω0t . The classical power emitted by such
dipole is related to the SE rate of a two-level quantum
emitter through P = �ω0� [36,37], provided we choose for
d the transition dipole moment of the quantum emitter. The
probability of decaying into a radiative or nonradiative channel
can be obtained by computing the fraction of the power that is
emitted by the classical dipole to the far field and the one that
is dissipated into the materials, respectively.

The average power emitted by the classical dipole that
reaches the far field (radiative processes) can be expressed
as

Prad = lim
r→∞

∫ 2π

0
dφ

∫ π

0
dθ sin(θ ) r2r̂ · 〈S(r)〉, (D1)

where the Poynting vector in the far field is given by

S(r,t) = 1

Z
E(r,t) · E(r,t)r̂, (D2)

p contribution
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FIG. 5. (Color online) Integrands of Eqs. (D10) and (D11) for
the quantum emitter’s dissipated power by nonradiative processes.
On the left we plot the the integrand of Eq. (D10); on the right we plot
the integrand of (D11), splitting it into the individual contributions
from the absorption coefficients Ap and As. The vertical dashed lines
mark the points k = k0 and k = k0

√
εs/ε0. The values of B = 5 T

and μc = 115 meV were used.

and 〈· · · 〉 denotes time average over one oscillation period.
Here Z = √

μ/ε is the impedance of the medium. Using
Eqs. (A2) and (D2), the time-averaged Poynting vector can
be cast as

〈S(r,t)〉 = 2μ2
0ω

4
0

Z
|G(r,r0; ω0) · dge|2. (D3)

In the limit k0|r − r0| � 1, the Green function G(r,r0; ω0)
can be evaluated from Eq. (A5) using the stationary phase
method (where the fast oscillating phase is given by k · x +
ik(s)

z |z|). The obtained result is

G(r,r0; ω0) � −ikn|z|
2πr2

eikn(r− z2

r
)G̃

( x
r
kn,z,d; ω0

)
, (D4)

with kn = k0 for z > 0 and kn = k0
√

εs/ε0 for z < 0. Using
this result together with equations (A9), (A10), (D1), and (D3),
one can put the total power emitted into the far field by the
dipole as [36]

Prad = P
up
rad + P down

rad , (D5)

where P
up
rad and P down

rad are the average powers emitted into the
regions z > 0 and z < 0, respectively. Splitting each term into
contributions from dipole components that are perpendicular
and parallel to the XY plane, performing the integral over φ and
changing the variable of integration θ according to k = k0 sin θ

for P
up
rad and k = k0

√
εs/ε0 sin θ for P down

rad , we can express the
average powers as

P
up
rad,⊥
P0

= 1

2
+ 3

4

∫ k0

0
dk

k3

k3
0 |kz|

{2Re[e2ikzdrp,p] + |rp,p|2 + |rs,p|2}, (D6)

P
up
rad,‖
P0

= 1

2
+ 3

8

∫ k0

0
dk

k

k0|kz|
{

2Re

[
e2ikzd

(
rs,s − |kz|2

k2
0

rp,p

)]
+ |rs,s|2 + |kz|2

k2
0

|rp,p|2 + |rp,s|2 + |kz|2
k2

0

|rs,p|2
}
, (D7)

P down
rad,⊥
P0

= 3

4

∫ k0
√

εs/ε0

0
dk

k3

k3
0 |kz|

e−2dImkz
|ks

z |
|kz| {|t

p,p|2 + |t s,p|2}, (D8)

P down
rad,‖
P0

= 3

8

∫ k0
√

εs/ε0

0
dk

k

k0|kz|e
−2dImkz

|ks
z |

|kz|
{
|t s,s|2 + |kz|2

k2
0

|tp,p|2 + |tp,s|2 + |kz|2
k2

0

|t s,p|2
}
, (D9)
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where P0 = ω4
0|dge|2/(3πε0c

3) = �ω0�0 is the total power emitted in free space. For the power emitted into the z < 0 region,
there are two different contributions: (i) π/2 < θ < arcsin(

√
εs/ε0), or k0 < k < k0

√
εs/ε0, which is usually referred to as

forbidden light region [36] and corresponds to an inverted total internal reflection process, in which a decaying wave that is
emitted by the dipole is transmitted as a propagating wave once it reaches the interface (we refer to this contribution as P

down,f
rad );

(ii) arcsin(
√

εs/ε0) < θ < π , or k < k0, which corresponds to the emission of propagating waves (we refer to this contribution as
P

down,a
rad ). By subtracting the power emitted via the radiative processes (Prad) from the total dissipated power (Ptotal = �ω0�), we

obtain the power dissipated via nonradiative processes (Pnonrad). The contributions of the perpendicular and parallel components
of the electric dipole to nonradiative power can be written in terms of absorption coefficients as

Pnonrad,⊥
P0

= 3

4

∫ +∞

0
dk

k3e−2dImkz

|kz|k3
0

Ap, (D10)

Pnonrad,‖
P0

= 3

8

∫ +∞

0
dk

ke−2dImkz

|kz|k0

(
As + |kz|2

k2
0

Ap

)
, (D11)

where the absorption coefficients are given by

Ap =

⎧⎪⎪⎨
⎪⎪⎩

1 −
[
|rp,p|2 + |rs,p|2 + |ks

z|
|kz| (|tp,p|2 + |t s,p|2)

]
, k < k0,

2Im[rp,p] − |ks
z|

|kz| (|tp,p|2 + |t s,p|2), k0 < k < k0
√

εs/ε0,

2Im[rp,p], k0
√

εs/ε0 < k,

(D12)

and As is obtained from Eq. (D12) by swapping s ↔ p.
Note that for k > k0

√
εs/ε0 the expressions for the non-

radiative emitted power, Eqs. (D10) and (D11), coincide
with the expressions for the total SE rate, Eqs. (1) and (2).
Hence, we can interpret the integration region k > k0

√
εs/ε0

in Eqs. (1) and (2) as being a contribution to the SE rate
exclusively due to nonradiative processes. The region k <

k0
√

εs/ε0 also contributes to the nonradiative decay, as can
be seen in Fig. 5, where the integrands of Eqs. (D10) and
(D11) as a function of k are plotted. This is only expected
as propagating waves emitted by the dipole can also be
absorbed and dissipated by the graphene layer. It should be
mentioned, however, that the contribution of wave vectors
k < k0

√
εs/ε0 to the nonradiative SE decay is negligible when

compared to the contribution coming from k > k0
√

εs/ε0

(see Fig. 5). Therefore, the nonradiative decay due to LSW
can be well approximated by Eq. (9). In the same way,
we can approximate the contribution to the SE rate from
k < k0

√
εs/ε0 in Eqs. (1) and (2) as being exclusively owing to

radiative processes. As such, we can approximate P
down,f
rad,⊥ (TIR

modes) by Eq. (8) and P
down,a
rad,⊥ + P

up
rad,⊥ (propagating modes)

by Eq. (7). Approximations (7) and (8) were tested numerically
against the exact results and the differences were found to be
negligible.

Finally, we notice that the power emitted by the quantum
emitter that is absorbed by graphene due to Joule heating can
be written as

Pg = 2μ2ω4
0 Re

∫
d2k

(2π )2 d∗
ge · G̃†

(k,0,0; ω0) ·

× σ (k,ω0)·G̃(k,0,0; ω0)·dge. (D13)

In the case when Im[εs] = 0, nonradiative decay is exclusively
due to graphene and it is possible to show that the power
absorbed by graphene can be written as Eqs. (D10) and (D11),
with absorption coefficients given by Eq. (D12).
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