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We discuss the van der Waals (Casimir) free energies and pressures of thin metallic films, consisting of from
one to fifteen atomic layers, with regard to the anisotropy in their dielectric properties. Both freestanding films
and films deposited on a dielectric substrate are considered. The computations are performed for a Au film and
a sapphire substrate. According to our results, for freestanding Au films consisting of one and three atomic
layers the respective relative error arising from the use of an isotropic (bulk) dielectric permittivity is equal to
73% and 37% for the van der Waals energy, and 70% and 35% for the pressure. We tabulate the energy and
pressure van der Waals coefficients of thin Au films computed with account of their anisotropy. It is shown that
the bulk permittivity of Au can be used for the films consisting of more than 30 atomic layers, i.e., more than
approximately 7 nm thickness. The role of relativistic effects is also investigated and shown to be important even
for the films consisting of two or three layers. The obtained results can find applications in the investigation of
the stability of thin films and the development of novel nanoscale devices.
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I. INTRODUCTION

The van der Waals [1] and Casimir [2] energies and
forces are also known under a generic name of dispersion
interactions. They act between closely spaced material bodies
and are caused by the vacuum and thermal fluctuations of
the electromagnetic field whose spectrum is altered by the
boundary surfaces. These are not two different forces. In fact
the van der Waals force is a phenomenon which is quantum
in nature but nonrelativistic. It acts at the shortest separation
distances. With increasing separation, it gradually transforms
into the Casimir force, which depends on both the Planck
constant � and the velocity of light c. During the last few
years the van der Waals and Casimir interactions attracted
much experimental and theoretical attention in connection
with several topical problems of condensed matter physics,
atomic physics, elementary particle physics, and prospective
applications in nanotechnology [1–5].

Most of the works on the Casimir effect deal with two test
bodies separated with either a vacuum or a liquid-filled gap.
There is, however, an important direction in materials science
using heterostructures based on atomically thin solid films.
Such structures have already found numerous applications in
technology of semiconductor devices, systems for heteroge-
neous catalysis, and magnetic recording [6]. Thus, in Ref. [7] it
was shown that ultrathin crystals of MoS2 consisting from one
to six monolayers exhibit considerably different properties,
as compared with the bulk material, and can be employed as
new direct-gap semiconductors. Another example is the use
of atomically thin gold disks for the modification of light at
high speeds which has great potential for nanoscale devices
[8]. Taking into account that the Casimir force between two
components of a Si chip has already been measured [9], it is
important to investigate the Casimir energies and pressures for
atomically thin material films, both freestanding and deposited
on a substrate.

The role of dispersion forces in the stability of thin films has
long been discussed in the literature (see, e.g., the review [10]).

The Casimir energy of both the freestanding and deposited on
a substrate thin metallic films was calculated in Refs. [11,12]
on the basis of the Lifshitz theory. In doing so the film metal
was considered as an isotropic one. It was described either by
the plasma [11] or by the Drude [12] model. All computations
have been performed at room temperature [11] and at zero
temperature [12]. It is known, however, that for metallic films
of thickness less than about 10λF , where λF is the Fermi
wavelength, the boundary effects cannot be neglected, and the
dielectric properties become anisotropic [13]. For example, for
Au λF = 0.523 nm holds [14]. This means that for Au films
containing up to several tens of atomic layers (such films are
of interest for applications mentioned above) the theoretical
description using an isotropic dielectric permittivity is not
applicable.

For this reason, in Ref. [15] the Casimir pressure between
two thin metallic films was calculated taking into account an
anisotropy of dielectric permittivities by means of two (in
plane of the film and out of plane) dielectric permittivities.
These permittivities, however, did not allow for the interband
transitions of core electrons, which contribute to the Casimir
effect considerably at short separation distances.

Further important progress in the field was achieved [16]
in the case of atomically thin films of Au. On the one hand,
in Ref. [16] the more reliable dielectric tensor of Au films
was found within the density functional theory employing the
local density approximation. On the other hand, the interband
transitions were taken into account by using the tabulated
optical data [17] for the complex index of refraction for Au
extrapolated down to zero frequency by means of the Drude
model. As a result, the Casimir pressure between two parallel
Au films, consisting of several atomic layers, was computed
as a function of the gap width. It was shown [16] that there
is an enhancement of the Casimir pressure up to 20% when
the proper anisotropic dielectric permittivities are used, as
compared to the isotropic (bulk) case.

In this paper, we apply the anisotropic dielectric tensor of
Ref. [16] to investigate the Casimir free energy (energy) and
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pressure of atomically thin Au films, both freestanding and
deposited on a sapphire substrate. We calculate the Casimir
energy and pressure in both configurations as functions of
the number of atomic layers. From the comparison with
similar results obtained using the bulk (isotropic) dielectric
permittivity of Au, we find that the latter can be employed
to calculate the Casimir energy of films containing no less
than approximately 30 atomic layers (i.e., for film thicknesses
exceeding approximately 7 nm). For thinner films the relative
deviations of the Casimir energy calculated using the bulk
dielectric properties from the correct results are equal to 73%
and 37% for the freestanding Au films consisting of one and
three atomic layers, respectively. Hence it follows that film
anisotropy leads to significant decrease in the magnitudes of
the Casimir energy and pressure, as compared with compu-
tational results obtained using the bulk dielectric permittivity.
This is important for numerous applications in nanotechnology
mentioned above (we recall that in the configuration of two
thin Au films interacting through a vacuum gap an account of
film anisotropy enhances the magnitude of the Casimir force
[16]). We have also computed the van der Waals energy and
pressure of freestanding Au films and Au films deposited on
a sapphire substrate in the nonrelativistic limit. A comparison
with full computational results using the Lifshitz theory shows
that the relativistic effects play an important role for the thin
films containing at least two or three atomic layers.

The paper is organized as follows. In Sec. II we present
the main expressions of the Lifshitz theory adapted for the
configurations under consideration and calculate the Casimir
energy and pressure for a freestanding Au film with account
of its anisotropy properties. In Sec. III the Casimir energy
and pressure for a film deposited on a sapphire substrate are
computed. Section IV contains our conclusions and discussion.

II. FREESTANDING GOLD FILM

We consider the freestanding Au film of thickness a in
vacuum consisting of n atomic layers, so that a = nd, where
d = 2.35 Å is the thickness of one atomic layer [16]. This film
is assumed to be at temperature T in thermal equilibrium with
an environment. The anisotropic properties of film material
are described by the diagonal tensor with the components
ε(0)
xx (ω) = ε(0)

yy (ω) and ε(0)
zz (ω), i.e., as a uniaxial crystal, where

the plane (x,y) is parallel to the film and the z axis is
perpendicular to it.

In this case, the Lifshitz formula for the Casimir free
energy per unit area can be found in Refs. [18,19]. Here
we follow modern notations [19] typical for the scattering
theory. Keeping in mind applications to another configuration
in Sec. III, we also assume that there are thick isotropic plates
(semispaces) below and above our film which are described by
the dielectric permittivities ε(−1)(ω) and ε(+1)(ω), respectively.
Then, the Casimir free energy per unit area is given by

F(a,T ) = kBT

2π

∞∑
l=0

′ ∫ ∞

0
k⊥ dk⊥

× {
ln

[
1 − r

(0,+1)
TM, l r

(0,−1)
TM, l e−2ak

(0)
TM, l

]
+ ln

[
1 − r

(0,+1)
TE, l r

(0,−1)
TE, l e−2ak

(0)
TE, l

]}
. (1)

Here, kB is the Boltzmann constant, k⊥ = |k⊥| is the magni-
tude of the projection of the wave vector on the plane of the
film, and the prime on the summation sign multiplies the term
with l = 0 by 1/2. The quantities k

(0)
TM, TE, l contained in the

powers of the exponents in Eq. (1) are defined as

k
(0)
TM, l ≡ k

(0)
TM(iξl,k⊥) =

√√√√ε
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(0)
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ξ 2
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,

(2)
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(0)
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(0)
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√
k2
⊥ + ε

(0)
xx,l

ξ 2
l

c2

for two independent polarizations of the electromagnetic field,
transverse magnetic (TM) and transverse electric (TE), where
ξl = 2πkBT l/� with l = 0, 1, 2, . . . are the Matsubara fre-
quencies, ε

(0)
xx,l ≡ ε(0)

xx (iξl) and ε
(0)
zz,l ≡ ε(0)

zz (iξl). The reflection
coefficients on the interfaces of an anisotropic film and thick
isotropic plates take the form

r
(0,±1)
TM, l ≡ r
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TM (iξl,k⊥) = ε

(±1)
l k

(0)
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(0)
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l
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(±1)
l k

(0)
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(0)
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l

,

(3)

r
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TE (iξl,k⊥) = k

(0)
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(±1)
l

k
(0)
TE, l + k
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l

,

where ε
(±1)
l ≡ ε(±1)(iξl) and

k
(±1)
l ≡ k(±1)(iξl,k⊥) =

√
k2
⊥ + ε

(±1)
l

ξ 2
l

c2
. (4)

In this section we deal with a freestanding Au film in
vacuum. Thus, ε

(−1)
l = ε

(+1)
l = 1 and from Eqs. (3) and (4)

we have

r
(0,+1)
TM, l = r

(0,−1)
TM, l = k

(0)
TM, l − ε

(0)
xx,lql

k
(0)
TM, l + ε

(0)
xx,lql

,

(5)

r
(0,+1)
TM, l = r

(0,−1)
TM, l = k

(0)
TE, l − ql

k
(0)
TE, l + ql

,

where

ql ≡ k
(±1)
l =

√
k2
⊥ + ξ 2

l

c2
. (6)

The dielectric permittivities of ultrathin Au films consisting
of n = 1, 3, 6, and 15 atomic layers were calculated in
Ref. [16] within the density functional theory. They take into
account both the effects of anisotropy and interband transitions
of core electrons. In so doing, the tabulated optical data [17]
for the complex index of refraction of Au have been used
extrapolated down to zero frequency by means of the Drude
model.

It is well known that there is a problem of great concern in
the Lifshitz theory with respect to this extrapolation. Specif-
ically, theoretical predictions using the dielectric permittivity
extrapolated by the Drude model are found to be excluded
by the experimental data of all precise measurements of the
Casimir interaction between metallic test bodies [20–27]. The
same measurement data are in very good agreement with
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FIG. 1. The ratio of the zz to xx components of the dielectric
tensor of the ultrathin Au films is shown as a function of dimensionless
imaginary frequency. The lines from bottom to top are for the Au films
consisting of n = 1, 3, 6, and 15 atomic layers, respectively. In the
inset the region of small frequencies is shown on an enlarged scale.

theoretical predictions using the nondissipative plasma model
for an extrapolation of the optical data to low frequencies
[20–27]. This is somewhat mysterious if we take into account
that the Drude model allows for the relaxation properties of
conduction electrons, which play a role just at low frequencies,
whereas the plasma model disregards the effects of relaxation.

Fortunately, for the case of an atomically thin Au film
considered in this paper, the above problem does not influence
the obtained results. Computations show that theoretical pre-
dictions using the optical data extrapolated to zero frequency
by means of the Drude and the plasma models differ only for
film thicknesses exceeding approximately 30 nm [28].

In Fig. 1, using the results of Figs. 1(a) and 1(b) in Ref. [16],
we plot the ratio of the dielectric permittivities εzz(iξ )/εxx(iξ )
as a function of the dimensionless quantity ξ/ξ1. The lines
from bottom to top are for Au films consisting of n = 1, 3, 6,
and 15 atomic layers, respectively. By putting ξ = ξl one
obtains the ratio εzz,l/εxx,l as a function of the Matsubara
frequency number l. In the inset, the same information is given
on an enlarged scale for the first five Matsubara frequencies.
The extrapolation to lower frequencies shows that the ratio
εzz(iξ )/εxx(iξ ) goes to zero when the frequency vanishes along
the imaginary frequency axis. As is seen in Fig. 1, for several
first Matsubara frequencies εzz,l < εxx,l holds; i.e., there is an
anisotropy of dielectric properties. The effect of anisotropy
decreases with increasing thickness of the film, as it should.
Thus, for n = 1 it is preserved up to l = 160, whereas for
n = 15 the anisotropy disappears completely for l � 100.

Numerical computations of the Casimir free energy have
been performed in terms of the dimensionless Matsubara
frequencies ζl = 2aξl/c. We also introduce two different
dimensionless integration variables in the TM and TE con-
tributions to Eq. (1) by putting y = 2ak

(0)
TM, l and y = 2ak

(0)
TE, l ,

respectively. Then Eq. (1) takes the form

F(a,T ) = −C2(a,T )

a2
, (7)

where we have introduced the van der Waals coefficient

C2(a,T ) = −kBT

8π
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In terms of dimensionless variables the reflection coeffi-
cients are given by
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r
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Note that the form of r
(0,±1)
TM, l does not coincide with that

in Ref. [19]. Here, for the sake of convenience, we have
introduced another dimensionless variable y which ensures
the common lower integration limit in the TM and TE
contributions to Eq. (8). Recall that for a freestanding film
ε

(±1)
l = 1.

Below we also compute the Casimir (van der Waals) free
energy in the nonrelativistic limit. In this case from Eq. (9) we
have

r
(0,±1)
nr, l ≡ r

(0,±1)
TM, l =

ε
(±1)
l −

√
ε

(0)
xx,lε

(0)
zz,l

ε
(±1)
l +

√
ε

(0)
xx,lε

(0)
zz,l

,

r
(0,±1)
TM, l = 0, (10)

and Eq. (8) reduces to

C2(a,T )=−kBT

8π

∞∑
l=0

′ ε(0)
zz,l

ε
(0)
xx,l

∫ ∞

0
y dy ln

[
1−r

(0,+1)
nr, l r

(0,−1)
nr, l e−y

]
.

(11)

Notice that for the films of small thickness the same computa-
tional results are obtained if we replace the discrete Matsubara
frequencies in Eqs. (8) and (11) with the continuous variable
ζ and make a replacement

kBT

∞∑
l=0

′ → �c

4πa

∫ ∞

0
dζ. (12)

This means that for atomically thin films the quantities (8) and
(11) do not depend on T and have the meaning of the Casimir
(van der Waals) energy per unit area of the film.

In Fig. 2(a) we present the computational results for the van
der Waals coefficient C2 in the free energy (7) as a function
of the number of atomic layers of a Au film. The values of
C2 marked by dots on the solid and dashed lines labeled 1
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FIG. 2. The van der Waals coefficients of the freestanding thin Au
film for (a) the energy per unit area and (b) the pressure are computed
using the anisotropic (the pair of lines labeled 1) and isotropic (the
pair of lines labeled 2) dielectric permittivity of Au are shown as
functions of the number of atomic layers. The solid lines indicate
the results of fully relativistic computations, and the dashed ones are
obtained in the nonrelativistic limit.

were computed using the anisotropic dielectric permittivity of
Fig. 1 by fully relativistic Eq. (8) and in the nonrelativistic
limit (11), respectively. These results refer to the Au films
consisting of n = 1, 3, 6, and 15 atomic layers. For these films
the anisotropic dielectric permittivities used in computations
have been found in Ref. [16]. The values of coefficient C2

for the intermediate values of n were obtained by means of
interpolation. The fully relativistic values of the van der Waals
coefficient C2 for the Au films, consisting of n = 1, 2, . . . , 15
atomic layers, are listed in the second column of Table I. As
is seen in Fig. 2(a) (lines labeled 1), the relativistic effects
contribute to the Casimir energy of the film considerably
starting from n = 2 atomic layers. Thus, the relative error
of the nonrelativistic value of C2, defined as

δC2,nr(n) = C2,nr(n) − C2(n)

C2(n)
, (13)

quickly increases with increasing n: δC2,nr = 2.0%, 6.4%,
14.5%, and 43.7% for n = 1, 3, 6, and 15, respectively.

The solid and dashed lines labeled 2 in Fig. 2(a) were
computed using the bulk dielectric permittivity of Au by Eq. (8)
in the relativistic case and by Eq. (11) in the nonrelativistic
limit, respectively. From a comparison of the solid lines 1
and 2 in Fig. 2(a) it is seen that the anisotropy of dielectric
properties results in an important contribution to the Casimir
energy of the atomically thin Au films. Thus, for films

TABLE I. The van der Waals coefficients for the energy per unit
area (C2) and pressure (C3) of a Au film consisting of n atomic layers
(column 1) in vacuum (columns 2 and 3) and deposited on a sapphire
substrate (columns 3 and 4).

Au film in vacuum Au film on sapphire

n C2 (MeV) C3 (MeV) C2 (MeV) C3 (MeV)

1 42.9 86.8 20.3 41.3
2 49.0 100.0 24.7 50.0
3 52.2 108.5 27.0 56.3
4 53.7 112.8 28.2 59.5
5 54.1 115.1 29.0 61.8
6 53.9 116.7 29.4 63.4
7 53.6 117.8 29.3 65.1
8 52.8 118.2 29.1 66.1
9 51.9 118.3 29.0 66.2
10 51.0 118.0 28.9 66.5
11 50.3 117.8 28.5 66.1
12 49.5 115.8 28.2 65.8
13 48.6 114.2 27.8 65.2
14 47.6 112.8 27.5 64.6
15 46.5 111.8 27.1 63.9

consisting of n = 1, 3, 6, and 15 atomic layers the ratio of
the van der Waals coefficients obtained using the isotropic
and anisotropic dielectric permittivities is equal to 1.73, 1.37,
1.25, and 1.17, respectively. This means, for instance, that
for the one- and three-layer films the respective deviation
of the Casimir energy caused by a neglect of anisotropy is
equal to 73% and 37%, respectively. The influence of film
anisotropy practically disappears only for the films consisting
of n ≈ 30 layers which corresponds to approximately 7 nm
thickness.

Similar results can be obtained for the Casimir (van der
Waals) pressure of an atomically thin metallic film. The
Casimir pressure for the configurations under consideration
is found from Eq. (1):

P (a,T ) = −∂F(a,T )

∂a
= −kBT

π

∞∑
l=0

′ ∫ ∞

0
k⊥ dk⊥

×
⎧⎨
⎩k

(0)
TM, l

[
e2ak

(0)
TM, l

r
(0,+1)
TM, l r

(0,−1)
TM, l

− 1

]−1

+ k
(0)
TE, l

[
e2ak

(0)
TE, l

r
(0,+1)
TE, l r

(0,−1)
TE, l

− 1

]−1
⎫⎬
⎭, (14)

where the reflection coefficients are defined in Eq. (3).
In terms of the dimensionless variables introduced above,

Eq. (14) takes the form convenient for numerical computa-
tions:

P (a,T ) = −C3(a,T )

a3
, (15)
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where the van der Waals coefficient C3 is given by

C3(a,T ) = kBT

8π

∞∑
l=0
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[
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(0,−1)
TM, l

− 1

]−1

+
[

ey

r
(0,+1)
TE, l r

(0,−1)
TE, l

− 1

]−1
⎫⎬
⎭. (16)

Here, the reflection coefficients are presented in Eq. (9).
In the nonrelativistic limit Eq. (16) is simplified to

C3(a,T ) = kBT

8π

∞∑
l=0

′ ε(0)
zz,l

ε
(0)
xx,l

∫ ∞

0
y2 dy

[
ey

r
(0,+1)
nr, l r

(0,−1)
nr, l

− 1

]−1

,

(17)

and the reflection coefficients are defined in Eq. (10). Similar
to the case of the van der Waals energy, for sufficiently thin
films the substitution (12) can be made in both Eqs. (16) and
(17). In so doing the computational results do not depend on T .

The solid and dashed lines labeled 1 in Fig. 2(b) present
the computational results for the van der Waals coefficient C3

found from Eqs. (16) and (17), respectively. The computations
have been performed for Au films of n = 1, 3, 6, and 15
atomic layers, using the anisotropic dielectric permittivity of
Ref. [16]. The obtained values of C3 were interpolated for the
intermediate numbers of layers. The fully relativistic values
of C3 are listed in the third column of Table I. The relative
error in the nonrelativistic values of C3 defined similarly to
Eq. (13) is equal to δC3,nr = 0.8%, 2.3%, 5.8%, and 19.6%
for Au films consisting of n = 1, 3, 6, and 15 atomic layers,
respectively. One can conclude that for the van der Waals
pressure the relativistic effects are somewhat less than for the
van der Waals energy.

The solid and dashed lines labeled 2 in Fig. 2(b) show the
values of the van der Waals coefficient C3 computed using
the bulk dielectric permittivity of Au by Eqs. (16) and (17),
respectively. Just as for the van der Waals energy, the role of
relativistic effect increases with increasing film thickness. The
role of anisotropy in the dielectric properties is also almost
the same as for the van der Waals energy. From a comparison
of the solid lines 1 and 2 in Fig. 2(b), for the ratio of the
van der Waals coefficients C3, obtained using the isotropic
and anisotropic ε, one finds 1.70, 1.35, 1.22, and 1.13
for n = 1, 3, 6, and 15, respectively. Thus, in quantitative
determination of the Casimir interaction of the atomically thin
Au films, it is necessary to take into account an anisotropy of
the dielectric permittivity of Au.

III. GOLD FILM ON A SUBSTRATE

Here, we consider an atomically thin Au film deposited on
a thick dielectric substrate. In this case all the above equations
apply with ε

(+1)
l = 1 and ε

(−1)
l equal to the dielectric permit-

tivity of the substrate material. As an example, we consider the
substrate made of Al2O3 (sapphire). The dielectric permittivity
of sapphire at the imaginary Matsubara frequencies allows
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FIG. 3. (Color online) The van der Waals coefficients for (a)
the energy per unit area and (b) the pressure computed using the
anisotropic dielectric permittivity of Au in the configurations of a
thin Au film deposited on a sapphire substrate (the lines labeled 1)
and a freestanding Au film (the lines labeled 2) are shown as functions
of the number of atomic layers.

rather precise analytic representation [29]:

ε
(−1)
l = 1 + CIR ω2

IR

ω2
IR + ξ 2

l

+ CUV ω2
UV

ω2
UV + ξ 2

l

, (18)

where CUV = 2.072, CIR = 7.03, ωUV = 2.0 × 1016 rad/s,
and ωIR = 1.0 × 1014 rad/s.

Numerical computations of the van der Waals coefficient
C2 defining the van der Waals (Casimir) energy (7) have
been performed by Eq. (8) in the fully relativistic case
using the anisotropic dielectric permittivity of Ref. [16]. The
computational results are shown in Fig. 3(a) as four dots
labeled 1 for the Au films consisting of n = 1, 3, 6, and
15 atomic layers, respectively. The values of C2 for films
consisting of the intermediate numbers of layers were obtained
by means of the interpolation procedure. They are listed in the
fourth column of Table I. We have also performed respective
computations in the nonrelativistic limit using Eq. (11). For
an atomically thin Au film deposited on a sapphire substrate
the relative error in the nonrelativistic values of C2 defined
in Eq. (13) for n = 1, 3, 6, and 15 is equal to δC2,nr = 3.0%,
7.3%, 15.0%, and 40.5%, respectively. This means that the
relativistic effects contribute to the van der Waals energy
significantly even for very thin films.

For comparison purposes, the line 2 in Fig. 3(a) reproduces
the fully relativistic computational results for the van der Waals
coefficient C2 of a freestanding Au film [in Fig. 2(a) this line
is labeled 1]. As is seen in Fig. 3(a), the magnitudes of the
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van der Waals energy of atomically thin Au films deposited
on a sapphire substrate are considerably smaller than that of
a freestanding film. Thus, the ratio of the respective van der
Waals coefficients C

Au, sa
2 /CAu

2 is equal to 0.47, 0.52, 0.54,
and 0.58, for the Au films consisting of n = 1, 3, 6, and 15
atomic layers, respectively. This means that the deposition on
a dielectric substrate considerably decreases the van der Waals
energy of the atomically thin Au films.

We have also performed numerical computations of the
van der Waals coefficient C3 for thin Au films deposited
on a sapphire substrate. This coefficient determines the van
der Waals (Casimir) pressure (15). The fully relativistic
results computed by Eq. (16) using the anisotropic dielectric
permittivity of Ref. [16] are shown as four dots labeled 1 in
Fig. 3(b) for n = 1, 3, 6, and 15 atomic layers, respectively.
Together with the interpolated values of C3 for other n, they
are included in the fifth column of Table I. The nonrelativistic
values of C3 for a thin Au film deposited on a sapphire
substrate were calculated by Eq. (17). The relative error in the
nonrelativistic values of C3 is equal to δC3,nr = 1.3%, 2.9%,
6.4%, and 19.0% for the Au films consisting of n = 1, 3, 6,
and 15 atomic layers, respectively.

The four dots and the line labeled 2 in Fig. 3(b) reproduce
the computational results for the van der Waals coefficient C3

of a freestanding in vacuum Au film [this line was labeled
1 in Fig. 2(b)]. As is seen in Fig. 3(b), the deposition on a
sapphire substrate considerably decreases the van der Waals
pressure of thin Au films. Quantitatively, the ratio of the van
der Waals coefficients C

Au, sa
3 /CAu

3 in the presence and in the
absence of a sapphire substrate is equal to 0.48, 0.52, 0.54, and
0.57 for the Au films consisting of n = 1, 3, 6, and 15 atomic
layers, respectively. This opens opportunities to control the
Casimir energy and pressure of the atomically thin metallic
films.

IV. CONCLUSIONS AND DISCUSSION

In the foregoing we have investigated the van der Waals
(Casimir) energies and pressures of metallic films consisting
of only a few atomic layers with account of anisotropy of
their dielectric properties. For this purpose, the dielectric
tensor of Au obtained in Ref. [16] using density functional
theory was employed. Both the cases of freestanding films
and films deposited on a substrate were considered. Although
metallic films consisting of several atomic layers are not two-
dimensional systems in a strict sense, they are somewhat anal-
ogous to graphene because they are described by the in-plane
and out-of-plane dielectric permittivities (recent progress in
calculation of the Casimir interaction in graphene systems
[30–38] resulted in explicit expressions for the dielectric
functions of graphene in terms of the polarization tensor in
(2+1)-dimensional space-time [39–46]). Similar to the case

of graphene, we have demonstrated that for atomically thin
metallic films the effect of anisotropy contributes considerably
to their van der Waals (Casimir) energy and pressure and
cannot be neglected.

Numerical computations performed for thin Au films
demonstrated that their actual van der Waals energies and
pressures are much less than those computed using the bulk
dielectric permittivity. Thus, for the freestanding Au films
consisting of one and three atomic layers the relative error
in the van der Waals energy per unit area arising from the
use of bulk dielectric permittivity is equal to 73% and 37%,
respectively (similar results hold for the Casimir pressure).
This error decreases in magnitude with increasing number
of atomic layers. According to our results, the bulk (isotropic)
dielectric permittivity of Au becomes applicable only for films
consisting of more than 30 atomic layers (i.e., for more than
approximately 7 nm film thickness). We have also computed
the van der Waals (Casimir) energies and pressures for a
thin Au film deposited on a sapphire substrate and tabulated
the energy and pressure van der Waals coefficients in both
configurations considered for films consisting of from 1 to 15
atomic layers.

To investigate the role of relativistic effects in the Casimir
energy and pressure of atomically thin Au films, we have
performed numerical computations in the nonrelativistic limit.
It was shown that for a freestanding Au film the nonrelativistic
results for the van der Waals energy are burdened by a relative
error equal to 2.0% and 6.4% even for one- and three-layer
films, respectively. The error increases to 43.7% for the Au
film consisting of 15 atomic layers (similar errors arise in the
nonrelativistic Casimir energy for a Au film deposited on a
sapphire substrate). The nonrelativistic values of the Casimir
pressure for thin films are somewhat more exact. Thus, for
the one- and three-layer freestanding Au films the respective
error is equal to 0.8% and 2.3%. For the film consisting of 15
atomic layers, the error in the nonrelativistic Casimir pressure
increases up to 19.6%.

To conclude, we have shown that quantitative description
of the van der Waals (Casimir) energies and pressures of
atomically thin metallic films, both freestanding and deposited
on substrates, requires an account of anisotropy in their
dielectric properties. Taking into account the wide application
area of such films discussed in Sec. I, these results can be useful
in development of novel heterostructures, semiconductors, and
nanoscale devices.
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[23] R. S. Decca, D. López, E. Fischbach, G. L. Klimchitskaya,
D. E. Krause, and V. M. Mostepanenko, Eur. Phys. J. C 51, 963
(2007).

[24] C.-C. Chang, A. A. Banishev, R. Castillo-Garza, G. L.
Klimchitskaya, V. M. Mostepanenko, and U. Mohideen,
Phys. Rev. B 85, 165443 (2012).

[25] A. A. Banishev, G. L. Klimchitskaya, V. M. Mostepanenko, and
U. Mohideen, Phys. Rev. Lett. 110, 137401 (2013).

[26] A. A. Banishev, G. L. Klimchitskaya, V. M. Mostepanenko, and
U. Mohideen, Phys. Rev. B 88, 155410 (2013).
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