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Crossover between localized states and pinned Wigner crystal in high-mobility n-GaAs/AlGaAs
heterostructures near filling factor ν = 1
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We have measured magnetic field dependences of the attenuation and velocity of surface acoustic waves in a
high-mobility n-GaAs/AlGaAs structure with a wide quantum well. The results allowed us to find the complex
conductance σ (ω) of the heterostructure for different frequencies, temperatures, and magnetic fields near filling
factors ν = 1,2. Observed behavior of σ (ω) versus magnetic field outside close vicinities of integer fillings
reveals an oscillation pattern indicative of the rich fractional quantum Hall effect. Our result is that in very close
vicinities of integer filling factors the AC response of a high-mobility two-dimensional structures behaves as
that of a two-dimensional system of localized electrons. Namely, both real and imaginary parts of the complex
AC conductance at low temperatures agree with the predictions for the two-site model for a two-dimensional
hopping system. Another result is the specific temperature dependences of σ (ω), which are extremely sensitive to
the filling factor value. These dependences indicate a sharp crossover between the localized modes and a pinned
Wigner crystal.

DOI: 10.1103/PhysRevB.92.205313 PACS number(s): 73.63.Hs, 73.50.Rb

I. INTRODUCTION

The nature of the ground state of a two-dimensional electron
system (2DES) in a large perpendicular magnetic field B has
attracted great interest. At small filling factors, ν = 2π�n/eB,
where n is the 2DES density and e is the electronic charge,
the ground state in the absence of disorder is expected to be
the Wigner crystal (WC) [1–5]. Another known ground states
is the fractional quantum Hall effect (FQHE) one [6,7]. Both
states are induced by electron-electron interaction. It turns out
that the Laughlin FQHE liquid states at ν = p/q (where p

and q are integers) are particularly robust and have ground
state energies which are lower than the WC state energy, at
least for ν > 1/5 [8]. Theoretical calculations predict that,
in an ideal 2DES, the WC should be the ground state for
ν � 1/6. However, the WC state may win as the filling deviates
slightly from 1/5. It is possible therefore to have a WC
which is reentrant around a FQHE liquid state, see Fig. 9
in Ref. [9]. This would rationalize the general current belief
that the insulating phase observed around ν = 1/5 in very
high quality n-GaAs/AlGaAs structures is the signature of
the WC state pinned by a disorder potential. This conclusion
has been confirmed using various experimental methods.
The magnetic-field-induced WC problem in 2DESs has been
studied extensively since the late 1980’s [10,11].

In 2D systems, along with direct current (DC) measure-
ments of the components of the magnetoresistance tensor,
a few research groups study alternating current (AC) con-
ductance σ (ω). The radio-frequency electric field can be
excited using the coplanar-wave-guide technique [12]; this
method was successfully employed for studies of the FQHE
in Ref. [13] and other works.
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Another probeless method of studying AC conductance
uses a traveling electric field created by a surface acoustic
wave (SAW). In connection with the integer QHE structures,
it was implemented in Refs. [14,15] and subsequent works;
the FQHE was studied using this method in Refs. [16,17].

AC methods are complementary to the DC ones. In
particular, specific resonances in the AC response allow one
to identify the nature of insulating states observed at specific
values of the filling factor.

Interestingly, the magnetic field dependences of ρxx and
σxx in high-mobility structures show sharp peaks (called
“wings” in Ref. [18]) around integer values of the filling factor
[11,19–22]. These sharp wings have not ever been observed
in low-mobility systems. Numerous microwave studies of the
real part σ1(ω) of the complex conductance σ (ω) ≡ σ1(ω) −
iσ2(ω) close to integer ν revealed resonances at frequencies
of 0.4–3 GHz, which were ascribed to pinned modes of the
Wigner crystal [9,10,18,23–28].

The aim of the present paper is a detailed investigation of
low-temperature complex conductivity of high-mobility 2DES
in the vicinities of integer filling factors. We use an acoustic,
namely SAW, technique to address properties of high-mobility
n-GaAs/AlGaAs wide quantum well at low temperatures close
to integer values of the filling factor ν = 1 and 2. Our main
task is the study of the crossover from the electronic state at
an integer ν to a pinned mode of the WC at some deviation
from an integer ν. We will focus on ν close to 1, but similar
behavior is also observed close to ν = 2.

We will show that in high-mobility structures at low
temperatures and exactly at filling factors ν = 1,2 the AC
response behaves as that for localized electronic states,
whereas at small deviations from the integer values its behavior
crosses over: first to that of the Wigner crystal and then to
that of the FQHE states. This conclusion is based on experi-
mental studies of absorption and velocity of surface acoustic
waves.
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FIG. 1. Magnetic field dependences of (a) the attenuation �(B)
and (b) SAW velocity �V (B)/V0 at frequency ω/2π ≡ f = 86 MHz
at temperature T = 40 mK.

II. EXPERIMENTAL METHOD

We use the so-called hybrid method for determining
complex σ (ω) from experimentally measured attenuation and
velocity of a SAW excited by interdigital transducers and
propagating along a surface of a piezoelectric crystal (LiNbO3)
in a perpendicular magnetic field. A sample containing a
2DES is mounted at the surface of the piezoelectric crystal
and is pressed to this surface by springs. The traveling wave
of electric field generated by the SAW penetrates the 2DES
causing a magnetic-field-dependent attenuation of the SAW
and a change of its velocity. The method is described in detail
in Refs. [15,29]; in the last paper it is sketched in Fig. 1 (left
panel).

We study multilayered n-GaAlAs/GaAs/GaAlAs structures
with a wide (65 nm) GaAs quantum well (QW). The QW is δ

doped from both sides and is located at the depth d = 845 nm
from the surface. The electron density is n = 5 × 1010 cm−2,
and the mobility is μ0.3 K = 8 × 106 cm2/V s. Studies show
that at the given electron density only the lowest band of
transverse quantization should be occupied [21].

III. RESULTS AND DISCUSSION

Magnetic field dependences of the attenuation �(B) and
SAW velocity �V (B)/V0 were measured at temperatures
of 40–380 mK and SAW frequencies of 28.5–306 MHz in
magnetic fields up to 18 T, although the analysis throughout
the paper is limited by 3 T. Shown in Fig. 1 are the
results obtained at T = 40 mK and f = 86 MHz. These
and similar dependences were used to calculate the complex
AC conductance σ (ω). The procedure of extracting σ (ω) ≡
σ1(ω) − iσ2(ω) from the data on � and �V/V0 is described
in detail in Ref. [15] and references therein.

Magnetic field dependences of σ1 and |σ2| for f =
28.5 MHz and T = 40 mK are shown in the upper panel
of Fig. 2. The sign of σ2(ω) will be discussed later, see the
discussion related to Fig. 4. Shown in the middle panel are the
temperature dependences of σ1 and |σ2| for the same frequency
and ν = 1. In the lower panel, the magnetic field dependences
of σ1 and |σ2| for ν close to 1 at different temperatures are
shown.

One can see that integer values of ν correspond to the
minima in σ1(ω). Close to the minima |σ2(ω)| > σ1(ω).
Between these minima rich oscillation patterns typical for the
FQHE were observed. Interestingly, the minima and the FQHE
regions are separated by sharp maxima (“wings”)—each
minimum is surrounded by two wings. Outside close vicinities
of integer ν, |σ2(ω)| < σ1(ω). The behavior described above is
observed only in high-mobility samples. In the low-mobility
samples, pronounced maxima of σ1(ω) at half-integer ν are
observed rather than the FQHE related oscillations. Conse-
quently, the wings around integer ν values are absent.

Let us now consider the behavior of σ (ω) at “exactly”
integer ν. We focus on temperature dependences of σ1 and |σ2|
at ν = 1 shown in the middle panel of Fig. 2. One observes
that at T < 400 mK σ1increases with temperature, and in this
temperature domain |σ2| > σ1 in agreement with Ref. [30].
The temperature dependence of σ1 at ν = 2 is similar.

The frequency dependence of σ1 in the above temperature
domain is weak: As the frequency changes by factor 11, σ1

changes only by 20%. The values of σ1 at different minima
corresponding to an integer ν decrease with magnetic field
∝B−1.8 as it follows from the analysis for ν = 2,4,6,8, and
10. This dependence is compatible with theoretical prediction
σ1(ω) ∝ B−2 based on the two-site model for absorption by
localized states [31].

Now let us recall that in low (medium) mobility systems
showing only an integer quantum Hall effect behavior of σ1 is
well described by the one-electron picture involving electrons
trapped by a random potential. According to this picture, at
integer ν the Fermi level is located in the middle of the
distance between the Landau levels, the electron states are
localized by disorder, and low-temperature DC conductance
σDC is exponentially small. The AC conductance is determined
by electron hops between nearest potential minima resulting in
σ1(ω) � σDC. In this case, the AC response can be explained
by the two-site model; for a review see Refs. [32,33] and
references therein. According to this model, a pair of the
electron energy minima is described as a two-level tunnel-
ing system (TLS) with diagonal splitting � and tunneling
splitting 
(r), the interlevel spacing being E = √

�2 + 
2.
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FIG. 2. (Color online) Upper panel: Magnetic field dependences
of σ1 and absolute value of σ2 for f = 28.5 MHz and T = 40 mK.
Middle panel: Temperature dependences of σ1 and |σ2| for the
same frequency and ν = 1. The lines are guides to the eye. Lower
panel: Magnetic field dependences of σ1 for ν close to 1 at various
temperatures.

At sufficiently low frequencies the AC response is due to
relaxation of the nonequilibrium populations of the minima.
The corresponding relaxation rate can be expressed as,

cf. Ref. [33],

1

τ (E,r)
= 1

τ0(T )
F

(
E

kT

)(

(r)

E

)2

. (1)

Here k is the Boltzmann constant. Equation (1) assumes
that the levels’ populations relax due to interaction between
localized electrons and phonons. The interaction matrix
element contains, therefore, the electron-phonon coupling
constant as well as the tunneling coupling between the sites

(r), which exponentially decays with the distance r between
the minima. The corresponding relaxation rate τ−1(E,r) is,
therefore, proportional to 
2(r) that is taken into account by
the last factor in Eq. (1). In addition to the coupling constant
squared, the rate is proportional to the phonon density of
states at frequency E/�. However, only the configurations with
E � kT are important since the configurations with E � kT

are frozen in their ground states. Therefore, we split the rate
into the factor τ−1

0 (T ) (corresponding to the systems with
E = kT ) and dimensionless function F , which depends on the
details of the electron-phonon interaction [33]. It is normalized
in order to have F (1) = 1. Since 
(r) � E, the time τ0 has
a meaning of the minimal relaxation time for a TLS with the
level splitting E = kT .

The theory predicts that (with logarithmic accuracy) [33]

σ1(ω) ∝ min
{
ω,τ−1

0 (T )
}
, |σ2(ω)| � σ1(ω) . (2)

The first of the above expressions allows a simple qualitative
interpretation. Let us consider TLSs with E ≈ kT , which plays
the main role. The contribution of a TLS to the dissipation
depends on the product ωτ . Very “fast” systems with τ � ω−1

do not essentially contribute, because their populations almost
adiabatically follow the AC electric field. On the other hand,
very “slow” systems having τ � ω−1 also do not contribute
since their populations have not enough time to follow the AC
field. Therefore, the optimal ones are those having τ ∼ ω−1.

On the other hand, since 
(r) exponentially decreases with
r there exists an exponentially broad set of systems having
relaxation times longer than τ0(T ). Therefore, if ωτ0 � 1 the
optimal pairs with ωτ ∼ 1 can always be found, and it is those
pairs that provide the main contribution to the absorption. On
the contrary, at ωτ0 � 1 the optimal pairs are absent, and the
absorption is dominated by the pairs with τ ∼ τ0.

Looking at our data we conclude that at ν = 1 the behavior
of σ1 and σ2 in our sample is compatible with the picture of
relaxation absorption of SAW by localized electrons under
condition ω � τ−1

0 , see Eq. (2). Indeed, estimates based on
Eq. (1) show that the main contribution to the relaxation
rate τ−1

0 is due to piezoelectric interaction between localized
electrons and phonons. In this case, see, e.g., Ref. [33], τ−1

0 (T )
is roughly proportional to T , and at 40 mK τ0 = 1.4 × 10−8 s.

Now let us discuss the magnetic field dependences of σ1 in
the vicinity of ν = 1, the behavior of σ1 around ν = 2 being
similar. As is seen in the lower panel of Fig. 2, the minimum of
σ1 corresponding to ν = 1 is surrounded by maxima heights,
and locations of these maxima depend on temperature.

Temperature dependences of σ1 at frequency 28.5 MHz for
different values of the filling factor in the range 0.9 � ν � 1.1
are shown in Fig. 3. The dependences obtained for other
investigated SAW frequencies are similar. Let us first consider
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FIG. 3. (Color online) Temperature dependences of σ1

(28.5 MHz) for different values of ν (shown near the curves).
Mainly, the results for ν � 1 are demonstrated (the filled symbols);
the picture is almost symmetric for ν < 1 as partially shown by open
symbols � (ν = 0.9), � (ν = 0.925), and © (ν = 0.975). The lines
are guides to the eye.

these temperature dependences at the range ends, i.e., at
ν = 1.1 and 0.9. We conclude that the electronic state at
ν = 1.1 (0.9) is indeed the WC. This conclusion came from
(i) dramatic increase of the conductance as against ν= 1,
(ii) different temperature dependences of σ1 at ν = 1 and
ν = 1.1 (0.9) (these dependences at =1.1 and 0.9 are similar to
those at ν = 0.19 and 0.21, whereas the formation of Wigner
solids in the latter cases were proved by various authors
who used a number of experimental techniques [8,11]), and
(iii) the frequency dependence of σ2(ω) shown in Fig. 4 for
different values of the filling factor, which demonstrates zero
crossing of the σ2(ω) at ν = 1.1 at some frequency that is
typical for the Wigner crystal. According to Ref. [28], the
frequency corresponding to the zero crossing is equal to the
pinning frequency of the Wigner solid. This zero crossing in
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FIG. 4. (Color online) Frequency dependences of σ2 for different
ν. T = 40 mK.

the frequency dependence of the imaginary part σ2(ω) should
be accompanied by a maximum in the frequency dependence
of the real part of σ1(ω). We did not observe such maxima due
to precision limitations of our equipment.

Studies based on microwave spectroscopy, see, e.g.,
Ref. [18] and references therein, also lead to the conclusion that
for ν = 1.1 and 0.9 the electron state in a similar sample can be
understood as a Wigner solid. This conclusion was based on the
observation of resonances in the frequency dependence of σ1.

Let us now analyze the temperature dependences of σ1

inside the filling factor range 0.9 � ν � 1.1. For all filling
factor values at low temperatures, conductivity σ1 initially rises
as the temperature increases. However, as the conductivity
reaches the value corresponding to ν = 1.1 (0.9) its tem-
perature dependence changes, and the conductivity begins to
decrease as the temperature rises. Notice that the characteristic
temperature of this crossover in the temperature dependence of
conductivity decreases with increasing deviation of the filing
factor from the unity, |ν − 1|.

We assume that the observed initial increase of σ1 with
rising temperature at all values ν < 1.1 is associated with
the hopping nature of this conductivity at low temperatures.
Assuming that the conductance of the localized phase can be
represented by the single-electron expression (2) at ωτ0 �
1, we expect that σ1(ω) ∝ τ−1

0 (T ) is an increasing function
of temperature, with the slope proportional to the squared
single-electron density of states g2 [33]. Therefore, as the
value |ν − 1| increases in the range |ν − 1| � 0.1, both the
single-electron density and the slope rise.

As the conductivity is increasing, conditions favorable for
formation of the Wigner crystal are emerging, and at some
temperature the crystal gets formed. The characteristic temper-
ature of this crossover is decreasing with increasing deviation
of the filling factor from an integer value, in this case |ν − 1|.

We have also conducted measurements of the SAW inten-
sity impact on the ac conductance near ν = 1. In Fig. 5 we
present the dependence of the real part of AC conductivity
σ1 on the electric field, accompanying the SAW of frequency
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FIG. 5. (Color online) Dependence of the real part of the con-
ductivity σ1 on the SAW electric field near ν = 1: 1—ν = 1.0, 2—
ν = 1.025, 3—ν = 1.035, 4—ν = 1.05, 5—ν = 1.075, 6—ν = 1.1;
T = 40 mK, f = 28.5 MHz. The lines are guides to the eye.
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28.5 MHz at temperature 40 mK. The dependences obtained at
other frequencies are similar. The electric field was calculated
from values of SAW intensity using Eq. (6) of Ref. [22]. The
dependences σ1(E) are qualitatively similar to the dependences
σ1(T ) shown in Fig. 3. Therefore, increase of SAW intensity
acts as an increase of temperature—the SAW heats the electron
system. This mechanism differs from the predicted one based
on nonlinear sliding of the WC [34]. Assuming that the electron
system can be characterized by an effective temperature Te

and performing an analysis similar to the one described in
Ref. [22] for ν = 1.1, we conclude that the heat released is
proportional to (T 3

e − T 3). It is worth noting that when the
temperature (or the SAW intensity) increases, the behavior of
the complex conductance can be interpreted as a manifestation
of WC melting.

For ν = 1, the dependence σ1(E) is increasing but rather
weak. Therefore, it is hard to identify the underlying mech-
anism of nonlinearity. We attribute the observed increase of
AC conductivity with E to a combination of electron heating
and field-induced ionization of the electron states localized in
shallow wells of random potential.

In this way we arrive at the following scenario. In high-
mobility 2DES the electronic states at small integer filling
factors 1 and 2 are localized. However, very small deviation
from integer ν leads to delocalization facilitating formation of a
collective mode—a pinned WC—due to pronounced electron-
electron interaction. Further deviation from integer ν results
in formation of FQHE states.

IV. CONCLUSION

In this paper, we have measured magnetic field dependences
of the attenuation and velocity of a SAW in high-mobility
n-GaAs/AlGaAs structure. The results allowed us to find
complex conductance, σ (ω) ≡ σ1(ω) − iσ2(ω), for different
frequencies, temperatures, and magnetic fields. We found
that at a small exact integer filling factor (ν = 1 and 2)
2D electrons were localized. The observed AC conductivity
is of the hopping nature, and it agrees with the two-site
model provided that ωτ0 > 1. We also found that at filling
factor ν = 1.1 a pinned Wigner solid was formed, and that at
small deviations of the filling factor from exact integers sharp
crossovers between the localized states and Wigner solids were
observed in the temperature dependences of σ1.
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