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Spin relaxation in a quantum well by phonon scatterings
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The spin relaxation due to the spin-orbit interaction (SOI) is studied theoretically in a quantum well with
electrons occupying only the ground subband. First, it is shown that the coefficient of the Rashba SOI is
proportional to boff − 1, in which the parameter boff , determined by the band offsets and the band gaps, passes
through unity, for example, by changing x in Ga0.47In0.53As(well)/AlxGa1−xAsySb1−y(barrier). Second, it is
derived that the transition matrix element of each spin-flip phonon scattering has the same proportionality factor
boff − 1, in addition to the impurity scattering previously studied by the same authors [Phys. Rev. B 89, 075314
(2014)]. These findings suggest the possibility of strongly suppressing the spin-relaxation rate by choosing
appropriate materials.
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I. INTRODUCTION

Controlling the spin relaxation is one of the challenges
in research toward the information processing with use of
spin. By suppressing the spin relaxation, the spin polarization
induced in nonmagnetic materials can be made larger and
maintained longer. Moreover, if we succeed in changing the
spin-relaxation rate in a wider range by the applied gate
voltage, the on-off current ratio in the proposed spin-lifetime
FET [1,2] is improved. In this paper we show theoretically
that the spin relaxation in a quantum well is significantly
suppressed even at room temperature by choosing appropriate
semiconducting materials for well and barrier layers.

The spin relaxation in quantum wells has been extensively
studied in a number of theoretical [3–14] and experimen-
tal [15–27] works. One of the major mechanisms of the
spin relaxation in n-doped quantum wells [28,29] is the
Dyakonov-Perel (DP) mechanism [3,30–32] which is due to
the spin precession around the effective magnetic field induced
by the Dresselhaus spin-orbit interaction (SOI) [33] and the
Rashba SOI [34–37]. Fortunately, it has been theoretically
shown [3] that the DP mechanism due to the Dresselhaus
SOI can be turned off in a quantum well parallel to the (110)
plane of the zinc-blende structure for the spin polarization
perpendicular to the well layer, which has been demonstrated
in several experiments [16–18,22]. If we make a symmetric
quantum well, the DP mechanism due to the Rashba SOI is
also turned off.

To further reduce the spin-relaxation rate, we move on
to suppressing another important mechanism of the spin
relaxation, called the Elliott-Yafet mechanism [38–40], which
is a spin-flip scattering process due to the SOI and the
scattering potential. Although the spin relaxation due to the
Elliott-Yafet mechanism has been theoretically studied in a
quantum well, most works considered only spin-flip scatter-
ing processes within the ground subband (see for example
Refs. [5,11]). Intersubband spin-flip scattering processes have
been taken into account in the spin relaxation only by a
few recent papers. Döhrmann et al. [19] have proposed a
spin relaxation due to an intersubband transition, which is
the spin-flip scattering induced by the Dresselhaus SOI and
the impurity potential, to explain their observed result of the
spin relaxation time in a (110) symmetric quantum well at

higher temperatures such that electrons occupy the first-excited
subband. Zhou and Wu [12] have made a calculation of the
spin relaxation time by considering a virtual-intersubband
process through the first-excited subband, which consists of
an intersubband spin-flip process due to the Dresselhaus SOI
and an intersubband scattering process due to the impurity
potential, in a (110) symmetric quantum well with electrons
occupying only the ground subband. Although such theoretical
efforts have been made, there have been no reports on the
contribution from virtual-intersubband spin-flip scatterings by
the confining-potential-induced SOI to the spin relaxation
before our previous paper [14].

In the previous paper [14] we have studied the spin
relaxation in a quantum well with electrons occupying only
the ground subband for the spin polarization perpendicular
to the well. We have taken into account virtual-intersubband
spin-flip scattering processes through excited subbands as
well as intrasubband processes within the ground subband.
In the virtual-intersubband processes, we have considered
contributions from both the confining-potential-induced SOI
and the Dresselhaus SOI. By considering the case where
the scattering potential is given by a random distribution of
impurities, we have shown that the following two methods are
effective in suppressing the spin-flip scattering rate.

(A) Placing impurities in the center plane of a symmetric
quantum well with use of δ doping [41,42]. Because both the
impurity potential and the confining potential in this case are
symmetric with respect to the center plane, all transition matrix
elements for spin-flip scatterings vanish.

(B) Tuning band offsets of the conduction and valence
bands so that intrasubband and virtual-intersubband processes
interfere destructively. This destructive interference has been
derived in the case where the scattering potential is the sum of
central-force potentials due to each impurity.

When we consider the spin relaxation at room temperature,
we must take into account spin-flip scatterings by phonons. The
suppression by the symmetry of the potential is not applicable
to phonon scatterings. However, the suppression by the
interference between intrasubband and virtual-intersubband
processes is worth being investigated in phonon scatterings.
The contribution from virtual-intersubband spin-flip scatter-
ings by phonons and the confining-potential-induced SOI to
the spin relaxation remains to be studied theoretically.
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In this paper we theoretically study the spin relaxation
in a quantum well due to the Elliott-Yafet mechanism as
well as the DP mechanism by including the contribution
from virtual-intersubband spin-flip scatterings by phonons and
the confining-potential-induced SOI. We show that the spin
relaxation by the Elliott-Yafet mechanism is suppressed for
both impurity and phonon scatterings by tuning band offsets
to the position of the destructive interference in the case where
the spin polarization is perpendicular to the well and electrons
occupy only the ground subband. In addition we show that
the spin relaxation by the DP mechanism, which appears in
an asymmetric confining potential, is also suppressed for the
same values of band offsets. This suppression, which is made
by choosing appropriate constituent semiconductors, does not
require the symmetry of the confining potential. A reduction
of the spin-relaxation rate by orders of magnitude is expected
by the present method of controlling the spin-relaxation rate
by the band offset (depending on constituent semiconductors),
which is waiting for an experimental realization.

We present our Hamiltonian in Sec. II for an electron
in the conduction band of a quantum well, which interacts
with phonons as well as impurities. Here we assume that the
impurity potential is a slowly varying electrostatic potential
with arbitrary spatial dependence, which is more general than
that in our previous theory [14]. An important feature of the
SOI in a quantum well is that there is an additional factor
boff in the SOI induced by the band offset between well and
barrier layers. The factor boff , which is determined by the band
offset of each of the conduction band and split valence bands
as well as the band gaps, varies widely with the constituent
compounds in well and barrier layers.

We find in Sec. III that the effective magnetic field induced
by the Rashba SOI in the presence of the gate voltage is
proportional to boff − 1. The resulting spin-relaxation rate is
proportional to (boff − 1)2 and is therefore reduced in quantum
wells with small |boff − 1|.

We show in Sec. IV that the same reduction factor
(boff − 1)2 appears in the spin-flip scattering rate for both
impurity and phonon scatterings, which means that the spin
relaxation in the Elliott-Yafet mechanism is also suppressed
in quantum wells with small |boff − 1|. The suppression here
is due to the interference between intrasubband and virtual-
intersubband processes. In this paper we do not consider spin-
flip scatterings induced by the Dresselhaus SOI which gives
only a virtual-intersubband process [12]. The contribution
from the Dresselhaus SOI has been estimated to be only 1%
of the total spin-flip scattering rate in the case of impurity
scatterings in a GaAs/AlGaAs quantum well [14].

II. HAMILTONIAN

We consider an electron in the conduction band of a
quantum-well structure which is formed by two different
semiconductors with the zinc-blende structure. The Hamil-
tonian HQW describing an electron confined in a quantum well
perpendicular to the z axis is

HQW = p̂2

2m
+ VW(z), (1)

where p̂ = (p̂x,p̂y,p̂z) = −i�∇ = −i�(∇x,∇y,∇z) and m is
the effective mass of the conduction band. The confining
potential VW(z) is

VW(z) = V c
bo(z) + Ves(z). (2)

Here V c
bo(z) is the potential due to the conduction-band offset

at two interfaces between constituent semiconductors and is
given for the well width W and the potential height V0(> 0)
by

V c
bo(z) =

{
0 (|z| < W/2),

V0 (|z| > W/2).
(3)

The second term Ves(z) is the electrostatic potential, which
is caused by the charge density within the quantum-well
structure and by the applied gate voltage. The z dependence
of Ves(z) is not restricted to being symmetric with respect to
z = 0. We apply the periodic boundary conditions in the x

and y directions. Then each eigenstate of HQW is labeled by
the subband index n = 0,1,2, . . . , the wave vector in the xy

plane k = (kx,ky), and the z component of spin σ = ↑,↓. The
corresponding eigenvector |nkσ 〉 satisfies

HQW|nkσ 〉 = εnkσ |nkσ 〉, (4)

where the eigenenergy is

εnkσ = εn + �
2k2/2m, (5)

with k = |k|. Here εn is the eigenvalue of the Hamiltonian
associated with the motion along the z direction,[

p̂2
z

2m
+ VW(z)

]
|n〉 = εn|n〉, (6)

where |n〉 is the corresponding eigenvector.
The perturbation we consider consists of the SOI caused

by the quantum-well potential V so
W , the Dresselhaus SOI H so

D ,
the impurity potential Vimp, its associated SOI V so

imp, and the
electron-phonon interaction with the induced SOI Hep. The
SOI V so

W is induced by the band offsets and the electrostatic
potential, and is derived in Appendix A to be

V so
W = −�

−1η σ · [∇(
boffV

c
bo + Ves

) × p̂
]

= η
(
boff∇zV

c
bo + ∇zVes

)
(σxky − σykx), (7)

which is of the form of the Rashba SOI. Here σ = (σx,σy,σz)
is the Pauli spin matrix, while η is the effective coupling
constant of the SOI for an electron in the conduction band
of the semiconductor in the well layer (|z| < W/2), given by
Eq. (A10). Since V so

W does not have a term with σz, non-spin-
flip matrix elements are absent: 〈n′kσ |V so

W |nkσ 〉 = 0.
The factor boff , which appears in front of V c

bo in Eq. (7), is
given with band offsets �Ec, �Ev, and �Es, by

boff = �Ev/[Eg(Eg − �Ev)] − �Es/
[
Es

g

(
Es

g − �Es
)]

�Ec
{
1/(Eg)2 − 1/

(
Es

g

)2} ,

(8)
where Eg = Ec − Ev, Es

g = Eg + �so with �so = Ev − Es,
�Ec = Eb

c − Ec = V0, �Ev = Eb
v − Ev, and �Es = Eb

s −
Es with Ec (Eb

c ) the energy of the conduction-band bottom, Ev

(Eb
v) that of the valance-band top, Es (Eb

s ) that of the split-off-
band top in the well layer (the barrier layers). Figure 1 presents
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FIG. 1. The factor boff , defined by Eq. (8), as a func-
tion of the Al fraction x in a type-II quantum well
Ga0.47In0.53As(well)/AlxGa1−xAsySb1−y(barrier) lattice matched to
InP. We have used band parameters in Ref. [43] and employed
the linear interpolation of band offsets between x = 0 and x = 1
to obtain �Ec[eV] = 0.436 + 1.43x, �Ev[eV] = 0.444 − 0.354x,
and �Es[eV] = 0.373 − 0.371x. Corresponding to Ga0.47In0.53As,
Eg[eV] = 0.816 and �so[eV] = 0.330.

boff as a function of the Al fraction x in a type-II quantum well
Ga0.47In0.53As(well)/AlxGa1−xAsySb1−y(barrier), where y is
determined so that AlxGa1−xAsySb1−y is lattice matched to
InP. The curve boff(x) and the line boff = 1 cross between
x = 0 and x = 1. The exact value of x, at which boff is
unity, may deviate from that indicated in Fig. 1 because of
the uncertainty in the values of band parameters. On the
other hand, boff = −0.68 < 0 in a typical type-I quantum well
GaAs/AlxGa1−xAs at x = 0.4. The sign of boff is determined
by that of �Ev/�Ec [negative (positive) for type-I (type-II)
quantum wells] in the case where �Ev ∼ �Es and �so is
large enough that the first term in the numerator of Eq. (8) is
dominant over the second one.

The Dresselhaus SOI H so
D is given by

H so
D = − γ

2�3
σ · h, (9)

where γ is the coupling constant of the Dresselhaus SOI. In
(110) quantum wells h = (hx,hy,hz) is given by

hx = (−p̂2
x − 2p̂2

y + p̂2
z

)
p̂z,

hy = 4p̂xp̂yp̂z,

hz = p̂x

(
p̂2

x − 2p̂2
y − p̂2

z

)
, (10)

where the Cartesian unit vectors are taken as

ex = (−e[100] + e[010])/
√

2,

ey = e[001], (11)

ez = (e[100] + e[010])/
√

2,

with e[100], e[010], and e[001] the unit vectors along the crystal
axes.

The impurity potential Vimp(r) with r = (x,y,z) is an
electrostatic potential, which originates from charges due to
ionized impurities and to spatial variations in the electron
density by the screening. We assume that ionized impurities
are randomly distributed over the cross section at each z, while
their distribution along the z direction may be nonuniform
such as in the modulation doping. We define Vimp(r) so
that

∫
Vimp(r)dxdy = 0, that is Vimp(r) does not include the

average over the cross section at each z of the electrostatic
potential due to ionized impurities and the screening. This
average is the electrostatic potential independent of x and
y so that we include it in Ves(z). Since

∫
Vimp(r)dxdy =

0, the matrix elements diagonal in momentum are zero:
〈n′kσ |Vimp|nkσ 〉 = 0. The SOI originating from Vimp(r),
denoted by V so

imp, is given by

V so
imp = −η

�
σ · (∇Vimp × p̂), (12)

which satisfies 〈n′kσ̄ |V so
imp|nkσ 〉 = 0 with σ̄ the spin opposite

to σ . Furthermore, we assume that Vimp(r) is a slowly varying
function of r so that the effective-mass approximation is
applicable. We impose no additional restrictions on the r
dependence of Vimp(r). When we calculate the spin-relaxation
rate in the lowest order of the SOI, we neglect non-spin-
flip matrix elements 〈n′k′σ |V so

imp|nkσ 〉, since they only give
corrections of higher orders in the SOI.

The electron-phonon interaction Hep is given by

Hep =
∑
qλ

v̌qλ(bqλ + b
†

−qλ), (13)

where v̌qλ is the potential induced by a bulk phonon mode with
wave vector q = (qx,qy,qz) and branch λ plus its associated
SOI:

v̌qλ = vqλ + vso
qλ. (14)

Here bqλ and b
†

qλ are the annihilation and creation operators,
respectively, of a bulk phonon qλ. Since only phonons
with small |q| contribute to phonon scatterings, the complex
coefficient vqλ is a slowly varying function of r and can be
treated within the effective-mass approximation [44]. Then
the associated SOI is given in the same form as the impurity-
potential-induced SOI:

vso
qλ = −η

�
σ · (∇vqλ × p̂). (15)

For Hep to be Hermitian, the following relations hold:

v ∗
qλ = v−qλ, v

so †
qλ = vso

−qλ, (16)

where the Hermitian conjugate of an operator A is denoted by
A†.

III. SPIN RELAXATION IN THE DP MECHANISM

The effective magnetic field leading to the spin relaxation in
the DP mechanism is proportional to 〈0|[∇z(boffV

c
bo + Ves)]|0〉

for the Rashba SOI in Eq. (7). The effective magnetic field
of the Rashba SOI is absent in a symmetric quantum well,
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since ϕ0(z) = 〈z|0〉, V c
bo(z), and Ves(z) are even functions of z,

leading to

〈0|[∇z

(
boffV

c
bo + Ves

)]|0〉 = 0 (symmetric wells). (17)

Even in an asymmetric quantum well, the effective magnetic
field is zero when boff is equal to unity:

〈0|[∇z

(
V c

bo + Ves
)]|0〉 = 0, (18)

as shown by Ando [45,46]. This is because, for any bound
eigenstate |n〉 of the Hamiltonian p̂2

z/2m + V (z) with arbitrary
potential V (z), the expectation value of the force −∇zV (z)
is zero, that is 〈n|(−∇zV )|n〉 = 0. When boff �= 1, we obtain
using Eq. (18)

〈0|[∇z

(
boffV

c
bo + Ves

)]|0〉 = (boff − 1)〈0|(−∇zVes)|0〉. (19)

This indicates that the effective magnetic field due to the
Rashba SOI is proportional to boff − 1. Therefore, we find
that the spin-relaxation rate in the DP mechanism due to the
Rashba SOI is proportional to (boff − 1)2 and is significantly
reduced in quantum wells with small |boff − 1|.

The other effective magnetic field, which is induced by the
Dresselhaus SOI in Eq. (9), is proportional to 〈0|h|0〉. In (110)
quantum wells with h given by Eq. (10), the effective magnetic
field is along the growth (z) direction [3,10]:

〈0|hx |0〉 = 〈0|hy |0〉 = 0, (20)

even in asymmetric quantum wells, since 〈0|p̂z|0〉 =
〈0|p̂3

z |0〉 = 0 in any VW(z) if |0〉 is a bound state. This leads
to the absence of the spin precession for the spin polarization
in the z direction. Therefore, the DP mechanism due to the
Dresselhaus SOI does not work in (110) quantum wells for
this spin direction.

IV. SPIN RELAXATION BY SPIN-FLIP SCATTERINGS

The spin-relaxation time τs and the spin-relaxation rate τ−1
s ,

for the spin polarization along the z axis, are obtained from

dSz

dt
= −Sz

τs

, (21)

where Sz is the spin polarization of electrons, which is defined
by the sum of the spin angular momentum of each electron in
the z direction (τs is the longitudinal spin-relaxation time T1

since it describes the relaxation of Sz after Sz is created). We
derive the equation of motion for Sz from that for the density
operator in the presence of spin-flip scatterings.

A. Spin-flip scatterings by impurities

We first review the equation of motion for the density
operator in a general system of noninteracting electrons, which
we later apply to electron spin-flip scatterings at impurities. We
divide the Hamiltonian H into the unperturbed Hamiltonian
H0 and the perturbation H1:

H = H0 + H1, (22)

and denote the eigenvalue and the eigenvector of H0 by εν and
|ν〉, respectively:

H0|ν〉 = εν |ν〉. (23)

The perturbation H1 causes the transition between different
eigenstates of H0. With use of Hνν ′ ≡ 〈ν|H |ν ′〉, the Hamilto-
nian in the second quantization H̃ is written as

H̃ =
∑
ν,ν ′

Hνν ′a†
νaν ′ , (24)

where aν and a†
ν are the annihilation and creation operators,

respectively, of an electron in an eigenstate ν. A wave function
for such a system of electrons is written as

|�e〉 =
∑

n

cn(t)|n〉, (25)

where n is a collection of the occupation numbers nν(=
0,1) for all one-electron states ν and |n〉 represents the
corresponding many-electron state. With use of the coefficient
cn(t), the many-electron density matrix is defined by

ρ̃nn′ ≡ 〈c∗
n′(t)cn(t)〉, (26)

where brackets denote the statistical average. With use of ρ̃nn′ ,
the statistically averaged expectation value of an operator Ã

of the form Ã = ∑
ν,ν ′ Aνν ′a†

νaν ′ is given by

〈〈�e|Ã|�e〉〉 = Tr(ρ̃Ã), (27)

where Tr(· · · ) is the trace operation with respect to |n〉. The
temporal evolution of the corresponding density operator ρ̃ is
described by

i�
dρ̃

dt
= [H̃ ,ρ̃]. (28)

According to Kohn and Luttinger [47], we introduce a density
matrix ρνν ′ , which is defined, for one-electron states ν and ν ′,
by

ρνν ′ ≡ Tr(ρ̃a
†
ν ′aν). (29)

Such a density matrix can be used to calculate [47]
〈〈�e|Ã|�e〉〉 by virtue of

Tr(ρ̃Ã) = tr(ρA), (30)

where the second trace operation tr(· · · ) is with respect to
one-electron states |ν〉, and A is the one-electron operator
corresponding to Ã. When A = 1, this formula reduces to the
normalization condition tr(ρ) = N , where N is the number
of electrons. The corresponding density operator satisfies the
following equation of motion [47]:

i�
dρ

dt
= [H,ρ]. (31)

Here we assume that the electron system is in an incoherent
state such that

ρ̃nn′ = 0 (n �= n′) (t = 0), (32)

when the perturbation H1 is turned on. This leads to

ρνν ′ = 0 (ν �= ν ′) (t = 0). (33)

(When an electron is injected from an external lead to the
quantum well and enters a superposition state cν |ν〉 + cν ′ |ν ′〉,
we have ρνν ′ �= 0. However, the presence of dephasing pro-
cesses in the quantum well turns cν |ν〉 + cν ′ |ν ′〉 into |ν〉 and
|ν ′〉 and therefore gives ρνν ′ = 0.) On the other hand, each of
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diagonal elements ρνν represents the occupation probability of
eigenstate ν and its value at t = 0 is denoted by fν :

ρνν = fν (t = 0). (34)

We assume that the perturbation H1 is independent of t after
it is turned on. Then we obtain the time evolution of the
occupation probability from Eq. (31) in the lowest order of
H1 as

dρνν

dt
=

∑
ν ′(�=ν)

(Wνν ′fν ′ − Wν ′νfν), (35)

with the transition rate from ν to ν ′

Wν ′ν = 2π

�
|(H1)ν ′ν |2δ(εν ′ − εν). (36)

Equation (35) shows that the population change of noninter-
acting electrons does not include the factor 1 − fν expressing
the Pauli exclusion principle, which has already been proved
by Kohn and Luttinger [47].

Now we calculate the time derivative of Sz in the lowest
order both in the SOI and in the impurity potential by choosing
the following H0 and H1:

H0 = HQW + V so
W , H1 = Vimp + V so

imp. (37)

The Rashba SOI V so
W appearing as the second term of H0

conserves the in-plane momentum �k but mixes states with
different subband indices and different spins. Then each
eigenstate of H0 in a linear combination of eigenstates of
HQW, |nkσ 〉, becomes up to the first order of V so

W

|ν nkσ 〉 = |nkσ 〉 +
∑

n′(�=n)

|n′kσ̄ 〉 〈n
′kσ̄ |V so

W |nkσ 〉
εnkσ − εn′kσ̄

, (38)

which is denoted by |ν nkσ 〉 to indicate the corresponding
unperturbed state. In the above expansion we excluded terms
due to intrasubband matrix elements (n′ = n) of V so

W since they
were already taken into account in the DP spin relaxation in the
previous section. We neglected second-order terms of |ν nkσ 〉
with respect to V so

W , which are products of two spin-flip matrix
elements of V so

W , since they only give corrections of higher
orders in the SOI to the spin-relaxation rate just as non-spin-flip
matrix elements, which are absent for V so

W , would do.
The spin polarization Sz is, using Eq. (30),

Sz = �

2
tr(ρσz) = �

2

∑
ν

ρνσ
ν
z , (39)

with an abbreviation

ρν ≡ ρνν, σ ν
z ≡ (σz)νν . (40)

Here we have used ρνν ′ = 0 (ν �= ν ′) by assuming that the
system is in an incoherent state with ρ̃nn′ = 0 (n �= n′) at the
time when the spin polarization is measured, just as at t = 0
[Eq. (32)]. In this paper we consider the case where electrons
occupy only the ground subband: ρν nkσ = 0 for n � 1. Then
we have for its time derivative

dSz

dt
= �

2

∑
kσ

dρν 0kσ

dt
σ ν 0kσ

z . (41)

Here

σ ν 0kσ
z = σ (1 − w0kσ ), (42)

with

w0kσ =
∑

n′(�=0)

∣∣∣∣ 〈n′kσ̄ |V so
W |0kσ 〉

ε0kσ − εn′kσ̄

∣∣∣∣
2

. (43)

When we expand dSz/dt = (�/2)tr[(dρ/dt)σz] in a perturba-
tion series with respect to V so

W and H1, each term includes an
even number of spin flips. Since terms with no spin flips do not
contribute to dSz/dt , the lowest-order terms giving the spin
relaxation are of the second order in the SOI. In this order of
the SOI, the contribution from −σw0kσ in Eq. (42) to dSz/dt

is absent, as is shown in Appendix B, and we have

dSz

dt
=

∑
kσ

dρν 0kσ

dt

�

2
σ. (44)

With use of Eq. (35) we obtain

dSz

dt
=

∑
kk′σ

(−�σ )Wν 0k′σ̄ ,ν 0kσ fν 0kσ , (45)

which shows that the change of Sz is generated only by
transitions with a spin flip, as expected. The transition rate,
given by Eq. (36), becomes

Wν 0k′σ̄ ,ν 0kσ = 2π

�
|(H1)ν 0k′σ̄ ,ν 0kσ |2δ(ε0k′σ̄ − ε0kσ ), (46)

where we substituted εν 0kσ = ε0kσ since we give the transition
rate in the second order of the SOI. In the first order of the
impurity potential and of the SOI, the transition matrix element
is obtained to be

(H1)ν 0k′σ̄ ,ν 0kσ = 〈0k′σ̄ |V so
imp|0kσ 〉

+
∑

n′(�=0)

〈0k′σ̄ |Vimp|n′kσ̄ 〉〈n′kσ̄ |V so
W |0kσ 〉

ε0kσ − εn′kσ̄

+
∑

n′(�=0)

〈0k′σ̄ |V so
W |n′k′σ 〉〈n′k′σ |Vimp|0kσ 〉

ε0k′σ̄ − εn′k′σ
.

(47)

In the previous paper [14] we have made a perturbation cal-
culation with unperturbed Hamiltonian HQW and perturbation
V so

W + Vimp + V so
imp and obtained the same transition matrix

element as Eq. (47). The reason for this coincidence is that
in both calculations the spin-flip scattering takes place in the
same time domain of t > 0 with scattering potential turned on,
and that both calculations take terms of the same order of the
SOI and the scattering potential.

Substituting the time derivative of Sz, given by Eq. (45),
and

Sz =
∑
kσ

�

2
σf0kσ (48)

into Eq. (21), we obtain the spin-relaxation rate in the lowest
order of the SOI and the impurity potential. The spin-relaxation
rate thus obtained, in general, depends on the electron distri-
bution f0kσ . If we employ an equilibrium distribution with the
temperature T and the spin-dependent chemical potential μσ
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satisfying kBT 
 εF − ε0 and |μ↑ − μ↓| 
 εF − ε0 (εF : the
Fermi energy), the spin-relaxation rate becomes independent
of T and μ↑ − μ↓ [14].

B. Spin-flip scatterings by phonons

To obtain the rate of spin relaxation due to phonon
scatterings, we employ the equation of motion for the density
operator given by Argyres [48], which is derived in the
lowest order of the electron-phonon interaction and for the
equilibrium phonon distribution at t = 0. We again assume
that the initial state of electrons is incoherent [Eq. (32)].

We consider a system of electrons and phonons with a
Hamiltonian in the second quantization written as

HT = H̃0 + H̃ep + Hp. (49)

Here H̃0 represents a Hamiltonian of noninteracting electrons,
given by

H̃0 =
∑

ν

ενa
†
νaν. (50)

The second term in Eq. (49), H̃ep, is the second quantized form
of Hep in Eq. (13) written as

H̃ep =
∑
qλ

[∑
ν,ν ′

(v̌qλ)νν ′a†
νaν ′

]
(bqλ + b

†
−qλ). (51)

The explicit form of v̌qλ is not used in the derivation for a
while. The third term Hp is given by

Hp =
∑
qλ

�ωqλ

(
b

†
qλbqλ + 1

2

)
, (52)

where ωqλ is the angular frequency which satisfies ωqλ =
ω−qλ.

A wave function describing such a system of electrons and
phonons is written as

|�ep〉 =
∑
n,m

anm(t)|nm〉, (53)

where n (m) is a collection of the occupation numbers nν (mμ)
for all one-electron states ν [all phonon modes μ = (q,λ)]. The
corresponding density matrix is defined by

Rmm′
nn′ ≡ 〈a∗

n′m′ (t)anm(t)〉. (54)

We introduce the reduced density matrix for electrons ρ̃nn′ ,
defined by

ρ̃nn′ ≡
∑

m

Rmm
nn′ , (55)

and employ the same definition of the density matrix ρνν ′ given
in Eq. (29). Then we can express the statistically averaged
expectation value of an electron operator Ã of the form Ã =∑

ν,ν ′ Aνν ′a†
νaν ′ , with use of ρ̃nn′ and ρνν ′ ,

〈〈�ep|Ã|�ep〉〉 = Tr(ρ̃Ã) = tr(ρA). (56)

The equation of motion for the density operator ρ(t) is derived,
according to the Argyres theory [48], to be [49]

dρ(t)

dt
= 1

i�
[H0,ρ(t)] + C(t). (57)

The collision operator C(t) is given by [50]

C(t) = 1

�2

∫ t

0
dτ

∑
qλ

∑
α=±1

(
Nqλ + 1 + α

2

)
Uα

qλ[Bqλ,v̌qλ]

+ H.c., (58)

where H.c. denotes the Hermitian conjugate α = +1 (−1) for
the electron scattering with emission (absorption) of a phonon,

Nqλ = [exp(�ωqλ/kBT ) − 1]−1 (59)

is the average number of phonons in equilibrium, and

Uα
qλ = exp[−iαωqλ(t − τ )]. (60)

The operator Bqλ is given by

Bqλ = U0[1 − ρ(0)]v̌ †
qλρ(0)U−1

0 , (61)

with

U0 = exp[−iH0(t − τ )/�]. (62)

The time derivative of the diagonal element ρνν is derived
from Eq. (57) in the lowest order of the electron-phonon
interaction as

dρνν

dt
=

∑
ν ′(�=ν)

[
W

ep
νν ′ (1 − fν)fν ′ − W

ep
ν ′ν(1 − fν ′ )fν

]
, (63)

where the factor 1 − fν expresses the Pauli exclusion principle
and the transition rate is given by

W
ep
ν ′ν =

∑
qλ

∑
α=±1

W
qλα

ν ′ν , (64)

with

W
qλα

ν ′ν = 2π

�
|(v̌ †

qλ)ν ′ν |2
(

Nqλ + 1 + α

2

)
δ(εν ′ + α�ωqλ − εν).

(65)

Now we consider electrons in a quantum well with H0

in Eq. (37), and choose v̌qλ in Eq. (14) for the electron-
phonon interaction. We again employ the formula for the
time derivative of Sz in Eq. (44) and substitute Eq. (63) into
dρν 0kσ /dt in Eq. (44). Then we obtain

dSz

dt
=

∑
kk′σ

(−�σ )W ep
ν 0k′σ̄ ,ν 0kσ (1 − fν 0k′σ̄ )fν 0kσ . (66)

In the first order of the electron-phonon interaction and of the
SOI, the matrix element of v̌

†
qλ(=v̌−qλ) in Eq. (65) becomes

(v̌ †
qλ)ν 0k′σ̄ ,ν 0kσ = 〈0k′σ̄ |vso †

qλ |0kσ 〉

+
∑

n′(�=0)

〈0k′σ̄ |v∗
qλ|n′kσ̄ 〉〈n′kσ̄ |V so

W |0kσ 〉
ε0kσ − εn′kσ̄

+
∑

n′(�=0)

〈0k′σ̄ |V so
W |n′k′σ 〉〈n′k′σ |v∗

qλ|0kσ 〉
ε0k′σ̄ − εn′k′σ

.

(67)

Here we have considered transitions with initial and final
states in the ground subband and neglected those from a
state in the ground subband to a state in excited subbands
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because the energy separation between the ground and the first
excited subbands is 300 meV for a quantum well with width
of 7.5 nm (as the quantum well used in the spin-relaxation
experiment [16]), while the maximum phonon energy is only
about 30 meV.

C. boff dependence of spin-flip scattering rate

Here we show that

Tk′σ̄ kσ ≡ 〈0k′σ̄ |vso|0kσ 〉

+
∑
n(�=0)

〈0k′σ̄ |v|nkσ̄ 〉〈nkσ̄ |V so
W |0kσ 〉

ε0 − εn

+
∑
n(�=0)

〈0k′σ̄ |V so
W |nk′σ 〉〈nk′σ |v|0kσ 〉

ε0 − εn

∝ boff − 1, (68)

where v is an arbitrary function of r , which is in general
complex, and

vso = −η

�
σ · (∇v × p̂). (69)

Tk′σ̄ kσ with a substitution v(r)=Vimp(r) becomes
(H1)ν 0k′σ̄ ,ν 0kσ in Eq. (47), while Tk′σ̄ kσ with v(r)=v∗

qλ(r) is

(v̌ †
qλ)ν 0k′σ̄ ,ν 0kσ in Eq. (67). Since these matrix elements are

found to be proportional to boff − 1, the spin-flip scattering
rate for both impurities and phonons vanishes when boff = 1
if we neglect terms of the order higher than ηv(r) and those
due to the Dresselhaus SOI. The same proportionality relation
Eq. (68) was derived in our previous paper [14] for impurity
scatterings in the case where the impurity potential is the
sum of central-force potentials due to each impurity and the
electrostatic potential is absent, Ves(z) = 0. According to
the proof presented below, Eq. (68) is true for any spatial
dependence of the scattering potential v(r) in the presence of
Ves(z).

To prove Eq. (68), we divide the matrix element of v(r)
between |k′〉 and |k〉, denoted by vq(z), into the real part vR

q (z)
and the imaginary part vI

q (z) as

〈k′|v|k〉 ≡ vq(z) = vR
q (z) + ivI

q (z), (70)

with q = k′ − k. Since we have 〈0k′σ̄ |vso|0kσ 〉 = (η/2)K1σ

〈0|(∇zvq)|0〉, 〈0k′σ̄ |v|nkσ̄ 〉 = 〈0|vq |n〉, 〈nkσ̄ |V so
W |0kσ 〉 =

η(ky − isσ kx)〈n|[∇z(boffV
c

bo + Ves)]|0〉, where K1σ = (ky +
k′
y) − isσ (kx + k′

x) with sσ = 1 (σ =↑) and sσ = −1 (σ =↓),
Tk′σ̄ kσ in Eq. (68) becomes

Tk′σ̄ kσ = η

2
K1σ

{
F

[
vR

q (z)
] + iF

[
vI

q (z)
]}

, (71)

where the functional F [ṽ(z)] of a real function ṽ(z) is defined
by

F [ṽ(z)] = 〈0|(∇zṽ)|0〉

+ 2
∑
n�1

〈0|[∇z

(
boffV

c
bo + Ves

)]|n〉〈n|ṽ|0〉
ε0 − εn

. (72)

Here we introduce a wave function |ψv
0 〉 for the ground state

of the following Schrödinger equation with an additional

potential ṽ(z),

[
p̂2

z

2m
+ V c

bo(z) + Ves(z) + ṽ(z)

]∣∣ψv
0

〉 = εv
0

∣∣ψv
0

〉
, (73)

where εv
0 is the corresponding eigenvalue. The potential

ṽ(z) [= vR
q (z),vI

q (z)] can be thought of as an effective potential
which the electron, in its motion along z, feels at a scattering.
Since |ψv

0 〉 is given, up to the first order of ṽ(z), by

∣∣ψv
0

〉 = |0〉 +
∑
n�1

|n〉 〈n|ṽ|0〉
ε0 − εn

, (74)

we have

F [ṽ(z)] = 〈
ψv

0

∣∣[∇z

(
boffV

c
bo + Ves + ṽ

)]∣∣ψv
0

〉
in the first order of ṽ(z). (75)

The same argument, which leads to Eq. (18), shows that
〈ψv

0 |[∇z(V c
bo + Ves + ṽ)]|ψv

0 〉 vanishes in any order of ṽ(z).
This means that all the forces acting on the electron are
balanced because |ψv

0 〉 adjusts itself to the additional potential
ṽ(z). Such a force balance gives

F [ṽ(z)] = (boff − 1)
〈
ψv

0

∣∣(∇zV
c

bo

)∣∣ψv
0

〉
in the first order of ṽ(z). (76)

Since F [ṽ(z)] ∝ boff − 1, we finally obtain Eq. (68) which
states that the transition matrix element Tk′σ̄ kσ is proportional
to boff − 1. The disappearance of the transition matrix element
for all spin-flip scatterings at boff = 1 means that the spin-flip
scattering process within the ground subband [the first term
of Eq. (68)] and those through one of excited subbands
(the second and third terms) interfere destructively for every
spin-flip scattering at the same value of boff = 1. Interestingly,
the zeroth-order term of the right-hand side of Eq. (76), which
becomes (boff − 1)〈0|(∇zV

c
bo)|0〉, coincides with Eq. (19),

which determines the effective magnetic field due to the
Rashba SOI.

V. CONCLUSIONS

We have theoretically investigated the spin relaxation in
(110) quantum wells for the spin polarization perpendicular to
the well with electrons occupying only the ground subband.
We have taken into account two major mechanisms of the spin
relaxation, the Dyakonov-Perel mechanism as well as the spin-
flip scattering (the Elliott-Yafet mechanism) due to impurities
and phonons. We have shown that the spin-relaxation rate is
proportional to (boff − 1)2 in both mechanisms, with use of the
additional factor boff of the SOI caused by the band offset, if
the spin relaxation due to the Dresselhaus-SOI-induced spin-
flip scattering is neglected. The factor boff depends on the
band offset of each of the conduction band and split valence
bands as well as the band gaps. Since the dependence on
the constituent semiconductors of the spin-relaxation rate is
largely determined by its proportionality factor (boff − 1)2, the
spin-relaxation rate can be orders of magnitude reduced by
choosing appropriate constituent semiconductors.
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APPENDIX A

Here we derive V so
W , given by Eq. (7), with the factor boff ,

defined by Eq. (8), on the basis of the k · p theory developed
for heterostructures [51–53]. Our system is a quantum well
with width W , which consists of two different semiconductors
with the zinc-blende structure, SW and SB: the semiconductor
SW is in the well layer (|z| < W/2), while the semiconductor
SB is in the barrier layers (|z| > W/2).

The SOI induced by the band offsets and the electrostatic
potential Ves(z) is given, for an electron with momentum
(kx,ky) in the conduction band, by [51–53]

V so
W = P 2

3
G(z)(σxky − σykx), (A1)

with use of the Kane matrix element [54] P given by

P = −i
�

m0
〈S|p̂x |X〉, (A2)

where m0 is the electron rest mass, while |S〉 and |X〉 are the
s-type wave function at the conduction-band bottom and the
p-type wave function at the valence-band top, respectively. In
the above equation for V so

W ,

G(z) = ∇z

(
1

E − Ẽv
− 1

E − Ẽs

)
, (A3)

where E is the energy of the electron, while Ẽv (Ẽs)
is the diagonal element of the 8 × 8 Kane Hamiltonian,
corresponding to the heavy-hole plus light-hole bands (the
split-off band). They are given by

Ẽv = EK0 − Eg + V v
bo(z) + Ves(z),

Ẽs = EK0 − Es
g + V s

bo(z) + Ves(z),
(A4)

where

EK0 = �
2

2m0

(
k2
x + k2

y + k̂2
z

)
, (A5)

with k̂z = −i∇z, Eg is the band gap of SW, Es
g = Eg + �so

with �so the spin-orbit splitting of SW, and V v
bo(z) (V s

bo(z))
is the potential due to the band offset for an electron in the
heavy-hole plus light-hole bands (the split-off band). These
potentials together with that for the conduction band, V c

bo(z) in
Eq. (3), are expressed by

V c
bo(z) =�Ech(z), V v

bo(z) =�Evh(z), V s
bo(z) =�Esh(z),

(A6)

where

h(z) =
{

0 (|z| < W/2),

1 (|z| > W/2),
(A7)

while �Ec(= V0), �Ev, and �Es are the band offsets
introduced in Eq. (8).

Here we neglect EK0, E, and Ves(z) in G(z), compared to
Eg and Es

g, while we take into account the contribution of
∇zVes(z) to G(z). Then we obtain an approximate expression
for G(z),

G(z) = Gv + Gs + Ges, (A8)

with

Gv = ∇z

(
Eg − V v

bo

)−1
,

Gs = −∇z

(
Es

g − V s
bo

)−1
,

Ges = [(
Eg − V v

bo

)−2 − (
Es

g − V s
bo

)−2]∇zVes. (A9)

Furthermore, we neglect V v
bo and V s

bo in Ges since they are
nonzero only in the barrier layers where the absolute value
of the wave function is small. Using (Eg − V v

bo)−1 = [(Eg −
�Ev)−1 − (Eg)−1]h(z) + (Eg)−1 and a similar equation for
(Es

g − V s
bo)−1, we finally obtain the expression for V so

W in
Eq. (7) with

η = P 2

3

[
1

(Eg)2
− 1(

Es
g

)2

]
, (A10)

and with the formula for boff in Eq. (8).
In our previous paper [14] the formula for boff was

derived with an additional approximation: Eg − �Ev ≈ Eg

and Es
g − �Es ≈ Es

g. This approximation is found to be not
accurate, in particular, in quantum wells with large positive
values of �Ev and �Es. In fact, for a type-II quantum
well Ga0.47In0.53As(well)/GaAs0.5Sb0.5(barrier), the additional
approximation gives a value of boff = 1.2, while the present
formula Eq. (8) gives a larger value of boff = 3.2.

APPENDIX B

We here show that the contribution from −σw0kσ in Eq. (42)
to dSz/dt is absent in the second order of the SOI. First we
note that w0kσ = Ak2, where A is a constant independent of k
and σ , since

〈n′kσ̄ |V so
W |0kσ 〉 = η(ky − isσ kx)〈n′|[∇z(boffV

c
bo + Ves)

]|0〉,
(B1)

with sσ = 1 (σ =↑) and sσ = −1 (σ =↓). Because w0kσ is
of the second order of the SOI, we evaluate dρν 0kσ /dt in front
of w0kσ in the zeroth order. Then we obtain∑

k

dρν 0kσ

dt
(−σw0kσ ) = (−σ )A

2m

�2

dEσ

dt
, (B2)

where Eσ = ∑
k ρ0kσ �

2k2/2m is the sum (with respect to
spin-σ electrons which occupy the state in the probability
ρ0kσ ) of the energy relative to ε0. Eσ does not change at
any elastic impurity scattering. In the presence of phonon
scatterings we also have dEσ /dt = 0 when each of electron
and phonon systems is in an equilibrium state with the common
temperature.
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