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Symmetries and optical transitions of hexagonal quantum dots in GaAs/AlGaAs nanowires
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We investigate the properties of electronic states and optical transitions in hexagonal GaAs quantum dots
within Al0.3Ga0.7As nanowires, grown in axial direction [111]. Such dots are particularly interesting due to
their high degree of symmetry. A streamlined postsymmetrization technique based on class operators (PTCO) is
developed which enables one to benefit from the insight brought by the maximal symmetrization and reduction
of fields (MSRF) approach reported by Dalessi et al. [Phys. Rev. B 81, 125106 (2010)], after having solved the
Schrödinger equation. Definite advantages of the PTCO are that it does not require modification of existing code
for the calculation of the electronic structure, and that it allows to numerically test for elevated symmetries. We
show in the frame of a four-band k · p model that despite the fact that the D6h symmetry of the nanostructure is
broken at the microscopic level by the underlying zinc-blende crystal structure, the effect is quite small. Most of
the particularities of the electronic states and their optical emission can be understood by symmetry elevation to
D6h and the presence of approximate azimuthal and radial quantum numbers.
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I. INTRODUCTION

Semiconductor nanowires have emerged as promising
building blocks for realization of various nanoscale op-
toelectronic devices [1]. Nanowire technologies enable
heterostructures with a high level of flexibility in terms of
geometry and material composition [1]. In particular, growth
of site controlled quantum dots (QDs) within nanowires
shows significant advantages compared to more conventional
self-assembled QDs (Stranski-Krastanov) [2,3], and bright
single-photon emitters have been demonstrated in a range of
materials using nanowire QDs [2–6].

QDs may be used in quantum information and cryptography
technologies, e.g., for emission of entangled photon pairs.
High symmetry is helpful to limit fine-structure splitting of
excitonic states, and highly beneficial for polarization entan-
glement. In this respect, nanowire QDs are especially suitable
as they may be highly symmetric, often with a hexagonal
cross section. QDs within nanowires grown in the high-
symmetry direction [111] are suggested as ideal sources for
emission of entangled photon pairs [7–10]. Cascaded emission
spectra, possibly enabling such pairs, have also been measured
experimentally [6]. Generation of entangled photons is also
possible in self-assembled QDs, in particular, InGaAs/GaAs
QDs grown on [111] substrates are proposed to be ideal for
such generation, due to the threefold axis of symmetry per-
pendicular to this surface [8]. Furthermore, QDs may enable
quantum computation by using the electron spin as a quantum
bit [11]. QDs grown in inverted pyramids on [111] GaAs
substrates [10] have proven to be promising in this respect.

With increasing control of heterostructure shape and
material composition, e.g., through nanowire growth, comes
the possibility to fabricate structures according to optimized
design. Theoretical models, e.g., providing insight into the
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nature of electronic states are essential in such optimization.
In this work, we calculate the electronic states and optical
transitions in hexagonal GaAs/AlGaAs nanowire QDs and
analyze the results taking advantage of their high symmetry.
A detailed procedure for full-depth symmetry analysis and
reduction of computational domain has been presented pre-
viously by Dalessi et al. [12], and has been called maximal
symmetrization and reduction of fields (MSRF). Here, we pur-
sue this effort by developing a procedure alleviating recoding
of computer programs: a postsymmetrization technique using
class operators (PTCO). The PTCOis very general and applies
independently of the method employed for the calculation
of the electronic structure (k · p, tight binding, etc.). It also
provides a systematic and flexible procedure to test possible
elevated symmetries.

In Sec. II, relevant theoretical studies of similar semi-
conductor heterostructures are considered, and we present
the general features of the k · p model used in this paper.
The explicit QD under consideration is described in Sec. III,
and the symmetries are identified, providing the premises to
optimally choose the basis for the k · p Hamiltonian. Having
fully specified the numerical model, we describe the pertaining
symmetry implications on the QD eigenstates in Sec. IV. The
PTCOis then presented in Sec. V. Sections VI and VII contain
the numerical calculations, analyzed using the PTCO. We show
in Sec. VI that the analysis gives rise to a deeper understanding
of all the electronic states, in particular of the level sequences.
In Sec. VII, we investigate the fine structure of the spectrum of
squared momentum matrix elements. We prove that symmetry
elevation to D6h and the existence of azimuthal and radial
quantum numbers are necessary ingredients to explain many
missing/weak optical transitions.

II. QUANTUM DOT DESCRIPTION AND k · p MODEL

Despite much activity in the experimental realization of
nanowire QDs, there has until now been very little attention
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towards numerical calculations of the electronic states. Niquet
et al. [13] did perform calculations of strained InAs/InP
nanowire QDs using a tight-binding model. The optical
transitions were given and labeled using group symmetry. The
QDs were, however, approximated as cylinders; cylindrically
shaped QDs grown in the [111] direction of a wurtzite structure
will inherit the limited C3v symmetry of the crystal. Of related
interest is also the work of Zhang et al. [14], considering
excitons in nanowire QDs in the strained InGaN/GaN material
system, using an effective mass approximation. Nanowires in
the GaAs/AlGaAs material system considered in the current
paper were treated by Kishore et al. [15] using the k · p model,
but no calculations exist, to our knowledge, of nanowire QDs
within this material system.

The k · p theory, originally intended for the calculation of
band structures of crystalline solids, has been widely used for
calculation of electronic states in heterostructures including
QDs. Large emphasis has been on the strained self-assembled
QDs [16–20], also including calculations on GaAs/AlGaAs
QDs [20].

QDs with hexagonal shape were studied numerically using
the k · p model in Ref. [16], but no explicit usage was
made therein of the symmetry properties. On the opposite,
Ref. [21] presents a strictly qualitative symmetry enumeration
of electronic states and optical transitions in hexagonal QDs,
without calculations.

Care should be taken to distinguish between the symmetry
of any simplified numerical model and the physical system
itself. The symmetry-preserving ability of the k · p model has
been investigated numerically [22], demonstrating that the real
symmetry of any structure can be accounted for upon inclusion
of enough bands and interface terms.

We shall use a simple k · p model to describe the states
of a GaAs QD within an AlGaAs nanowire, and demonstrate
PTCO in a fairly simple framework. The conduction band
electrons will be described with an effective mass model, and
the valence band holes will be described with a four-band
Luttinger Hamiltonian.

The conduction band involves electrons which can be de-
scribed using a simple effective mass approximation, ignoring
mixing with other bands [12]

H = − �
2

2m0
∇ 1

m∗(r)
∇ + VCB(r). (2.1)

Here, ∇ is the three-dimensional (3D) differential operator
∇ = ∂

∂x
ux + ∂

∂y
uy + ∂

∂z
uz, m∗(r) is the effective electron mass

in units of the electron mass m0, and VCB(r) is the effective
confinement potential for electrons in the conduction band.
The envelope function ψn of energy level n is given by the
Schrödinger equation

Hψn = En ψn. (2.2)

The j = 1
2 spinorial nature of conduction band states can be

restored later; the exact procedure is given in Ref. [23].
Band mixing and spin cannot similarly be ignored for holes.

The top six valence bands can be described as multiplet states
with spin j = 3

2 and 1
2 [24]. When the energy separation to

the latter multiplet (split-off band) is sufficient, the coupling
can be ignored, and one is left with a four-valence-band k · p

model. The 4 × 4 Luttinger Hamiltonian for diamond can then
be used if one neglects inversion symmetry breaking, which is
small in GaAs/AlGaAs. This leads to [24,25]

H = −�
2

m0

⎛
⎜⎜⎝

p + q −s r 0
−s+ p − q 0 r

r+ 0 p − q s

0 r+ s+ p + q

⎞
⎟⎟⎠ + VVB(r).

(2.3)

Here, p,q,r,s are quadratic forms of differential operators
acting on envelope functions. Their exact expressions depend
on the Bloch function basis which will be chosen later
after considering heterostructure symmetry. The polynomial
coefficients are given in terms of the Luttinger parameters
γi(r), i = 1 . . . 3, and VVB(r) is the confinement potential. Va-
lence band eigenstates are denoted ψ

n
(underline distinguishes

spinors from scalar functions) and satisfy a spinorial Eq. (2.2)
with (2.3).

III. MODEL STRUCTURE AND ITS SYMMETRY

The model structure under consideration is a QD grown as
an axial insert of GaAs within an Al0.3Ga0.7As nanowire. A
radial shell of Al0.3Ga0.7As is grown around the dot so that
it is surrounded by Al0.3Ga0.7As in all directions. The growth
direction defining the nanowire axis is the crystal direction
[111], and the cross section is hexagonal. A schematic is shown
in Fig. 1. Similar QD structures have been grown previously by
Kats et al. [4] who obtained mixed crystal phases containing
both wurtzite and zinc blende. Guo et al. [26] obtained pure
zinc-blende GaAs/AlGaAs axial heterostructures which we
shall now assume.

FIG. 1. (Color) Schematics of a hexagonal GaAs quantum dot
within an Al0.3Ga0.7As nanowire. Coordinate axes and crystal
directions for the hexagonal QD are also shown. The main vertical
symmetry planes σv1,σv2,σv3 are indicated.
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The true QD symmetry is the common symmetry of the
mesoscopic heterostructure (D6h) and of the microscopic
crystalline structure (C3v). The conduction band Hamiltonian
symmetry [Eq. (2.1)] is nevertheless the mesoscopic symmetry
D6h.

When the orientation of the crystal axes w.r.t the het-
erostructure is according to Fig. 1, the common symmetry
elements are {e,C+

3 ,C−
3 ,σv1,σv2,σv3} where C+

3 and C−
3 are

discrete 2π/3 rotations and σvi, i = 1 . . . 3, are three vertical
mirror operations. Hence, the valence band Hamiltonian
[Eq. (2.3)] has C3v symmetry.

The single group C3v does describe operations performed
on spatial coordinates only, and there are three irreducible
representations (irreps) E, A1, and A2. The E irrep is a
two-dimensional (2D) representation while the Ai irreps are
one-dimensional (1D) [27]. On the other hand, double-group
representations of C3v must be used when half-integer spin is
relevant like in the valence band. They comprise two 1D irreps
1
E3/2 and 2

E3/2 and a single 2D irrep E1/2 [27].
Let R be a set of standard representation matrices corre-

sponding to 3D space operations [12,28]. R(g) represents a
change of coordinates indexed by group element g. Corre-
sponding function space operators [27] are denoted ϑ(g)(3D).
With spin, such a change should be accompanied by a
corresponding basis change in spin space, denoted ϑ(g)(j )

where g belongs to the double group. Composite spinorial
operations are denoted by ϑ(g) = ϑ(g)(3D) ⊗ ϑ(g)(j ), where
⊗ is the tensor product. The set of 4 × 4 Wigner matrices
W (g) [28] characterize standard spin basis changes, also
for the Luttinger Hamiltonian which is usually expressed
in a Bloch function basis transforming like angular mo-
mentum, thus indexed by | 3

2 ,m〉 (m along a chosen quan-
tization axis). Improper rotation matrices must be obtained
using the corresponding matrix representative for spatial
inversion.

To fully take advantage of the symmetry properties of the
valence band Hamiltonian, a Bloch basis labeled by irreps of
the double group is needed [12]:

{|2E3/2〉,|E1/2,1〉,|E1/2,2〉,|1E3/2〉} ; (3.1)

its elements are called heterostructure symmetrized Bloch
functions (HSBF’s), and correspond to suitable symmetrized
superpositions of usual Bloch functions. For our C3v Hamil-
tonian, the HSBF’s are given by Eqs. (A11) and (A12) of
Appendix section 2, whose ordering in Eq. (3.1) is important to
preserve the form of the time-reversal symmetry operator [23].

Note that our choice of axes (Fig. 1) differs from that of
Ref. [12], where the z quantization axis is chosen along the
crystal direction [1̄10], i.e., correspond to the present y axis.
Here, and in [23], the z axis is chosen along [111] which
is also the nanostructure main axis, enabling a more direct
correspondence between HSBF’s weights and light/heavy hole
(LH/HH) content along [111], which are most relevant (see
following and in Secs. IV B and VI D 1).

In our HSBF basis, the p,q,r,s quadratic terms appearing
in Eq. (2.3) are obtained using the bulk Luttinger Hamiltonian
expressed in direction [111] (see, e.g., Ref. [25]), then
changing its basis to the HSBF given in Ref. [23], and finally

by replacing kj → −i ∂
∂j

for j = x,y,z:

p = −1

2

(
∂

∂x
γ1

∂

∂x
+ ∂

∂y
γ1

∂

∂y
+ ∂

∂z
γ1

∂

∂z

)
, (3.2a)

q = 1

2

(
− ∂

∂x
γ3

∂

∂x
− ∂

∂y
γ3

∂

∂y
+ 2

∂

∂z
γ3

∂

∂z

)
, (3.2b)

r = − ∂

∂x
b

∂

∂x
+ ∂

∂y
b

∂

∂y
− ∂

∂z
a

∂

∂x
− ∂

∂x
a

∂

∂z
, (3.2c)

s = − ∂

∂y
a

∂

∂z
− ∂

∂z
a

∂

∂y
+ ∂

∂x
b

∂

∂y
+ ∂

∂y
b

∂

∂x
, (3.2d)

where

a = ε

2
(−γ3 − i

√
2γ2), b = iε

2
(γ2 + i

√
2γ3) (3.3)

with ε = 1−i
√

2√
3

.
In the forthcoming analysis, it will be useful to distill the

spinorial nature of the quantum states using the concept of
light hole (LH) and heavy hole (HH) dominant character
(because of band mixing the HH and LH states are mixed). Raw
approximations for effective masses parallel and perpendicular
to the [111] axis can be read from Eqs. (3.2a) and (3.2b)
(assuming r = s = 0), and are given by

m∗
‖ = 1

γ1 ∓ 2γ3
, (3.4a)

m∗
⊥ = 1

γ1 ± γ3
, (3.4b)

where the upper and lower signs apply to HH and LH,
respectively. For a normalized state |ψ〉, the weight of the
LH contribution is defined by

w
[111]
LH (ψ) ≡ |z〈3/2,1/2|ψ〉|2 + |z〈3/2, − 1/2|ψ〉|2, (3.5)

and similarly for the HH, so w
[111]
LH + w

[111]
HH = 1. Using the

basis change between the HSBF basis and the | 3
2 ,m〉 basis

quantized along [111], it is easy to show that

w
[111]
LH (ψ) = |〈E1/2,1|ψ |2 + |〈E1/2,2|ψ〉|2, (3.6)

implying that the LH/HH character w.r.t. [111] is equivalent
to the E1/2/

iE3/2 character in our C3v HSBF, which is very
convenient.

IV. SYMMETRY IMPLICATIONS ON NANOWIRE
QUANTUM DOT STATES

A. Symmetry of envelope functions

We need to consider more in detail the transformation
properties of spinors in order to exhibit envelope function
properties peculiar to our nanowire QD. Under any double-
group operation g ∈ C3v , the spinor transformation reads as in
the HSBF

ψ ′(r) = ϑg[ψ](r) = V B(g)ψ[R(g)−1r], (4.1)

where V B(g) are block matrices which are direct sums of
representations 2

E3/2 ⊕E1/2 ⊕ 1
E3/2, and correspond to the

HSBF-transformed Wigner matrices [12].
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A seminal consequence of a symmetry group is that it is
always possible [29] to find system eigenstates ψ by 	,μ

(	: irrep, μ: partner function index), such that the following
characteristic transformation law holds:

ϑgψ
	

μ
(r) =

d	∑
ν=1

[D	(g)]μ,νψ
	

ν
(r), (4.2)

where D	(g) is a set of representation matrices of dimension
d	 . Suitable D	(g) are given in Ref. [12] (note the transposed
multiplication table w.r.t. Ref. [27] since we use the passive
point of view).

It is clear that Eqs. (4.1) and (4.2) strongly constrain the
envelope function shapes. It was shown in [12] that they can
be uniquely decomposed into ultimately reduced envelope
function (UREF) components which themselves transform
according to single-group irreps. This fact could be used to
significantly reduce the computational domain. We will see
here that it is also helpful in data postprocessing and analysis.

For our C3v QD, the full valence band spinors correspond-
ing to the various 	,μ labels can be expressed in terms of
UREFs in the following form:

ψ
1
E3/2 =

⎛
⎜⎜⎜⎜⎝

φA2

φE
1

φE
2

φA1

⎞
⎟⎟⎟⎟⎠, (4.3a)

ψ
2
E3/2 =

⎛
⎜⎜⎜⎜⎝

[φA1 ]∗

−[
φE

2

]∗[
φE

1

]∗

−[φA2 ]∗

⎞
⎟⎟⎟⎟⎠, (4.3b)

ψE1/2

1
=

⎛
⎜⎜⎜⎜⎝

−φE
2

1√
2

[
φA1 + �E

1

]
− 1√

2

[
φA2 + �E

2

]
ϕE

1

⎞
⎟⎟⎟⎟⎠, (4.3c)

ψE1/2

2
=

⎛
⎜⎜⎜⎜⎝

φE
1

1√
2

[
φA2 − �E

2

]
1√
2

[
φA1 − �E

1

]
ϕE

2

⎞
⎟⎟⎟⎟⎠. (4.3d)

Here, simplified labels have been used for the envelope func-
tions: double-group labels (global spinor and HSBF labels) are
implicit and can be uniquely restored. They explicitly identify
distinct UREFs in all independent parts of Eq. (4.3) [12].

Time-reversal symmetry induces an additional unique an-
tilinear mapping between Kramers degenerate QD eigenstates
(no magnetic field), in analogy to the k → −k mapping in
quantum wires [23]. Therefore, in C3v Kramers pairs can
be labeled either by the two partners of the self-conjugated
2D irrep (E1/2) or by the pair of mutually conjugated
1D irreps ( 1

E3/2, 2
E3/2), and corresponding spinors must

satisfy Kψ
2
E3/2 = ψ

1
E3/2 and Kψ

E1/2

2 = ψ
E1/2

1 . Here, our
careful choice of HSBFs [23] ensures a standard form of
the time-reversal operator, for the valence band K = FK0,

where Fj,k = δk,(5−j )(−1)j , 1 � (j,k) � 4, and K0 denotes
conjugation. Therefore, in this case the UREFs appearing
in (4.3a) are equal to the corresponding UREFs in (4.3b),
and restrictions can be formulated for the E1/2 UREFs
[(4.3c) and (4.3d)]

ϕE
i = (

φE
i

)∗

φAi = (φAi )∗ ⇒ φAi is real
�E

i = −(
�E

i

)∗
, ⇒ �E

i is imaginary
, i = 1,2 (4.4)

which are specific to QDs (similar only to k = 0 states in
quantum wires).

Without spin conduction band envelope functions bear C3v

or D6h single-group labels. In both cases, eigenstates can be
either nondegenerate or twice degenerate. Due to time reversal,
degeneracy is doubled when adding spin.

Having established the precise symmetry of every spinorial
component using UREFs, we now propose to quantify the
respective contributions of each irrep, assuming that the full
spinors are all normalized to unity, i.e., ‖ψ

j
‖ = 1.

The UREFs appearing in a given set ψ	

μ
(r) transform into

each other according to D	(g) [Eq. (4.2)] and must be written
in general as ψ

	,	a

	b,μa
. Double-group 	b label identifies the

relevant HSBF block of V B(g), and single group (	a,μa)
labels every UREF. There may be internal redundancies within
the UREFs due to their own transformation properties. We may
define the weight of a subset of symmetry 	a within the block
	b of the spinor ψ	

μ
(assuming like here that 	b occurs only

once in 	) [30]:

w	b,	a
(
ψ	

μ

) = ∥∥ψ
	,	a

	b

∥∥, (4.5)

which is independent of μ. In addition, ‖ψ	,	a

	b
‖ = ‖ψ	,	a

	b,μa
‖

is independent of μa by symmetry [30] (generalized Wigner-
Eckart theorem); therefore, partner function indices μ and μa

are not relevant anymore. The chosen normalization ensures∑
	b,	a

d	a
w	b,	a = 1. d	a

appears because every partner
function contributes equal weight.

B. Decomposing states into simple products:
Dominant HSBF as DPGPS

The global symmetry (	,μ) of any heterostructure eigen-
state in a k · p model is always linked with an expansion
in terms of products of 	a,μa UREFs with 	b,μb HSBFs,
using Clebsch-Gordan coefficients. In addition, often (when
band mixing is not too large) there is an identifiable dominant
term so that the first factor describes well the main spatial
probability distribution, and the second factor encodes the
main symmetrized spin information. For example, an 1E3/2

state (4.3a) with the dominant weight in the first (A1) com-
ponent corresponds to the product state 	hole = A1 ⊗ 1E3/2.
We have called the relevant HSBF discrete point group
pseudospin (DPGPS) [31], a name which emphasizes the
existence of composition rules similar to ordinary spin, but
using Wigner-Eckart theorem for point groups. This concept
has proven crucially useful to understand the state multiplicity
of excitonic and biexcitonic complexes in C3v QDs [31].
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The identification of a dominant product in the valence band
is not as straightforward as in the conduction band. However,
there is an easy way to picture HSBF valence band mixing
and to identify dominance by computing the weight (4.5) of
every UREF appearing in Eq. (4.3) (using functional projection
operators on single-group irreps [29]). We shall see that it
reveals the true product nature (i.e., DPGPS) of most of the
lower-lying eigenstates.

One last comment regarding the DPGPS and its relationship
with the HH/LH concept: As explained in Sec. III, the HH
weight equals the combined weight of the two Ei

3/2 spinor
components in C3v . The valence band state of the previous
example (typically our QD ground state) may therefore be
classified as HH-like. As shown in Appendix section 3, the two
corresponding “spin states” are distinct conjugated DPGPS in
C3v , and the two partners of E3/2,g DPGPS in D6h. Similarly,
LH-like spin states will be associated to the partners of E1/2

DPGPS in C3v and to those of E1/2,g DPGPS in D6h.

V. POSTSYMMETRIZATION

Postsymmetrization has earlier been demonstrated by
Gallinet et al. using projection operators [30]. We will now
present the PTCO, a systematic and streamlined postsym-
metrization method. Its purpose is to disentangle and classify
numerical eigenstates with individual symmetry labels. The
main advantages of the PTCO are twofold: (1) it can be
used in combination with preexisting calculation codes for the
electronic structure, with little additional numerical/theoretical
work, and (2) it will allow to test and qualify possible
approximate elevated symmetries. We stress again that the
PTCO can be applied in the frame of much more complex
models than our simple four-band model.

Postsymmetrization will be carried out within a subspace
S spanned by a relevant set of computed eigenstates {ψ

j
, j =

1 . . . dS} of the Hamiltonian. S will be called the solution
space. For example, in Sec. VI we will retain the lower 20 hole
eigenstates. The states ψ

j
may not be as symmetric as they

should be in principle (either due to numerical errors or to the
use of a nonsymmetric underlying grid). Postsymmetrization
will aim at finding the best symmetrized states belonging
to S, on the basis of an assumed symmetry, either ideal or
approximate.

For any Hilbert space operator F there is a matrix
representation O(F ) in S, with elements

O(F )i,j = 〈ψ
i
|Fψ

j
〉. (5.1)

We shall use the same notation for F and its O(F ) since the
relevant space is clear from context.

Numerical eigenstates do not exactly obey Eq. (4.2) in the
general case. They can be mixed in two ways. First, mixing can
be due to the uncontrolled choice of the solvers within every
degenerate manifold. This effect can be strong. Although it
is compatible with the original symmetry, a disentanglement
is necessary to enable the use of individual 	,μ labels
linked with standard irreps D	(g). Second, eigenstates can
be mixed due to numerical inaccuracies, in particular for
nonsymmetric grids. Such mixing is always weak when good
convergence is achieved, except if some energy levels are

very close to each other. In such case, even states of different
symmetries can be mixed. The goal of PTCO, which is a global
postsymmetrization method, is to disentangle both kinds of
mixing simultaneously.

A. Postsymmetrization using class operators (PTCO)

We propose here a global procedure in solution space which
does not throw away any information like a standard sequential
projection procedure. The information is gathered from all
states in one step. The method is not cumbersome, it is flexible
and easy to use. New optimally symmetrized eigenstates are
automatically generated, with classified and predetermined
transformation properties.

The PTCO procedure is based on the concept of commuting
class operators [32] Ci, i = 1, . . . ,nC, which are constructed
by summing symmetry operators over a given group class:

Ci =
∑
g∈Ci

ϑ(g), (5.2)

where the classes Ci consist of all elements that are mutually
conjugate, i.e., ∀ g1,g2 ∈ Ci ∃ g ∈ G such that g2 = g(g1)g−1.
Class operators are closed under multiplication, commute with
each other and with every group operation [32], and their
number nC equals the number of irreps. For example, there
are three classes in C3v: the trivial class Ce = {e}, the class
of mirror operations Cσ = {σvi, i = 1,2,3}, and the class of
rotations C3 = {C+

3 ,C−
3 }.

The sought symmetrized basis vectors ψ
	

μ
∈ S should be

eigenfunctions of all class operators, with eigenvalues λ	
i , i.e.,

Ciψ
	

μ
= λ	

i ψ	

μ
. By construction, one has [32]

λ	
i = χ	

i

|Ci |
d	

, (5.3)

where χ	
i is the class character and |Ci | is the cardinality of Ci .

The power of the class operators has been extensively
described in a different context by Chen [32]. He showed,
in particular, that the set of class operators linked with a
canonical subgroup chain can be used to form a complete set of
commuting operators (CSCO) for the group space. However,
in solution space one must include the diagonal Hamiltonian
to generate a CSCO since there may be multiple subspaces
with the same symmetry. To distinguish partner functions
linked with 2D irreps of C3v , D3h, D6h, we shall always use
Cs = {e,σv1} as a canonical subgroup and add ϑ(σv1) to the
CSCO such that

CSCO = {H,C3,Cσ ,ϑ(σv1)}. (5.4)

The trivial class operator Ce has been omitted since it
corresponds to the identity.

To diagonalize most simply the CSCO operators, it is most
practical to combine them all into a single global CSCO
operator C by forming

C = αH H + α3C3 + ασCσ + αsϑ(σv1), (5.5)

where the coefficients α ensure that C has no degeneracy.
We shall use the respective magnitude of the α factors to
set symmetrization priorities by weighting more importantly
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selected CSCO operators; systematic guidelines for a judicious
choice will be given in Sec. VI C.

Let us now summarize the PTCOprocedure. A matrix
representation of C is constructed from Eqs. (5.1) and (5.5)
in the raw eigenvector basis {ψ

j
, j = 1 . . . dS}, where H

is diagonal. The diagonalization V †CV = � then yields in
one automated run the matrix elements Vjk which can be
interpreted as the seeked coefficients of the new symmetrized
H “eigenvectors” |ψ

k
〉 in the raw basis |ψ

j
〉. The quotes

and the overbar stress that in fact they are not anymore
numerically exact eigenvectors of H . Nevertheless, they are
in a way more physical since part of the due symmetry,
which was broken by the numerical implementation, has been
restored by the procedure. The symmetry recognition step
is defined by the identification k → (	,μ,l) (l enumerates
by order of increasing energy states with identical 	,μ).
This step is immediate using PTCO since a careful choice
of the α coefficients guarantees for every (	,μ) a specific
range of the corresponding eigenvalues c	

i,μ,l (see Sec. VI C),

hence, |ψ
k
〉 → |ψ	

μ,l
〉. The full postsymmetrized symmetrized

spinors can be easily constructed with

ψ
	

μ,l
=

∑
j

〈
ψ

j

∣∣ψ	

μ,l

〉
ψ

j
. (5.6)

Furthermore, it is of high interest to compute with the same
matrices the average values of each original CSCO operator
[Eq. (5.4)]. First,

E
	

μ,l = 〈
ψ

	

μ,l

∣∣Hψ
	

μ,l

〉
(5.7)

are the new corrected energies. One notes the presence of the
index μ, meaning that the PTCO cannot restore completely the
degeneracies lifted by the original numerical implementation!
Nevertheless, we still expect very closely packed eigenvalues
for each (	, μ, l) subspace. Second, the average values of the
C3v class operators

λ
	

i,μ,l = 〈
ψ

	

μ,l

∣∣Ciψ
	

μ,l

〉
(5.8)

should be closely packed around the ideal value λ	
i [Eq. (5.3)],

with again a slight μ dependence. Their interest is that they
allow to obtain directly the 	-symmetry weightsw	(ψ) =∑

μ w	
μ(ψ) via the following convenient character projection

formula:

w	(ψ) = d	

|G|

∣∣∣∣∣
∑

i

(
χ	

i

)∗
λ

	

i,μ,l

∣∣∣∣∣. (5.9)

w	(ψ) constitutes a figure of merit of the achieved state
symmetrization for ψ . Individual weights for each partner
function could also be obtained, but in a more cumbersome
way, using 〈ψ	

μ,l
|ϑ(σv1)ψ

	

μ,l
〉.

To conclude, the PTCO is a global, integrated, and
automated procedure to carry out postsymmetrization which
straightforwardly delivers in addition all quantities of interest
(e.g., improved energies and symmetry weights).

B. A hierarchy of symmetries

PTCO will first be used to symmetrize w.r.t. C3v , with
the CSCO of the previous section. C3v symmetry is the true
symmetry of the structure, only broken by the nonsymmetric
underlying grid, as well as numerical errors. From the physical
point of view, higher approximate symmetries such as C6v , D3h

and D6h may also be relevant.
The C6v symmetry group is constructed from C3v by

adding mirror operations w.r.t. three intermediate vertical
symmetry planes (σdi, i = 1 . . . 3), and D3h by inclusion of
the mirror operation of the horizontal symmetry plane (σh).
Combining C6v and D3h leads to the mesoscopic symmetry
D6h. Both for C6v and D3h, there are three double-group
2D irreps E1/2, E3/2, and E5/2. Their identical subduction to
C3v yields E3/2 → 1

E3/2 ⊕ 2
E3/2, E5/2 → E1/2, and E1/2 →

E1/2. Subduction is also similar for D6h, but all irreps are
doubled with gerade/ungerade types. All corresponding D	

matrices are given in Appendix section 1.
The degree of validity of elevated symmetries can be

investigated by diagonalizing the corresponding new CSCOs.
New class operators must then simply be added to C: C6 =
{C+

6 ,C−
6 } for C6v or S3 = {S+

3 ,S−
3 } for D3h [27], which

distinguish E1/2 and E5/2 irreps in both cases. For D6h it is
enough to include both simultaneously.

One thus sees the versatility of the PTCO: Aside from
restoring true symmetry by postsymmetrization, it offers the
possibility to investigate in a simple way the existence of
a hierarchy of symmetries as ever cruder, but informative,
approximations to the problem at hand.

Figure 2 presents a schematic summary of tools and a
coherent strategy for symmetry analysis.

PTCO

HSBF

→ →

→

→
→

→ → UREF → → MSRF

DPGPS

→

→ →

→ →

FIG. 2. (Color) Schematic summary of the tools and concepts of
this paper, and their use for symmetry analysis (for acronyms, see
main text). An initial first “guess” of the symmetry is a prerequisite.
The process can be iterated easily for testing the presence of elevated
symmetries.
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TABLE I. Parameters for k · p simulation, at 0 K.

Effective mass [33] GaAs: m∗ = 0.067, AlAs: m∗ = 0.15
GaAs: γ1 = 6.9800, γ2 = 2.0600, γ3 = 2.9300

Luttinger par.a [33] AlAs: γ1 = 3.7600, γ2 = 0.8200, γ3 = 1.4200
EGaAs

g = 1.519 eV, EAlAs
g = 3.099 eV

Band gap [33] Eg(x) = (1 − x)EGaAs
g + xEAlAs

g − x(1 − x)c
c = −0.127 + 1.310x

Band offset ratio [34] 60.4 : 39.6
Band offsets Ev = 0.396 Eg(x), Ec = 0.604 Eg(x)

aLuttinger parameters for Al0.3Ga0.7As are found using linear interpolation of VB
effective masses and their anisotropy [33].

VI. NUMERICAL RESULTS

We consider a GaAs QD as described in Sec. II. The
length of the hexagon edges is 20 nm, and the axial length
of the dot is 5 nm. An Al0.3Ga0.7As shell of thickness 10 nm
surrounds the QD in the transverse direction, with infinite
potential outside. In the axial direction, the dot is surrounded
by a thick layer of Al0.3Ga0.7As, sufficient to ensure that all
probability distributions go to zero. Effective masses, Luttinger
parameters, and potential profile parameters (band gap and
band offsets) as function of aluminium concentration are
summarized in Table I.

A. Numerical implementation, energies,
convergence, and accuracy

We used a finite difference approach on a square grid, using
91 equidistant points in every direction. Figure 3 displays
the cross section of the CB and VB confinement potentials.
The slightly wavy lateral sides evidence the deviation of the
discretization with respect to C6v symmetry, which will later
be ideally averaged by PTCO.

We computed the 10 lowest conduction band levels (without
spin) and the 14 upper valence band levels. Their energies
(with respect to the top of the valence band) are reported in
the first column of Tables II and III, respectively. Note that the
highest valence band level included here deviates from the top
of the valence band by 39 meV, the split-off band is located
�so = 341 meV away. The goal of this section is to build in a

FIG. 3. (Color) Transverse cross section of the CB and VB
potential.

simple way the information displayed in all other columns of
these tables.

Investigations of the numerical convergence indicate an
energy accuracy of 1.7 meV for conduction band levels and
0.3 meV for the highest valence band level corresponding to
similar spatial excitation. The lighter electron mass explains
the lower accuracy for electrons despite equivalent numerical
convergence. Note also that relative energy differences within
each band are more accurate than the absolute values.

B. Conduction band eigenstates

Isosurfaces of the first few conduction band eigenfunctions
|ψCB|2 are shown in Fig. 4. The full twice degenerate CB
spinors ψn can easily be constructed [23]. In the present
effective mass CB model one keeps the full D6h heterostructure
symmetry, therefore, every level in Fig. 4 is labeled by D6h

irreps, which bear g or u subscripts depending on whether they
are even (gerade) or odd (ungerade) with respect to inversion.
The possible single-group irreps of D6h are [27] the 1D irreps
A1,g/u, A2,g/u, B1,g/u, B2,g/u, and the 2D irreps E1,g/u and
E2,g/u, and their assignment to eigenfunctions of Fig. 4 using
PTCO is explained in the following in more details for the VB.
Table II summarizes the complete classification, also when
including spin, and in C3v symmetry.

TABLE II. Conduction band states and their final classification.
The (	,μ)D6h labels are obtained taking the direct product of
the UREFs and the DPGPS representations. The DPGPS for all
conduction band states is E1/2,u (cf. Appendix section 2).

Level
Eraw

(meV)
(	,μ)C3v

UREF
C3v

(	,μ)D6h
UREF
D6h

ψ
(	)D6h

(na ,nr )

1 1590 E1/2 A1 E1/2,u A1,g ψ
A1,g

01

2,3a 1599,

1599
E

j

3/2,

E1/2
E

E3/2,g,

E1/2,g

E1,u ψ
E1,u

11

4,5a 1612,

1612
E1/2,

E
j

3/2
E

E5/2,u,

E3/2,u

E2,g ψ
E2,g

21

6 1617 E1/2 A1 E1/2,u A1,g ψ
A1,g

02

7, 8
1626,

1630
E1/2

A1,

A2
E5/2,g

B1,u,

B2,u

ψ
B1,u

31 ,

ψ
B2,u

31

9, 10a 1636,

1637
E1/2,

E
j

3/2
E

E1/2,g,

E3/2,g

E1,u ψ
E1,u

12

aDegenerate by symmetry. To enable better comparison with the
valence band, we preserve individual level numbering.
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TABLE III. Valence band states and their final classification.

Level
Eraw

(meV)
a �EC3v

(μeV)
a �ED6h

(μeV)
w

[111]
LH

b (	,μ)C3v
UREFC3v

dominant
(	,μ)D6h

dominant
UREFD6h

dominant
ψ

(	)D6h

(na ,nr )

1 −14.6 1.3 1.4 0.01 E
j

3/2 A1 E3/2,g A1,g ψ
A1,g

01

2,3
−20.4,

−20.9
0.4,

0.5
118.2,

−111.5
0.04,

0.03
E1/2 E

E5/2,u,

E1/2,u

E1,u ψ
E1,u

11

4, 5
26.4,

28.0
4.8,

14.9
541.9,

−487.5
0.12,

0.08
E1/2 E

E5/2,g,

E1/2,g

E2,g ψ
E2,g

21

6 −28.5 −16.5 −15.9 0.15 E
j

3/2 A1 E3/2,g A1,g ψ
A1,g

02

7, 10
−31.4,

−35.0
6.3,

−9.5
8.9,

−12.1
0.25,

0.21
E

j

3/2
A1,

A2
E3/2,u

B1,u,

B2,u

ψ
B1,u

31 ,

ψ
B2,u

31

8, 9
−33.9,

−34.6
−2.8,

8.5
319.8,

−296.3
0.32 E1/2 E cE1/2,u,

E5/2,u

E1,u ψ
E1,u

12

11 −35.4 1.2 285.0 0.37 E1/2 E cE1/2,g E2,g ψ
E2,g

41

12, 15
−37.8,

−39.4
7.5,

−29.5
−57.7,

−281.8
0.42,

0.43
E1/2 E cE1/2,g,

E5/2,g

E2,g ψ
E2,g

22

13 −38.6 −3.5 −27.1 0.46 E1/2 E cE5/2,u E1,u ψ
E1,u

51

14 −39.0 16.3 15.7 0.44 E
j

3/2 A1 E3/2,g A1,g ψ
A1,g

03

aAveraged over Kramers doublets.
bFor the C3v symmetrized basis.
cIntermixed symmetries.

C. Valence band eigenstates

The symmetry of valence band states is a much more
complex matter, and we will utilize extensively PTCO.
First, one wishes to symmetrize w.r.t. the true original C3v

symmetry, as the lack of symmetry of the underlying grid may
strongly influence the choice of eigenstates within degenerate
subspaces. PTCOwill also give quantitative information about
the effect of the symmetrization process.

1. Analysis of true C3v symmetry

The global CSCO operator C, used for postsymmetrization,
is given for C3v by Eq. (5.5), hence its eigenvalues are by

FIG. 4. (Color) Isosurfaces of conduction band eigenfunctions
|ψCB|2, for increasing energy levels, labeled by D6h irreps (single
group).

definition

c	
μ,l = αHE

	

μ,l +
∑

i=3,σ,s

αiλ
	

i,μ,l, (6.1)

where E
	

μ,l and λ
	

i,μ,l are given by Eqs. (5.7) and (5.8). It is
worth noting that the c	

μ,l eigenvalues can be tuned a priori
using the α coefficients since we approximately know the

corrected energies E
	

μ,l (close to the raw values), as well as
the ideal eigenvalues λ	

i [Eq. (5.3)].
We now outline how to choose the α’s to ensure not only

well-separated eigenvalues c	
μ,l , but also to set symmetrization

priorities by weighting more importantly relevant CSCO
operators. Let us write the approximate spectrum of C

[cf. Eq. (6.1)]

c̃	
μ,l = αHE

	

μ,l +
∑
i=3,σ

αiλ
	
i + αsλs,μ. (6.2)

The last parameter αs , which is related to the class operator
of the subgroup Cs , distinguishing different partner function
indices μ, is now singled out to avoid confusion between the
eigenvalues λ	

i of C3v and λs,μ of Cs .
First, it is convenient to shift and normalize C by setting

αH = 1/ max	,μ,l(E
	

μ,l − E0) where E0 is the ground-state
energy. The set of eigenvalues

c	
μ,l = E

	

μ,l − E0

max
	,μ,l

E
	

μ,l − E0

+ τ	
μ (6.3)

is then such that the Hamiltonian range is unity, and the
symmetry-dependent remainder reads as

τ	
μ = αsλs,μ +

∑
i=3,σ

αiλ
	
i . (6.4)
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TABLE IV. Equidistant parameters τ	
μ chosen to separate be-

tween C3v irreps and partner functions.

τ
2E3/2 τ

1E3/2 τE1/2,1 τE1/2,2

−3.5 −1.5 0.5 2.5

Second, the idea is to use the remaining α’s to induce
significant eigenvalue splittings between different symmetry
labels via Eq. (6.4), facilitating eigenvector symmetrization
and identification.

With the help of Eq. (5.3) we could predetermine well-
separated τ	

μ values, equidistant for C3v symmetrization (see
Table IV). The relative separation �τ then specifies in a
way a magnitude of symmetry splittings with respect to the
normalized Hamiltonian spectrum, and thus corresponds to
enforced priorities during rediagonalization. Choosing �τ �
1 would emphasize symmetry at the price of eventually
remixing completely the Hamiltonian eigenstates. On the
opposite, �τ � 1 would give small weight to symmetry
considerations. Our empirical choice �τ = 2 is balancing
both aspects and separates nicely different irreps for easy
identification. It was found appropriate to improve the C3v

symmetry perturbed by the nonsymmetric underlying grid, in
particular to optimally symmetrize degenerate states.

Having determined the α coefficients, we diagonalized
the C operator in the solution space defined by the lowest
30 raw valence band states (including Kramers degeneracy).
The remixing due to symmetrization is visualized in Fig. 5,
where we display the norm of the matrix elements of the
unitary symmetrization V . Figure 6 demonstrates that the
energy changes �E for each level after symmetrization is
very modest, confirming the quality of the raw results.

At large, we see clearly that symmetrization remixes
essentially within degenerate Kramers doublets. There are no
intertwined blocks, a situation that PTCO would nevertheless

raw → C
3v

Level No

Le
ve

l N
o

 

 

2 4 6 8 10 12 14

2 

4 

6 

8 

10

12

14

0

0.2

0.4

0.6

0.8

1

FIG. 5. (Color) Norms of the elements of the unitary symmetriza-
tion matrix V w.r.t. C3v .

FIG. 6. (Color) Energy changes after C3v symmetrization. Raw
energy spectrum is shown in blue, and the difference between
symmetrized and raw spectrum is shown in red (bright grey).

handle automatically, sorting and symmetrizing the respective
sets of partner functions.

Figure 5 also evidences slight spurious off-diagonal mixing
between different Kramers doublets (e.g., levels 5-6), which is
amplified by energy proximity, as clearly displayed by Fig. 6.
It is also associated with doublets of different symmetry (cf.
Fig. 7), which is a signature of symmetry breaking by the
underlying grid. A systematic behavior is observed for all
mixed pairs of such doublets (levels 5-6, 9-10, and 14-15),
and consistently correspond to the biggest energy changes
(albeit very small <0.05%). Such effects would be very
cumbersome to correct using a standard stepwise projection
operator procedure.

The level of achieved C3v symmetrization is analyzed for
all 30 computed states in Fig. 7 using the symmetry weights

w	
μ(ψ

	

μ
) for double-group irreps. The eigenstates are very pure

and well grouped in conjugated doublets, which confirms as
much the symmetry of the QD as the excellent convergence,
or the PTCO procedure.

We proceed to the next levels of the C3v symmetry analysis,
considering UREFs and associated single-group irreps. In

FIG. 7. (Color) Double-group weights w	
μ(ψ

	

μ
) w.r.t. the C3v

irreps after C3v symmetrization.
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FIG. 8. (Color) Single-group weight w	a
α (ψ	,	b

μ,β ) for each level
after C3v symmetrization.

Fig. 8, the (	a,α) weights

w	a

α

(
ψ

	,	b

μ,β

) = ∣∣C	,	∗
b ;	a

μ,β;α

∣∣w	b,	a
(
ψ	

μ

)
(6.5)

are plotted for each HSBF envelope function ψi ≡ ψ
	,	b

μ,β . Note
that they differ from w	b,	a (ψ	) [Eq. (4.5)] by a Clebsch-
Gordan coefficient, which in C3v differs from unity only in the
central component of the E1/2 spinor.

In Fig. 8, we first note that the UREF irreps are in
accordance with Eq. (4.3). However, there is a striking
unbalance between weights of the partner functions in the
|iE3/2〉 components of the E1/2 states, most notably for levels
2 and 3 and 8 and 9. Due to time-reversal symmetry, the two
|1E3/2〉 HSBF components (or the two |2E3/2〉 components) are
mutual E-partner functions with the same weights on principle.
We assume such unbalance can only occur from imperfect
grid and mixing of nearby quasidegenerate levels with same
symmetry, so that mixing cannot be well discriminated by
C3v symmetrization. This explanation is supported by the
fact that each of the two concerned E1/2 level pairs (2-3
and 4-5) has simultaneously opposite weight imbalance and
closeby energies (Fig. 6). Actually, the presence of additional
quasidegeneracies do alert us of the possible existence of

0 5 10 15
0

0.2

0.4

0.6

0.8

1

C
6v

 irreps. C
3v

 symmetrized basis

Level No

W
ei

gh
t

 

 
E

3/2
,1

E
3/2

,2

E
1/2

,1

E
1/2

,2

E
5/2

,1

E
5/2

,2

FIG. 9. (Color) Double-group weights of C3v-symmetrized
eigenstates w.r.t. the irreps of the elevated C6v group.

approximate elevated symmetries, which may be able to
correctly remix the relevant states.

2. Analysis of elevated C6v and D3h symmetries

The quasidegeneracy of the first two E1/2 levels hinted at
the possible occurrence of approximate elevated symmetries.
Such symmetries have previously been found both in theoret-
ical [23] and experimental [9,31] work on [111] oriented C3v

heterostructures. Because the mesoscopic structure has D6h

symmetry, we shall now test for the possible existence of C6v ,
D3h, and D6h elevated symmetries to see if there is a hierarchy
and, if so, how it is organized.

Figure 9 displays the weights of the C3v-symmetrized states
according to C6v double-group irreps (D3h, not shown, was
very similar). We see no change for i

E3/2 states which are
also well defined using C6v or D3h, in agreement with their
subduction tables [27], which yield E3/2 → E1

3/2 ⊕ E2
3/2. For

the remaining irreps, C6v or D3h subduction tables yields
E5/2 → E1/2 and E1/2 → E1/2, in accordance with Figs. 7
and 9. However, we see clearly some irrep mixing which
sometimes prevents unique labeling of these states in view of
the elevated symmetry groups C6v and D3h, and demonstrates
their approximate nature.

For closer investigation, we shall perform a further C6v

symmetrization, as proposed in Sec. V. This can be easily done
by adding to the CSCO the class operator C6 (or S3 for D3h)
which allows to distinguish between the E1/2 and E5/2 irreps
of the elevated group. Of course, one cannot expect the result
to be more exact since they are not true symmetries of the QD,
but perhaps the result will help determine what is the closest
approximation. The τ symmetrization parameters for C6v are
given in Table V, and were again chosen to separate clearly
the different irreps, but they are not anymore equidistant. The

TABLE V. Parameters τ	
μ for symmetrization w.r.t. elevated

symmetry groups C6v and D3h.

τ
E3/2
1 τ

E3/2
2 τ

E1/2
1 τ

E1/2
2 τ

E5/2
1 τ

E5/2
2

−3.5 −1.5 0.65 2.65 0.35 2.35
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→

FIG. 10. (Color) Norms of the V2 matrix elements, connecting
the C6v-symmetrized states to C3v-symmetrized basis.

separation for irreps that are indistinguishable in C3v has been
chosen smaller than 1, keeping some Hamiltonian priority over
the approximate symmetry.

With some surprise we found that D3h symmetrization
leads to nearly identical results w.r.t. C6v symmetrization, both
qualitatively and quantitatively, so the results are left out. It
led to the classification in terms of D6h presented in the next
section.

We refer to the new eigenstates as C6v symmetrized, and
denote by V2 the unitary transformation from C3v- to C6v-
symmetrized basis. The norms of its matrix elements are shown
in Fig. 10.

We see that the transition from C3v to C6v leaves the i
E3/2

states practically unaltered, as expected from Fig. 9. We also
see that the pairs of E1/2 quasidegenerate subspaces in C3v

(levels 5-6, 9-10, and 14-15) are remixed and given distinct
symmetry labels in Fig. 12, as suspected. Finally, we see in the
lower right corner of Fig. 10 three nondiagonal blocks mixing
levels 11, 12, and 15 nontrivially together. The asymmetric
structure might indicate that a level above level 15 should also
have been included in the solution space. Block structures
like this are useful in revealing nearby states of similar
symmetry.

It has not yet been demonstrated that the elevated symmetry
C6v was a good approximation to the true solution of the
original Schrödinger equation, therefore we show in Fig. 11
the energy shifts �E due to the imposed symmetry C6v .
One sees that they remain very small (<0.6 meV) compared
to the confinement energies (max. 2.05% for level 4). Not
surprisingly, they do, however, increase by an order of
magnitude w.r.t Fig. 6. This is a clear manifestation that C6v

symmetry is not a true symmetry of the system and that it is
imposed. Note also that C6v symmetrization naturally tends to
bring closer the newly intermixed energy levels, and the larger
their original lack of degeneracy, the larger their final shift
�E.

FIG. 11. (Color) Energy changes after C6v symmetrization (for
D6h symmetrization see Table III). The raw energy spectrum is shown
in blue, and the difference between symmetrized and raw spectrum
is red (bright gray).

The weights of the C6v double-group irreps for C6v-
symmetrized eigenstates are shown in Fig. 12. These double-
group irreps subduce correctly towards the previous identifi-
cation with C3v (Fig. 7). The most interesting aspect of Fig. 12
is certainly that the first two levels which were characterized
by E1/2 C3v irreps (levels 2 and 3) are now distinct C6v irreps,
with nearly pure character, similarly for levels 4 and 5. As
the two latter levels were not as much degenerate, their energy
change is much larger (Fig. 6). The same comment also applies
to levels 8 and 9, although we see that these levels do not
seem to be well described by the elevated symmetry. This is
not surprising since higher-energy levels are generally more
sensitive to symmetry-breaking contributions from the bulk
crystal symmetry. For the lower levels, the remixed states are
well defined by E1/2 or E5/2 irrep labels, accordingly they
approximately obey the symmetry of the elevated symmetry
groups.

The symmetry weights of the spinor components of the
C6v-symmetrized eigenstates are given in Fig. 13 (using only
C3v irreps, for easier comparison with Fig. 8). The single-group
decomposition of the components of the i

E3/2 states obviously

FIG. 12. (Color) Double-group weights w	
μ(ψ

	

μ
) w.r.t. the C6v

irreps after C6v symmetrization.
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FIG. 13. (Color) Weights w	
μ(ψ

	

μ) for each component of the
HSBF basis, where 	 μ are single-group irreps and partner functions
of the C3v group. The eigenstates have been transformed using the
C6v symmetrization.

remains the same as in Fig. 8. It is more interesting to consider
the E1/2 states, especially those corresponding to levels 2 and
3, and also levels 8 and 9. The weight imbalance present
in Fig. 8 has essentially disappeared in the new eigenstate
basis (Fig. 13). This is a meaningful numerical proof that
indeed there was a mixing between the quasidegenerate levels
2-3 (and 8-9) due to grid imperfections, not retrievable by
C3v symmetrization because these states bore identical irreps!
In the elevated C6v group the different irreps can be easily
disentangled, for which the restoration of a correct balance is
also a clear signature.

3. D6h as the ultimate elevated symmetry?

Symmetry elevation towards C6v or D3h revealed to be very
similar and of the same quality. This is a hint that D6h, which
collects all their symmetry elements, could be really relevant
as the best approximate elevated symmetry group. In fact, this
should not be entirely surprising since mesoscopic symmetry
is D6h, it was crystal symmetry which limited to C3v at the
microscopic level. PTCOallows to estimate these effects by
testing D6h symmetrization and giving figures of merit. To
this end, both C6 and S3 are just added to CSCO and the τ	

μ

C
6v

→ D
6h
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FIG. 14. (Color) Norms of the V3 matrix elements, connecting
the C6v-symmetrized states to D6h-symmetrized basis.

parameters were obtained by further slightly splitting by ±0.1
the values of Table V for gerade/ungerade D6h irreps (fine
symmetry discrimination).

Figure 14 shows the norms of the elements of the unitary
matrix V3 transforming from C3v- to D6h-symmetrized eigen-
states. Except for levels 8-9, 11-12, and 15 there are little
changes (apart from trivial state reordering). Again, remixing
of highest excited states is limited by the size of the solution
space. Remixing of levels 8 and 9 can now be nicely and
clearly interpreted by their distinct irreps E3/2,u and E5/2,u

(both E1/2 in Fig. 9). Again, the departure from D6h symmetry
becomes important after level 10, in particular for levels 11,
12, and 15 that have strongly mixed character: it is natural that
excited states are more sensitive to symmetry breaking by the
underlying zinc-blende lattice.

The energy shifts due to D6h symmetrization are sum-
marized in the columns of Table III and stay on the same
order as for C6v . The renormalization of energy differences
between neighboring levels which bore E1/2 labels in C3v

are not significantly larger than the corresponding values for
C6v (Fig. 11), demonstrating the real relevance of D6h as
the ultimate symmetry elevation. In the top plot of Fig. 15,
the D6h double-group weights of the symmetrized eigenstates
are displayed. Their purities are very similar to what they were
in the C6v analysis (Fig. 9). D6h symmetry is thus fulfilled
approximately to the same degree as C6v or D3h, but many
more kinds of symmetries are discriminated, as evidenced by
Fig. 15.

The four bottom plots of Fig. 15 show the single-group
analysis of each spinorial component in the D6h HSBF basis
which will find application in the next section. The reader can
check that these numerical results are in fair agreement with
the analytically predicted D6h UREFs, predicted in Appendix
section 3.

We have here fully confirmed the relevance of D6h

approximate symmetry elevation in the valence band for
our structure, including when it applies and when it has
limitations.
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FIG. 15. (Color) Double-group weights (top plot) and single-
group weights (four lower plots) for each HSBF component w.r.t.
D6hgroup, using the D6h-symmetrized basis.

D. Characterization of DPGPS, UREFs, and envelope function
symmetry of valence band eigenstates

Up to now we have mainly concentrated on eigenstates as
a whole. It is, however, possible to get important information
by looking closer into the spinorial components, by studying
the nature of the UREFs, and identifying dominant HSBF
(DPGPS), as well as dominating UREF. Such an approach
will not only provide enhanced physical interpretation and
intuition, but can also prove to be extremely helpful informa-
tion when building more complex objects, e.g., multiexcitons
in a configuration interaction approach and in the strong
confinement limit (cf. Refs. [9,31]).

The analysis will be carried out using essentially elevated
D6h symmetry which provides the finest classification, de-
termining DPGPS in Sec. VI D 1 and dominant UREF’s in
Sec. VI D 2. It is then completed in Sec. VI D 3 by searching
classical azimuthal and radial quantum numbers, which will

provide an intuitive understanding for the irrep sequence and
outline a link to symmetry-adapted functions [27].

The main results of this section are summarized in Table III.
Together with Fig. 15, it provides the finest understanding of all
valence band states and is the only way to decipher completely
the remarkable properties of the optical transitions.

1. Heavy and light hole mixing, HSBFs, and DPGPS

The most common way to analyze VB states in heterostruc-
tures is in terms of valence band mixing between HH and
LH states. This is an import from quantum well physics
where there is no mixing at zone center. In strongly oblate
disklike structures (cf. Fig. 1) this remains a good starting
point due to weak mixing for the ground states, allowing to
deduce that the ground state should be HH-like. Moreover,
one can coarsely predict the order of excited HH- and LH-like
states using a scalar anisotropic effective mass model based
on Eq. (3.4) which neglects valence band mixing and assumes
an infinite cylindrical potential well with the same height
and cross-sectional area as the nanowire QD. This yields a
separation of about 45 meV between the ground HH and LH
states. Accordingly, we do expect the 15 lowest-energy levels
(Table III) to be dominated by HH states, in agreement with
what can be seen in Figs. 8 and 15, where the HH weight always
remains above 0.5. We also see clearly in Figs. 8 and 15 that
the degree of band mixing increases with the excitation levels.
It is very low for the ground state, which is nearly a pure (99%)
HH state. Band mixing starts to be significant above level 6.

Here, a powerful way to analyze VB states called “HSBF
valence band mixing” is proposed. It helps to identify,
whenever possible, the DPGPS, i.e., the dominating HSBF.
As the first 15 Kramers conjugate pairs are HH-like, their
C3v DPGPS is logically always |Ei

3/2〉, i = 1,2, and |E3/2,g〉
in D6h (cf. Appendix section 2). This concept, together with
information on the dominating UREF, is important, and will
enable in the next section to find the deep reason for all the
observed quasidegeneracies.

2. Analysis of UREFs

Let us first identify for every level (Kramers’ pair) the
dominant UREFs, using Fig. 15. We find the following
dominances: levels 1, 6, and 14 are A1,g , levels 2, 3, 8, 9,
and 13 are E1,u, levels 4, 5, 11, 12, and 15 are E2,g , level 7 is
B1,u, and level 10 is B2,u. This is summarized in column 6 of
Table III. Column 4 (for C3v) can be obtained by subduction.
Note that we have regrouped some levels together as pairs
in this enumeration; the reason will become clear during the
forthcoming analysis.

Our first purpose is to show that a description of the
states in terms of product states between the dominant UREF
and DPGPS allows to explain most of the level sequence.
Indeed, the double-group irrep of each level (or the irrep
pair in case of a level pair) can be faithfully generated by
making the following irrep products: for the isolated levels
1, 6, and 14 A1,g × E3/2,g = E3/2,g , for the level pairs 2,
3 and 8, 9 E1,u × E3/2,g = E5/2,u + E1/2,u, for level pairs
4, 5 and 12, 15 E2,g × E3/2,g = E5/2,g + E1/2,g , for level 7
B1,u × E3/2,g = E3/2,u, for level 10 B2,u × E3/2,g = E3/2,u,
for level 11 E2,g × E3/2,g = E1/2,g (+E5/2,g but the latter
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is missing), and finally for level 13 E1,u × E3/2,g = E5/2,u

(+E1/2,u but the latter is missing). The missing levels related
to level 11 and to level 13 are likely to lie above the 15th
energy level. The association of level 12 (instead of 11)
with level 15 will be explained in the next section when
looking at azimuthal and radial quantum numbers. It is still an
open question whether the departure from D6h symmetry of
levels 11, 12, and 15 may be further minimized by including
the missing partner of 11 in the symmetrization procedure
(cf. Fig. 14).

The pairwise clustering in energy for levels (2, 3) and (4, 5)
and (8, 9) and (12, 15) (see Fig. 11 and Table III) can also be
very clearly explained by dominant product states. It should
be kept in mind that the quasidegeneracies of (4, 5) and (12,
15) with 6 and 13 and 14, respectively, are accidental with
respect to D6h since these have different symmetries. While
the energy of the lower pairs is closely packed together due
to negligible valence band mixing, higher pairs like (8, 9)
and (12, 15) become more and more significantly split apart.
The splitting is, however, already visible for the level pair
(4, 5), manifested in Fig. 15 as nonvanishing weight in the
central E1/2 components in which there are distinct UREFs for
the respective levels. This is a clear demonstration that band
mixing can also be a relevant concept in the HSBF picture
(“HSBF band mixing”).

The isolated levels 1 and 6 and 14 are all linked with the
dominating A1,g UREF. Although it is customary that the
fundamental level is strongly dominated by a fully invariant
envelope function concentrated in the DPGPS component, the
structure of levels 6 and 14 can again only be explained in the
next section when looking at azimuthal and radial quantum
numbers. Note that level 14 also displays contributions from
other HSBF components.

Levels 7 and 10 are also interesting. They are very similar
and form in a way a complementary pair because the relative
strength of the weights of B1u and B2u is opposite between
the two levels. In fact, within one level neither of the two
is strongly dominant, but this is allowed by symmetry since
the two products B1,u × E3/2,g and B2,u × E3/2,g give both of
them global E3/2,u symmetry. In contrast with the partners
of an E1,u/g or E2,u/g irrep (see Fig. 15) which must be
always balanced as predicted by the Wigner-Eckart theorem,
the weights of the B1u and B2u UREFs must not necessarily
be balanced in these levels. Levels 7 and 10 therefore illustrate
the general fact that even if a state has a clear DPGPS
(clearly dominant HSBF), it may not necessarily have a single
very dominant UREF, as allowed by the analytical UREF
decompositions given in Appendix section 3.

Thus far, we have only considered the DPGPS components
of the spinors. The higher excited levels also have a significant
contribution from the E1/2 HSBFs (LH). For simplicity, we
discuss this only in C3v symmetry. First, note that all E-partner
functions within LH components have balanced (equal) weight
despite band mixing: this is indeed imposed by symmetry
[cf. Eq. (4.3)]. By contrast, and in analogy to the discussion of
the previous paragraph, level 13 has Ai, i = 1,2, UREF pairs
in the LH components with an allowed weight imbalance.
Second, we have analytically demonstrated that time-reversal
symmetry imposes restrictions on the LH components of the
E1/2 states [cf. Eq. (4.4)]. As a clear example, let us consider

the first pair of E1/2 states with significant LH weights, levels
8 and 9, which contain all UREFs predicted by Eq. (4.3), as
can be seen in Fig. 9. We have been able to check numerically
that the relative phase of the A1 and A2 UREFs do indeed
differ by a factor i compared to the E UREFs, in agreement
with Eq. (4.4). Level 12 has a rather large A1 LH component;
we do not think, however, that this state should be identified
with a ground LH-like state.

Finally, it is interesting to consider the parity of the
dominant UREFs found with respect to the σh operation.
From the D6h character table it is easy to see that all the
single-group irreps of the dominant UREFs appearing so far,
namely, A1,g, A2,g, B1,u, B2,u, E2,g , and E1,u, are even under
σh [nevertheless, it should be noted that non-dominant UREFs
demonstrate some level of z excitation due to band mixing
(cf. Fig. 15)]. The reason for this behavior of the dominant
UREFs is rooted in the high lateral to axial aspect ratio of the
QD under consideration which is 40:5. We therefore expect
the envelope functions of the levels considered here to have
excitations mainly in the transverse plane.

To conclude, we would like to stress that the dominant
UREFs that have been identified in this section will play a
key role in enabling (1) a further analysis of transverse plane
excitations in terms of azimuthal and radial quantum numbers,
and (2) a further interpretation of respective oscillator strengths
in optical spectra.

3. Approximate azimuthal and radial quantum numbers:
The role of symmetry-adapted functions

The goal of this section is to investigate the correspondence
between a classical effective mass analysis for a disk-shaped
quantum dot in terms of standard azimuthal and radial quantum
numbers, and the sequence of irreps for the dominating UREFs
identified in the previous section. A logical ordering of the level
sequences in terms of azimuthal and radial quantum number
can be also viewed as approximate symmetry elevation to D∞h.

The Schrödinger equation for a circular disk-shaped QD
with infinite barriers is separable in azimuthal and radial coor-
dinates, and leads to eigenfunctions proportional to products
of an azimuthal exponential exp(imaφ) with an lath-order
Bessel function Jla (kla,nr

r) for the radial coordinate, where
it is understood that kla,nr

R is the nr th zero of Jla with R being
the dot radius. They are labeled by the azimuthal and radial
quantum numbers la = 0,1, . . . ,∞ and nr = 1, . . . , + ∞. In
cylindrical coordinates, ma is restricted to ma = ±la (and axial
excitations would be labeled by nz). The number of azimuthal
nodes is thus la , and there is a twofold degeneracy for states
with la �= 0.

Similar approximate quantum numbers are to be expected in
our nearly cylindrical 3D solutions (see Fig. 4 for the conduc-
tion band and Fig. 16 for the valence band spinor component
cross sections). Therefore, we shall in the following specify
the character of the computed dominating UREFs not only by
their irreps, but also by additional subscripts ψ	

na,nr
where na

and (nr − 1) specify the number of nodes in azimuthal and
radial direction, respectively (when they can be determined).
The subscripts were identified by visual inspection for the first
15 levels, and are listed in the last column of Table III.
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FIG. 16. (Color) Cross sections of a selection of the contributions
to the valence band spinor. The envelope functions exemplify no
lateral excitation as well as lateral excitation in radial and/or azimuthal
direction.

We now consider in detail the energy-level sequences. First,
the sequence of levels 1, 6, and 14 with dominating UREF of
A1,g symmetry: it is easy to see that they nicely form the
sequence of ma = 0 levels with nr = 1,2,3, i.e., purely radial
excitations.

Next, another less trivial, but fundamental, sequence is the
nr = 1, la = 1 . . . 5 sequence. We recognize the following five
level pairs: (2, 3), (4, 5), (7, 10), (11, missing partner), and (13,
missing partner). The question is now how to obtain further
confirmation of this sequence. If one looks at the subduced
representations from O(3), the so-called symmetry-adapted
functions (SAFs), listed in Tables T35.5 and T35.6 of Ref. [27],
we can confirm that the link is correct, as the SAF quantum
numbers l,m, here corresponding to la,ma , are in agreement
with the appropriate single-group labels. One finds that the
l = 1, m = ±1 basis subduces to E1,u in D6h symmetry;
l = 2, m = ±2 subduces to E2,g; l = 3, m = ±3 subduces
to B1,u + B2,u; l = 4,m = ±4 subduces to E2,g; and, finally,
l = 5, m = ±5 subduces to E1,u. Hence, we have confirmed
that this sequence of azimuthal excitations is in agreement
with the sequence of irreps for the dominating UREFs, and
additionally that levels 11 and 13 do have missing partners
which must be at higher energies. For level 11, this was also
indicated by the structure of the intermixing blocks in the lower
right corner of Fig. 15 as previously mentioned. Similarly, we
can identify the last nr = 2, la = 1,2 sequence corresponding
to level pairs (8, 9) and (12, 15). Again, the corresponding l,m

quantum numbers subduce to the correct irreps E1,u and E2,g ,
respectively.

Even further interpretation is sometimes permitted. Let
us return to the pair of levels (7, 10). Three nodal planes
here correspond to either B1,u or B2,u symmetry. These are
distinguished by a rotation by π/6 of the nodal planes. In
our choice of coordinate system (Fig. 1), the ψ

B1,u

31 functions
have nodal planes perpendicular to the facets of the hexagon,
whereas the ψ

B2,u

31 have nodal planes intersecting the corners of
the hexagon. These two orientations give rise to different filling
factors. The ψ

B1,u

31 functions fill the area of the hexagon more
effectively than the corresponding functions with B2,u labels.
The curvature, and thus the energy, is therefore higher for the
ψ

B2,u

31 . This is also seen in the conduction band, where there
is a splitting between the two corresponding levels (CB levels
7 and 8). For the valence band, the spinors contain mixtures
of ψ

B1,u

31 and ψ
B2,u

31 . Energy level 7 has B1,u as the largest
contribution and a smaller contribution of B2,u. The situation
in energy level 10 is mirrored. The energy splitting between
the levels is mostly due to the different curvature of ψ

B1,u

31 and

ψ
B2,u

31 . Note that the different curvature of states rotated by π/4
also applies for the E1/E2 states with azimuthal excitations.
However, for these states unequal weight in the UREF partners
would violate the restrictions from Wigner-Eckart theorem.

As valence band mixing is weak for the lowest-energy
levels, the corresponding dominant HH envelopes will not
hybridize with LH components. The lowest-order UREFs
observed in the LH components are ψ

Bi,u

31 , i = 1 . . . 2, enve-
lope functions. This further supports our previous assumption
regarding the DPGPS as there is no sign of an LH-like
sequence.

The considerations of this section can also be carried out
for the simpler conduction band; we leave this as an exercise
for the reader. The situation in the valence band is much more
complicated due to direction-dependent effective masses and
valence band mixing. We expect that the approach also works
when sequences of vertically excited states occur, and with
E1/2,g DPGPS states (LH-like).

At this stage, Table III entails the full information for a
complete classification of all states in compact form, both in
true C3v symmetry and in elevated D6h symmetry. Note that
the energy deviation due to symmetrization is the same in
D6h as in C3v for the states labeled E3/2,g and E3/2,u (D6h).
Also note that in D6h, the energy deviation is almost balanced
within one pair. The last column of the table summarizes also
the azimuthal and radial properties of the dominating UREF.
In Table II, we present a similar summary for the conduction
band states.

VII. OPTICAL TRANSITIONS

Sharp optical transitions in quantum dots are among
their major attractive features for device applications. In
this work, we now show that when the identification of
the dominant UREF can be performed, one obtains further
clues to the oscillator strength spectrum. When azimuthal and
radial quantum numbers can also be identified, even further
constraints are revealed. As a result, the presence of main
lines can be explained, and fine structure can be interpreted.

It is well known that the oscillator strength corresponding to
each interband d-polarized transition (d = x,y,z) at frequency
�ω = E	c

nc
− E	v

nv
is proportional to the summed squared c − v

interband matrix element M̄d, nc,nv (	c,	v), where the sum is
over the degenerate contributing states, and can be written

M̄d, nc,nv (	c,	v)

=
∑
	′

c

′∑
	′

v

′ ∑
μc,μv

|〈ψc : nc,	
′
c,μc|Pd |ψv : nv,	

′
v,μv〉|2.

(7.1)

The primed sum denotes a sum over eventually conjugated
contributions, i.e., 	′ summed over {	,	∗} only if 	 �= 	∗. In
Eq. (7.1), ψc and ψv denote full conduction and valence band
kets corresponding to energy levels E	c

nc
and E	v

nv
, respectively.

For the symmetry groups considered here, the set of
momentum operators Pd , d = x,y,z,, can be divided into two
distinct irreducible tensor operator (ITO) sets. In C3v , one
has [27]

{Px,Py} ↔ {
P E

μ ,μ = 1,2
}
, Pz ↔ P A1 (7.2)
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TABLE VI. Optical transition anisotropy ratios Azx for QD’s
with C3v symmetry, here describing transitions from conduction band
states 	c to valence band states 	v .

	v = i
E3/2 	v = E1/2

	c = i
E3/2(E) 1 −1

	c = E1/2(E) −1 f (ψE
c ,�E

v ,φE
v )a

	c = E1/2(Ai) −1 3
5

af (ψE
c ,�E

v ,φE
v ) = 2

3 |〈ψE
c |�E

v 〉|2−|Re〈ψE
c |φE

v 〉|2
2
3 |〈ψE

c |�E
v 〉|2+|Re〈ψE

c |φE
v 〉|2

.

and in D6h

{Px,Py} ↔ {
P E1,u

μ ,μ = 1,2
}
, Pz ↔ P A2,u . (7.3)

These correspondences allow to apply the generalized Wigner-
Eckart theorem for evaluating the inner matrix element
〈ψc : nc,	c,μc|Pd |ψv : nv,	v,μv〉. This leads to the prediction
of optical oscillator strength isotropy in the x-y plane [23],
and allow to use group theoretical selection rules for optical
transitions.

It should be stressed that the decomposition into UREFs
linked with the HSBF basis allows to go beyond the simple
use of the Wigner-Eckart theorem. Indeed, the UREFs lead
straightforwardly to the prediction of “magic ratios” in
polarization anisotropy [23], in the frame of our Luttinger
model, and a conduction band with no spin splitting. At this
point, the full conduction band spinors must be reconstructed,
as described in Ref. [23]. In the case of C3v symmetry, four
types of Kramers degenerate pairs then appear: E1/2(A1)
and E1/2(A2) for conduction band states with A1 and A2

envelopes, respectively, and E1/2(E) and E3/2(E) for states
with E envelopes. The latter two are always degenerate. The
polarization anisotropy, defined as Aij = (M̄i − M̄j )/(M̄i +
M̄j ), i,j ∈ {x,y,z}, can hence be calculated using UREFs,
and reveals the magic anisotropy ratios Azx given in Table VI.
The ratios ±1 in Table VI stem from standard C3v selection
rules. The Wigner-Eckhart theorem also predicts Axy = 1 and
Azy = Azx for all irreps.

Table VI also evidences that the polarization anisotropy
ratio cannot be analytically predicted for E1/2(E) → E1/2 type
transitions.

A. Numerical calculation of C3v optical oscillator strengths

Calculated optical oscillator strengths for the nanowire QD
levels listed in Tables III and II are displayed as a function of
the transition frequency in Fig. 17. We used D6h-symmetrized
valence band states in order to interpret the optical spectra in
most details. In the side figure, the details of two transitions
calculated in the C3v-symmetrized basis are also displayed;
other differences were minor. By contrast, for the conduction
band we used the raw calculated states since these states
were already sufficiently symmetrized, rendering unnecessary
a further D6h symmetrization. Nevertheless, we did restore
in Fig. 17 an exact degeneracy for E conduction band states,
for the purpose of clarity of the fine structure in the figure.
The numerical splitting of the computed energies was anyway
below the estimated convergence (Sec. VI A).

The upper subplot in Fig. 17 shows the total oscilla-
tor strengths for the main transitions (summed over all
polarization directions), while the lower subplot shows the
corresponding Azx anisotropy ratios. It must be understood
that other effects also occur in a real experiment, aside from
the neglected Coulomb contributions. This may to some
extent change the predicted spectrum; in particular, there
are important effects in nanowires due to the high index
contrast between the wire and the surroundings [35] (dielectric
mismatch effect). Nevertheless, the oscillator strength spectra
given by single-particle calculations as in Fig. 17 are often the
main characteristic of the intrinsic optical response of QDs.

We now apply the theory to study in detail the oscillator
strengths of each optical transition, which is color coded in
Fig. 17. They are numbered so that the properties of the
conduction band level i and valence band level j corresponding
to transition CBi-VBj can be directly read off using the
previously obtained Tables III and II, and Eqs. (7.2) or (7.3).

B. Dominant and missing optical transitions

A first striking feature of the upper part of Fig. 17 is the
dominant diagonal character of the optical transitions, i.e.,
CBi-VBj is most intense for i = j (the irrelevant numbering
within degenerate CB levels, was explicitly chosen to respect
CBi-VBj diagonality). This diagonal character is nearly
perfect for the ground-state transition, as well as for the first
pair i = 2,3, but progressively weakens as one climbs the
excitation ladder.

It is also clear that the highest pairs give rise to a richer
structure with side peaks due to the valence band complexity,
but still the (CB7,CB8) pair is dominantly diagonally coupled
to the (VB7,VB10) pair, and (CB9,CB10) to (VB8,VB9)
pair (see Table III). Cross-coupling-like CB7-VB10, etc., also
appear as sub-structures within these dominant pairs.

Looking back to the analysis of the corresponding states in
Tables III and II, we find that symmetry elevation to D6h

is an important ingredient to explain missing nondiagonal
transitions in Fig. 17. However, not all of them are explained.
Take, for example, the set of transitions from the ground
conduction band level CB1-VBj . Only CB1-VB1 is observed.
In principle, using double-group selection rules in C3v , all
values of j are permitted from CB1 in x-y polarization, but in
D6h only j = 1,5,6,11,12,14 are permitted. In z polarization,
j = 2–5,8,9,11–13,15 are permitted in C3v while only j =
5,11,12 would be in D6h. Thus, symmetry elevation accounts
for part of the missing transitions, but obviously it is not enough
to explain all of them.

However, for the lowest-energy states all missing transitions
can be explained if one considers in addition both the symmetry
of the dominant UREF and the presence of the approximate
azimuthal and radial quantum numbers. This is particularly
clear with the set CB1-VBj . First, on the basis of the symmetry
of the dominant UREF A1,g of CB1 and the contributing
UREFs of VBj , all z-polarized lines are forbidden, and only
j = 1,6,14 are allowed in x-y polarization. Second, to explain
the remaining missing lines from CB1, corresponding to
j = 6,14, it suffices to invoke the approximate selection rule
based on the radial quantum number of the dominant UREF,
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( )

( )

FIG. 17. (Color) The top subplot shows the combined optical oscillator strength M̄x + M̄y + M̄z as a function of energy. The colors label
the contributions due to the individual conduction band levels, and the valence band state number is indicated by numbers. The lower subplot
shows the anisotropy ratios Azx for the significant transitions (limit set to M̄x + M̄y + M̄z = 0.05). The theoretical anisotropy ratio predictions
for C3v are also included. Some of the anisotropy ratios cannot be predetermined; for these transitions, the theoretical value has been set to the
dummy value 0 to mark them. The interested reader may recover the separate results in each direction using the analytical results Axy = 1 and
Azy = Azx , whose validity was also confirmed numerically. The insets at the right show the CBi-VBj, i,j = 2,3, in the C3v basis.

which is nr = 1 for CB1, and nr = 2,3 for VB6 and VB14,
respectively (see Tables III and II).

Let us examine more closely the optical coupling be-
tween diagonally coupled pairs in view of the UREFs. In
(CB2,CB3) − (VB2,VB3), symmetry elevation to D6his not
sufficient to predict only CB2-VB2 and CB3-VB3 transitions
as observed in Fig. 17. In this respect, it is interesting that
if one assumes C3v symmetry, both the crossed transitions
between the pairs (CB2-VB3 and CB3-VB2) should appear.
Indeed, this is what we observe in the spectrum calculated
in the C3v-symmetrized basis (see side of Fig. 17). The
observation of CB3-VB2 would witness the D6h symmetry
breaking present in the [111] Luttinger Hamiltonian, and might
well be resolvable experimentally, while CB2-VB3 would be
compatible with both symmetries.

In the higher diagonally coupled pairs (CB4, CB5)-
(VB4, VB5) and (CB9, CB10)-(VB8, VB9), the same effects
are observed and the same considerations apply. For these
two sets of transitions, we also see in Fig. 17 the appearance
of additional nondiagonal transitions with other levels, a
trend which naturally increases with transition energy. The
last diagonally coupled pairs (CB7,CB8)-(VB7,VB10) are
particularly interesting because the two electronic levels CB7
and CB8 are nondegenerate, hence, in Fig. 17 one observes
four dominant peaks for these transitions.

C. Optical anisotropy of dominant transitions

The optical anisotropies are also of fundamental interest.
By contrast to the selection rules discussed in the previous

section, nearly all optical anisotropies can be explained in
C3v symmetry. Table VI, with the help of the classification
of Tables III and II, predicts the anisotropy ratio to be −1
for transitions between isolated levels CBi-VBi, i = 1 or 6, in
agreement with the lower part of Fig. 17.

The transitions between the coupled pairs (CB7,CB8) and
(VB7,VB10) are also predicted to have anisotropy ratio −1,
as is well verified numerically. However, the situation for the
other diagonally coupled pairs is more subtle.

In (CB2,CB3)-(VB2,VB3), the optical anisotropy is pre-
dicted to be undetermined for the two transitions stemming
from CB3, and −1 for the two stemming from CB2. This is
satisfied in the C3v-symmetrized basis (see side of Fig. 17),
but the anisotropy of both, particularly CB3-VB3, is still
close to −1. The explanation is very simple if one recalls
that the LH weight in VB2 and VB3 is less than 4% (from
Table VI, the undetermined anisotropy ratios will be close to
−1 if the overlap with �E

v vanishes). The departure from −1
is much bigger for CB3-VB2, which can be understood by
recalling that this transition should in fact be forbidden in the
x-y polarization in D6h. Hence, it is more sensitive to LH
admixture. We should point out that the disappearance of the
transition CB2-VB3 in the D6h-symmetrized basis, evidenced
in Fig. 17, cannot be understood on the basis of D6h symmetry
alone. We suspect that a study generalizing the magic ratios
to D6h symmetry, linked with the neglect of conduction band
spin splitting, might explain this observation, but the analytical
verification would be quite overwhelming.

The optical anisotropy of (CB4,CB5)-(VB4,VB5)
and (CB9,CB10)-(VB8,VB9) is entirely similar to
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(CB2,CB3)-(VB2,VB3), but with the role of the two
conduction and valence band levels reversed. Finally, the
undetermined anisotropy ratios in transitions from CB9 to
(VB8,VB9) depart more significantly from any specific
values, as is expected due to increased band mixing.

D. Fine structure due to valence band mixing

Surrounding the series of dominant peaks, there is a
particularly interesting fine structure produced by valence
band mixing. This really starts to be significant for the set
of transitions CBi-VBj with i,j � 4.

From the pair (CB4,CB5), weak additional transitions to
VB6 and VB11 are visible in Fig. 17. From the Wigner-
Eckart theorem, both the transitions to VB6 are allowed in
elevated symmetry D6h while towards VB11 only CB5-VB11
is allowed. We conclude that CB4-VB11 is a manifestation
of the true C3v dot symmetry. These weak transitions are
slightly more intense in the z direction. The anisotropy ratios
for the transitions CB4-VB6 and CB5-VB11 are −1, and
for CB5-VB6 it is +1, in agreement with C3v symmetry
(Table VI). For the remaining CB4-VB11 transition, the
undetermined anisotropy ratio proves numerically to be close
to +1. Looking at the corresponding E2,g UREFs in the
spinors [Eqs. (A13c) and (A13d)], we can confirm that both
+1 transitions are purely due to valence band mixing since
only the E1/2,g HSBF (LH components) can couple to CB5.

Aside from the next dominant transition CB6-VB6, we can
see two weak transitions CB6-VB4 and CB6-VB5 in Fig. 17.
Again, both transitions are due to valence band mixing, and
are not predicted in elevated symmetry D6h; they manifest
the true C3v symmetry of the QD. The novelty here is that
both transitions should have the “magic” anisotropy ratio 3

5
predicted by Table VI. This is very well satisfied by CB6-VB4,
but CB6-VB5 displays a numerical anisotropy ratio close to 0.3
which will represent the largest deviation from the predicted
value in our numerical data. Since its oscillator strength is
rather weak, we can safely attribute this deviation to imperfect
C3v symmetrization.

Let us now investigate the weak transitions from the
(CB7,CB8) pair to levels VBj, j = 8,9,13. These six tran-
sitions due to valence band mixing again manifest the true C3v

symmetry of the QD, and display quite accurately the “magic”
anisotropy ratio 3

5 for E1/2(A1) − E1/2 transitions.
The last weak transitions in Fig. 15 are related to the

highest excited pair (CB9,CB10) towards VB7 and display
polarization anisotropy ratios of +1,−1, respectively. The
symmetry considerations are the same as for (CB4,CB5) to
VB6 (but correspond to a higher radial excitation), so they
are both allowed in D6h symmetry, and CB9-VB7 is a LH
transition purely due to valence band mixing.

E. Summary of optical transition spectrum

Optical transitions with polarization perpendicular to the
nanowire axis are clearly more dominant for the lowest-energy
states. This is expected due to the oblate (quantum-well-like)
aspect ratio of the QD (Fig. 1). The transitions with optical
activity polarized along the nanowire axis are linked with
valence band mixing and overlap between the conduction band

and the LH components. Accordingly, we see an increasing
number of transitions with this polarization for higher levels,
as the valence band states become increasingly LH-like
(see Table III). A computation with more energy levels,
or a narrower QD with stronger lateral confinement, would
have allowed to reach the ground LH-like level with strong
dominance of z-polarized optical transitions. Our approach
would then evidence the second kind of DPGPS. If the QD
aspect ratio would be reversed to prolate, a reversal of the
roles of HH and LH is expected.

Excitonic effects, which we have neglected in this work,
are not expected to change this global picture of polarization
anisotropy very much. It would introduce electron-hole ex-
change effects which would split all the dominant transitions
into a further observable fine structure (which can be seen as
quadruplets due to spin degeneracy). The symmetries of the
fine-structure excitons can be easily obtained by the product
of irreps [31]. Sometimes, doublets may remain, other times
all lines would split in D6h.

VIII. CONCLUSION

We have presented a systematic procedure based on class
operators for symmetry analysis of the electronic states of a
QD. The procedure, called PTCO, is based on postprocessing
and alleviates the need for a code specialized with respect to
a given symmetry (which would, however, feature significant
gains in memory/time [36]). PTCO has been demonstrated
using the k · p method for the conduction and valence bands
of hexagonal GaAs QD grown within Al0.3Ga0.7As nanowires.
The high D6h symmetry of the QD heterostructure is partly
broken by the C3v crystal symmetry carried by the Luttinger
Hamiltonian, and by the unsymmetric computing grid. Using
the PTCO on the computed results, we have been able to sort
all these symmetry-breaking effects, and quantify them. We
have demonstrated that the numerical grid effect was small
and could be compensated by PTCO, while the deviations
from the approximate elevated D6h symmetry towards the true
C3v symmetry, albeit small, could be measurable.

The PTCO is simple to program, intrinsically systematic
and automatized, and is carried out in a single step for a given
symmetry, delivering at the same time symmetrized states with
corrected energies and a classification for all quantum states.
It is flexible, applies independently of the method used to
compute the electronic structure, and can be tuned with very
little efforts to analyze a higher symmetry in a next run. This
enabled us to investigate the symmetry of each state, and its
proximity to an elevated symmetry.

All the quantum states were analyzed to give quantitative
weights for every symmetry group, for every ultimately
reduced envelope function present in every spinorial com-
ponent. We could then verify all analytical predictions made
concerning the UREFs in the elevated D6h symmetry. This
approach allowed to identify dominant DPGPS and dominant
UREFs for all states considered.

The analysis of the dominant UREFs opened the possibility
to attribute additional azimuthal and radial quantum numbers
to every state which can be viewed as a symmetry elevation
effect to D6h. Although approximate, the natural sequence

205303-18



SYMMETRIES AND OPTICAL TRANSITIONS OF . . . PHYSICAL REVIEW B 92, 205303 (2015)

allowed to explain the order of irreps in the computed results,
by subduction from O(3) to D6h.

A summary of the classification is given for all valence
band states in Table III, and for all conduction band states in
Table II. The classification provides insights into the origin
of degeneracies and quasidegeneracies, and allows to predict
all selection rules and most of the polarization properties.
The information can also be used to construct approximate
product states, relevant for the interpretation of excitonic and
multiexcitonic fine structure [31].

Finally, we were able to interpret completely all the
details of the computed optical spectrum with the help of
the classification of the states. We unveiled a large number of
missing transitions, which were shown to stem not only from
approximate elevated symmetry, but also from approximate
azimuthal and radial quantum numbers. As valence band
mixing was included in the model, we could identify all the
corresponding fine structure in terms of “HSBF band mixing,”
responsible for some spread in the optical transition spectrum,
and verify analytical predictions concerning the appearance of
“magic ratios” in polarization anisotropy.

High-symmetry GaAs nanowire QDs as investigated here
are indeed interesting. First, since there are a large number
of forbidden transitions in their optical spectrum, the multi-
excitonic spectrum will also be greatly simplified and better
interpreted. Second, the doubly degenerate exciton states due
to symmetry are well suited for the generation of entangled
photons.
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Norsk Forskningsråd (Grant No. 182091). We also acknowl-
edge support from the University Graduate Center at Kjeller,
Norway. The authors would like to thank Dr. F. Michelini for a
critical reading of the manuscript and useful suggestions, and
Y. Sauter for useful discussions.

APPENDIX: COMPLETE D6h FRAMEWORK

The following sections provide the matrix representations
used for the C3v and D6h groups (Sec. 1), from which we
deduce the HSBFs (Sec. 2). Finally, the UREF decompositions
for D6h are given in Sec. 3. This completes the framework
needed to analyze D6h.

1. Choice of standard irreducible matrix representations
for C3v and D6h

The matrices D	(g) are only unique up to a similarity
transform U (	), i.e.,

D	∗
(g) = U (	)−1

[
D	

Alt(g)
]H

U (	), (A1)

where D	
Alt(g) is a matrix irrep listed in [27], and U (	) is

restricted to be unitary.
Note first that our matrix representation obeys transposed

multiplication tables w.r.t. [27] [cf. Hermitian conjugation in
Eq. (A1), this is required by our use of the passive rather than
the active point of view]. Second, note on the left-hand side
the presence of 	∗, meaning the use of conjugated irreps and

conjugate character table w.r.t. Refs. [12,27]. (This affects only
1
E3/2 and 2

E3/2 in C3v .)
For one-dimensional irreps 	, the set of matrices

{D	(g),g ∈ G} are simply the characters of the respective
irreps, i.e., D	(g),χ	g, ∀ g, where χ	(g) is listed in Ref. [27].

For two-dimensional irreps 	, the matrices [D	
Alt(g)]

H
are

not the most numerically convenient since they diagonalize
rotations instead of a mirror operation w.r.t. a symmetry plane,
e.g., σv1 (Fig. 1). We thus choose the following to define our
D	(g) matrices:

C3v , irrep E:

UC3v
(E) =

[
i√
2

1√
2

− i√
2

1√
2

]
; (A2)

C3v , irrep E1/2 (with case A in [27]):

UC3v
(E1/2) =

[
i√
2

−1√
2

1√
2

−i√
2

]
; (A3)

D6h, irreps Ei :

UD6h
(Ei) = UC3v

(E), i = 1 . . . 2; (A4)

D6h, irreps Ej,k:

UD6h
(Ej,k) = UC3v

(E1/2), j = 1

2
,
5

2
, k = u,g (A5)

UD6h
(E3/2,k) =

[
i√
2

1√
2

−1√
2

−i√
2

]
, k = u,g. (A6)

Note our special choice Eq. (A6) for E3/2 in D6h which
stems from separate requirements concerning the “optimal”
choice of HSBF: we ensured that the resulting E3/2,g valence
band HSBF was simultaneously the same for D6h and C3v

symmetries, so that subduction does not involve a change of
basis.

2. HSBF for the conduction and valence band
spinors in elevated D6h symmetry

Symmetrized bases [27], also called symmetry-adapted
functions (SAF), follow from subduction from O(3) to D6h

and allow in principle to find easily the proper HSBF basis
corresponding to the top (bottom) of the valence (conduction)
band, respectively, of diamond or zinc blende. Unfortunately,
the SAF in [27] do not have regular properties under time
reversal, so some care is required.

Let us first consider the bottom of the conduction band, and
use linear combinations of zone center Bloch function denoted
| 1

2 ,m〉•, m = ± 1
2 , corresponding to a “quantized axis” with z

along [111] and x along [112̄] Fig. 1. They are nearly odd
under spatial inversion in GaAs (hence the |. . .〉• symbol as
in [27]). Subduction from O(3) tells us that the irrep E1/2,u

of D6h must be associated with this subspace. To construct
the HSBF, we can either modify the SAF of [27], and use
the change of basis corresponding to Eq. (A5), or equivalently
decide to diagonalize the set of Wigner matrices corresponding
to the symmetry operations (parametrization and factor system
of [27]), and find their reduction to the set DE1/2,u (g) given in
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Appendix section 1. The resulting conduction band HSBFs are

|E1/2,u,1〉 = − 1√
2

∣∣ 1
2 , 1

2

〉• + i√
2

∣∣ 1
2 , − 1

2

〉•
|E1/2,u,2〉 = i√

2

∣∣ 1
2 , 1

2

〉• − 1√
2

∣∣ 1
2 , − 1

2

〉• . (A7)

For the top of the valence band, we use the set of similar
Bloch functions labeled | 3

2 ,m〉, m = − 3
2 . . . 3

2 , nearly even
under inversion. Then, the O(3) subduction tables to D6h

indicate reduction to the E3/2,g + E1/2,g irreps. Again, one
cannot use the SAFs of [27] if one wants to keep an invariant
form of the time-reversal operator in the HSBF, therefore, we
follow this time the route of reducing the Wigner matrices
corresponding to symmetry operations. Using a suitable, but
freely chosen, set of phase factors compatible with the irreps
of Appendix section 1, one finds the following D6h valence
band HSBFs:

|E3/2,g,1〉 = − i√
2

∣∣ 3
2 , 3

2

〉 + 1√
2

∣∣ 3
2 , − 3

2

〉
|E3/2,g,2〉 = − 1√

2

∣∣ 3
2 , 3

2

〉 + i√
2

∣∣ 3
2 , − 3

2

〉 (A8)

and

|E1/2,g,1〉 = 1√
2

∣∣ 3
2 , 1

2

〉 − i√
2

∣∣ 3
2 , − 1

2

〉
|E1/2,g,2〉 = − i√

2

∣∣ 3
2 , 1

2

〉 + 1√
2

∣∣ 3
2 , − 1

2

〉 . (A9)

This choice satisfies three desirable constraints: (1) The matrix
form of the time-reversal operator is invariant when the valence
band basis is ordered as

{|E3/2,g,1〉,|E1/2,g,1〉,|E1/2,g,2〉,|E3/2,g,2〉}, (A10)

hence, it preserves the canonical p,q,r,s form [Eq. (2.3)]
of the Luttinger Hamiltonian in this basis. (2) It is also
simultaneously a HSBF for C3v (3) Their transformation laws
are given by our set of standard representations listed in
Appendix section 1.

For C3v the choice of Eqs. (A7)–(A9) is in agreement with
Ref. [23] with the correspondences

|E1/2,u,i〉 → |E1/2,i〉•,
|E3/2,g,i〉 → |3−iE3/2〉, i = 1 . . . 2
|E1/2,g,i〉 → |E1/2,i〉,

(A11)

while it differs from Ref. [12] by

|E3/2,g,i〉 → (−1)i |iE3/2〉
|E1/2,g,i〉 → (−1)i |E1/2,3 − i〉 , i = 1 . . . 2 (A12)

where i
E3/2 is defined with conjugated characters [cf. (A1)].

Although the two-dimensional matrix representation for E1/2

in C3v in Appendix section 1 is the same as in Ref. [12], we had
chosen an opposite projective factor system for the improper
operations in Ref. [12]. The present projective factor system
is now the same as in [27].

3. UREF decompositions of the valence band spinors
in the elevated D6h symmetry

Using the HSBF derived in Appendix section 2,
Eqs. (A8), (A9), and (A10), it is possible to decompose each
spinor into UREFs with the help of Eq. (48) of Ref. [12]

and the Clebsch-Gordon coefficients linked with the chosen
standard matrix representation of Appendix section 1, and
involving a minimum of arbitrary phase factors. In case of
C3v symmetry, one finds that the UREF decomposition of the
main text [Eqs. (4.3)], which remains identical to Ref. [23]
and equivalent to Ref. [12]. In case of D6h symmetry, and
in the HSBF basis order given by Eq. (A10), one obtains
the ungerade valence band spinors given by Eq. (A13). The
corresponding gerade spinors have similar expressions where
u → g. To lighten the notation, we have omitted the main
spinor index and the HSBF index in the UREFs, but they can
be retrieved easily from the main spinor and the position of
the UREF [using Eq. (A10)]. For clarity, the φ/� UREFs
are not the same functions in Eqs. (A13e) and (A13f) w.r.t.
Eqs. (A13c) and (A13d) or Eqs. (A13a) and (A13b), and
we have used the capital � to distinguish the E1 and E2

UREFs in the E1/2,g HSBF components from the E3/2,g HSBF
components.

Subduction rules to C3v (according to the case A in [27])
will clearly reduce the spinors (A13) to (4.3). Since E1, E2 →
E one might wonder why the partner function indices are
reversed for E1 w.r.t. E2 (or E in C3v) in Eq. (A13) [Eq. (4.3)
in the main text]. The reason is simple and lies in our choice
of matrix representations in Appendix section 1, where the
representative of σv1 has a different sign for E1, reversing the
σv1 parity characteristics.

Finally, time-reversal symmetry will bring further con-
straints on the UREFs, e.g., via Kψ

E1/2,u

1 = ψ
E1/2,u

2 and

Kψ
E1/2,u

2 = −ψ
E1/2,u

1 due to Kramers degeneracy. Properties
similar to Eq. (4.4) can then be readily obtained, but are omitted
for simplicity:

ψE1/2,u

1
= 1√

2

⎛
⎜⎜⎜⎜⎜⎝

φ
E1,u

1 − φ
E2,u

2

φA1,u + �
E1,u

2

φA2,u + �
E1,u

1

φ
E1,u

2 − φ
E2,u

1

⎞
⎟⎟⎟⎟⎟⎠, (A13a)

ψE1/2,u

2
= 1√

2

⎛
⎜⎜⎜⎜⎜⎝

φ
E1,u

2 + φ
E2,u

1

−φA2,u + �
E1,u

1

φA1,u − �
E1,u

2

−φ
E1,u

1 − φ
E2,u

2

⎞
⎟⎟⎟⎟⎟⎠, (A13b)

ψE3/2,u

1
= 1√

2

⎛
⎜⎜⎜⎜⎝

φA1,u − φB2,u

�
E1,u

1 − �
E2,u

2

�
E1,u

2 + �
E2,u

1

φA2,u + φB1,u

⎞
⎟⎟⎟⎟⎠, (A13c)

ψE3/2,u

2
= 1√

2

⎛
⎜⎜⎜⎜⎝

−φA2,u + φB1,u

�
E1,u

2 − �
E2,u

1

−�
E1,u

1 − �
E2,u

2

φA1,u + φB2,u

⎞
⎟⎟⎟⎟⎠, (A13d)
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ψE5/2,u

1
= 1√

2

⎛
⎜⎜⎜⎜⎜⎝

φ
E1,u

2 − φ
E2,u

1

φB1,u + �
E2,u

2

φB2,u + �
E2,u

1

φ
E1,u

1 − φ
E2,u

2

⎞
⎟⎟⎟⎟⎟⎠, (A13e) ψE5/2,u

1
= 1√

2

⎛
⎜⎜⎜⎜⎜⎝

−φ
E1,u

1 − φ
E2,u

2

−φB2,u + �
E2,u

1

φB1,u − �
E2,u

2

φ
E1,u

2 + φ
E2,u

1

⎞
⎟⎟⎟⎟⎟⎠. (A13f)
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