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U(1) symmetry of the spin-orbit coupled Hubbard model on the kagome lattice
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We theoretically study the symmetry properties of the single-band Hubbard model with general spin-orbit
coupling (SOC) on the kagome lattice. We show that the global U(1) spin-rotational symmetry is present in the
Hubbard Hamiltonian owing to the inversion symmetry centered at the sites. The corresponding spin Hamiltonian
has, therefore, SO(2) spin-rotational symmetry, which can be captured by including SOC nonperturbatively. The
exact classical ground states, which we obtain for arbitrary SOC, are governed by the SU(2) fluxes associated
with SOC threading the constituent triangles. The ground states break the SO(2) symmetry, and the associated
Berezinsky-Kosterlitz-Thouless transition temperature is determined by the SU(2) fluxes through the triangles,
which we confirm by a finite temperature classical Monte Carlo simulation.
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I. INTRODUCTION

The Hubbard model [1] has been acknowledged as a
paradigm of strongly correlated electron systems. Despite its
simplicity, the Hubbard model can exhibit various phenomena
from antiferromagnetism [2] to metal-insulator transitions [3]
and high-temperature superconductivity [4]. The Hubbard
model without spin-orbit coupling (SOC) has nontrivial
symmetry properties besides the apparent global SU(2) spin-
rotational symmetry, which has guided us to the exploration
of rich phases and excitations [5–8]. Yang and Zhang [9],
for example, revealed the SU(2) pseudospin symmetry, which
includes the U(1) phase symmetry as a subgroup, and predicted
the massive collective modes in any phase-symmetry-breaking
superconductivity.

In spin systems, SOC gives rise to frustration on spin
interactions and reduces the symmetry in general [10]. The
spin-dependent hopping, the manifestation of SOC in the
kinetic terms of the Hubbard model, can be described by an
SU(2) gauge field [11–14]. In open-ended one-dimensional
chains, the SU(2) field can be gauged away by a string of gauge
transformations [11], wherein the global SU(2) spin-rotational
symmetry is intact. In rings, however, the SU(2) field creates
a nonvanishing flux in general, which makes the system
frustrated and reduces the symmetry down to U(1) [12]. SU(2)
symmetry is recovered only when the enclosed SU(2) flux
vanishes [15,16]. Two-dimensional lattices are composed of
interconnected loops, each of which embraces the flux. General
SOC breaks the continuous symmetry [17], and engenders
a long-ranged magnetic order escaping the Mermin-Wagner
theorem [18].

The geometry of the lattice is another source of frustration.
The kagome lattice, a two-dimensional lattice of corner-
sharing triangles, is a prototypical example that brings geomet-
ric frustration to antiferromagnetic materials exemplified by
herbertsmithite ZnCu3(OH)6Cl2. The kagome lattice Hubbard
model without SOC has been extensively studied in metal-
insulator transitions [19–21] and the van Hove filling [22–24].
The corresponding spin Hamiltonian of the Hubbard model in
the large-U limit at half filling has been studied in the search

for exotic phases on the kagome lattice, such as spin liquids
[25]. The physical effects of SOC in the spin Hamiltonian
have been studied by including its leading order contribution
to the Hamiltonian known as the Dzyaloshinskii-Moriya (DM)
interaction [10,26], which has been known to induce a long-
ranged magnetic order [8,27–33].

In this paper, we show that the global U(1) spin-rotational
symmetry is present in the single-band SOC Hubbard Hamil-
tonian on the kagome lattice owing to the inversion sym-
metry centered at the sites [28]. The corresponding spin
Hamiltonian has, therefore, SO(2) spin-rotational symmetry,
which can be captured by including SOC nonperturbatively.
The exact classical ground states, which we obtain for
arbitrary SOC, are governed by the SU(2) fluxes associated
with SOC threading the constituent triangles. The ground
states break the continuous symmetry, and the associated
Berezinsky-Kosterlitz-Thouless (BKT) transition temperature
is determined by the SU(2) fluxes through the triangles, which
we confirm by a finite temperature classical Monte Carlo
simulation [34].

II. SUMMARY OF MAIN RESULTS

We study the the single-band Hubbard model to describe
SOC electron systems on the lattice [35],

Ĥ1 ≡ −t
∑
〈j,k〉

ĉ
†
jUjkĉk + U

∑
j

n̂j↑n̂j↓, (1)

where 〈j,k〉 represents the nearest neighbors j and k,
ĉ
†
j ≡ (ĉ†j↑,ĉ

†
j↓) and ĉj ≡ (ĉj↑,ĉj↓)T are the electron creation

and annihilation operators, and n̂jα ≡ ĉ
†
jαĉjα is the electron

number operator with the spin α. Here, t is a real hopping
magnitude [36];

Ujk ≡ exp(−idjk · σ/2) (2)

describes the effect of SOC, which rotates the spin of an
electron while hopping [37]; d̂jk is the direction of the DM
vector; σ is the vector of Pauli matrices; U is the magnitude of
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FIG. 1. (Color online) (a) The site labeling scheme and the
direction of the links, j → k, of the DM vectors djk . (b), (c)
The DM vector djk of the gauge fields Ujk ≡ exp(−idjk · σ/2) on
the link j → k, directed counterclockwise around triangles (b) in the
original Hubbard Hamiltonian Ĥ1 and (c) in the gauge-transformed
Hamiltonian Ĥ2 (for n̂ = ẑ), respectively.

the on-site Coulomb repulsion. Hermicity of the Hamiltonian
requires Ujk = U

†
kj , and thus djk = −dkj .

The DM vectors djk are physical, but can be considered as a
particular realization of the SU(2) gauge field in lattice gauge
theory [13], which provides a suitable language to study the
symmetry of the Hubbard Hamiltonian. The local SU(2) gauge
transformation, ĉj �→ Vj ĉj and Ujk �→ VjUjkV

†
k , corresponds

to the rotation of local spin axes.
The symmetry of the Hubbard Hamiltonian with SOC is

closely related to the SU(2) flux vector � enclosed by loops
on the lattice [12,38]. It is defined by

exp(−i� · σ/2) ≡
∏
j→k

Ujk (3)

for each loop, where j → k means that sites are traversed
counterclockwise around the loop, as shown in Fig. 1(a). In
the absence of SOC, the fluxes vanish, which results in the
invariance of the Hamiltonian under the global SU(2) spin
rotation, ĉj �→ V ĉj . A finite SOC causes nontrivial fluxes
through loops, which would reduce the symmetry from the
continuous SU(2) to the discrete Z2, ĉj �→ −ĉj , generally.

The continuous symmetry, however, can persist even when
SOC is present, if the SU(2) fluxes through the loops meet
a certain condition. Our main discovery is the U(1) spin-
rotational symmetry of the kagome lattice Hubbard model with
SOC. In the kagome lattice, the inversion symmetry centered at
the sites [28] demands matching of the DM vectors of adjacent
triangles. As a result, all the triangles share the same SU(2) flux
structure, exp(−i� · σ/2) ≡ U12U23U31, with site labeling as
shown in Figs. 1(a) and 1(b), where � ≡ �n̂ is the SU(2)
flux vector threading the triangles. For an isolated triangle, the
Hubbard Hamiltonian with arbitrary SOC possesses global
U(1) spin-rotational symmetry, and it can be revealed by the
local SU(2) gauge transformations that are determined by
the SU(2) flux through the triangle [11]. Sharing the same
SU(2) flux between the adjacent triangles in the kagome
lattice extends the U(1) symmetry of an isolated triangle to the
entire lattice, which becomes visible in the gauge-transformed
Hamiltonian,

Ĥ2 ≡ −t
∑
j→k

[ĉ′†
j e−iφn̂·σ/2ĉ′

k + H.c.] + U
∑

j

n̂′
j↑n̂′

j↓, (4)

characterized by the single DM vector φn̂ [Fig. 1(c)], where
ĉ′
j = Uj ĉj is the new electron operator and Uj describes the

local gauge transformation that is governed by the SU(2) flux.
The angle φ is uniquely determined up to 2π/3 by the SU(2)
flux through the triangle, 3φ = � mod 2π .

The continuous symmetry also manifests itself in the
corresponding spin model,

Hs
1 ≡ J

∑
j→k

Sj · R(djk) · Sk, (5)

that is derived from the large-U limit of the Hubbard
Hamiltonian Ĥ1 (1) at half filling. Here, J ≡ 8t2/U sets the
energy scale of the spin interactions; R(djk) is the SO(3) matrix
of a rotation about the axis d̂jk with the angle φjk ≡ |djk|.
The summand can be split into three terms with the aid of
Rodrigues’ rotation formula:

JSj · R(djk) · Sk = J cos φjk Sj · Sk

− J sin φjk d̂jk · Sj × Sk

+ J (1 − cos φjk)(Sj · d̂jk)(Sk · d̂jk).

The first term is the antiferromagnetic Heisenberg interaction;
the second term is the DM interaction, which is antisymmetric
in exchanging two spins; the third term is the symmetric
anisotropic interaction which always accompanies the DM
interaction in insulators [11,12,39]. Application to the spin
Hamiltonian Hs

1 of the SO(3) equivalent of the SU(2) gauge
transformation connecting Ĥ1 and Ĥ2 yields the new spin
Hamiltonian,

Hs
2 ≡ J

∑
j→k

S′
j · R(φn̂) · S′

k, (6)

which has transparent global SO(2) spin-rotational symmetry
that is possible to obtain only if we treat the SOC nonpertur-
batively.

We shall provide the exact classical ground states of the spin
Hamiltonians Hs

2 (6) later, from which the ground states of Hs
1

(5) can be obtained by reversing the gauge transformation.
The ground states of an isolated triangle are obtained by the
exact diagonalization of the Hamiltonian. Inversion symmetry
centered at the sites makes the ground states of adjacent
triangles compatible, which allows us to minimize the spin
energy on the entire kagome lattice. These ground states break
the SO(2) symmetry of the spin Hamiltonian. We confirm that
the associated BKT transition occurs at a finite temperature
TKT modulated by the flux 3φ through the triangle with the
aid of a finite temperature Monte Carlo simulation, as shown
in Fig. 2(b).

III. SYMMETRY OF THE SOC HUBBARD MODEL

A. Symmetry on the 1D lattice

For an open-ended one-dimensional (1D) chain
{ĉ1,ĉ2, . . . ,ĉN }, one can keep the first electron ĉ1

unchanged, and perform a string of successive SU(2)
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FIG. 2. (Color online) (a) One of the exact ground states of the
spin Hamiltonian Hs

2 (6) for the angle 0 < φ < 2π/3 and n̂ = ẑ. Any
global spin rotation of the state about the axis n̂ yields also a ground
state. (b) BKT transition temperature of Hs

2 as a function of the angle
φ. The transition temperature TKT is modulated by the flux through
triangles, � = 3φ. Dots: Finite temperature Monte Carlo simulation
results. Line: Theoretical result TKT (16) with renormalized spin
length S = 0.69.

gauge transformations on the rest of the electrons by

ĉ′
j ≡

⎛
⎝ ∏

1�k<j

Uk,k+1

⎞
⎠ĉj , (7)

which transforms the original Hubbard Hamiltonian Ĥ1 (1) to

Ĥ =
∑

j

[−t ĉ
′†
j ĉ′

j+1 + H.c.] + U
∑

j

n̂′
j↑n̂′

j↓, (8)

where global SU(2) spin-rotational symmetry is evident
[11,12].

For a one-dimensional ring, the SU(2) symmetry is not
present generally because of nontrivial SU(2) flux penetrating
the ring. The Wilson line for the ring is the product of the link
gauge fields, which is given by

e−i�·σ/2 ≡
∏

1�j�N+1

Uj,j+1, (9)

with the periodic boundary condition cN+1 = c1 assumed,
where � ≡ �n̂ is the SU(2) flux vector. The flux magnitude
� is uniquely defined up to 2π [40], and the global SU(2)
symmetry is restored only when the flux vanishes, � = 0 (mod
2π ) [12]. The flux vector � can be evenly distributed to all
links by the local SU(2) gauge transformation, which is given
by

ĉ′
j ≡ ei(j−1)�·σ/2N

⎛
⎝ ∏

1�k<j

Uk,k+1

⎞
⎠ĉj . (10)

The resultant Hamiltonian is Ĥ2 (4) with φ ≡ �/N , which
is invariant under global U(1) spin rotation about the axis n̂,
ĉ′
j �→ e−iθ n̂·σ/2ĉ′

j for any angle θ [41].

B. Symmetry on the kagome lattice

We show that the Hubbard Hamiltonian on the kagome
lattice is invariant under global U(1) spin rotation, which
is protected by the inversion symmetry centered at the
sites that are respected in many materials such as her-
bertsmithite ZnCu3(OH)6Cl2 and the Fe jarosite compound

KFe3(SO4)2(OH)6 [8,28,42]. The SU(2) link gauge field
Ujk ≡ exp(−idjk · σ/2) can be attributed to the electrostatic
potential V (r) induced by the surrounding molecules [43,44].
The DM vector djk ∝ ∇V × (rj − rk) is invariant under the
inversion r �→ −r centered at sites provided that V (r) is even
under the inversion. For example, in Figs. 1(a) and 1(b), under
the inversion centered at site 1, site 2 (operator ĉ2) maps to site
2′ (operator ĉ2′ ), which transforms the associated kinetic term

−t ĉ1 exp(−id12 · σ )ĉ2 → −t ĉ1 exp(−id12 · σ )ĉ2′ . (11)

The invariance of the Hamiltonian under the transformation
requires that the right side of the equation is equivalent to
−t ĉ1 exp(−id12′ · σ )ĉ2′ , and thus dictates d12 = d12′ .

Each site of the kagome lattice can be labeled by three
numbers 1,2, or 3, as illustrated in Fig. 1(a). Once the
link gauge fields U12,U23, and U31 of an arbitrarily chosen
triangle (e.g., a shaded one in Fig. 1) are fixed, all the other
link gauge fields on the kagome lattice are determined by
inversion symmetry. Since all the triangles have the same
SU(2) link gauge fields, the gauge transformations (10) for
neighboring triangles are compatible. Specifically, the gauge
transformation

ĉ′
j ≡

⎧⎪⎨
⎪⎩

ĉj , if j is labeled by 1,

ei�·σ/6U12ĉj , if j is labeled by 2,

ei�·σ/3U12U23ĉj , if j is labeled by 3,

(12)

on the original Hubbard Hamiltonian Ĥ1 (1) results in the new
Hubbard Hamiltonian Ĥ2 (4) that clearly shows global U(1)
spin-rotational symmetry [45]. Figures 1(b) and 1(c) show the
DM vectors in the original Hamiltonian Ĥ1 (1) and the gauge-
transformed Hamiltonian Ĥ2 (4) (with n̂ = ẑ), respectively.

IV. GROUND STATES OF THE SOC SPIN HAMILTONIAN

Starting from the Hubbard Hamiltonian Ĥ2 (1), the large
U limit at half filling freezes the charge fluctuation, and
eventually ends up with the spin Hamiltonian Hs

1 (5) on
the second-order perturbation in t/U [10,12]. The SO(3)
counterpart of the SU(2) gauge transformation in Eq. (12),
given by

S′
j ≡

⎧⎪⎨
⎪⎩

Sj , if j is labeled by 1,

R(−φn̂)R(d12)Sj , if j is labeled by 2,

R(−2φn̂)R(d12)R(d23)Sj , if j is labeled by 3,

,

(13)
yields the new spin Hamiltonian Hs

2 (6). The spin Hamiltonian
Hs

2 is invariant under global SO(2) spin rotation about the axis
n̂, S′

j �→ R(θ n̂) · S′
j , which is the consequence of the U(1)

spin-rotational symmetry of the parent Hubbard Hamiltonian.
The full SO(3) spin-rotational symmetry is respected once
the the flux vanishes � = 0 (mod 2π ), or, equivalently,
φ = 0,2π/3, or 4π/3 [46].

The dependence of the symmetry of the Hamiltonian on its
parameter, φ in our case, indicates a possible dramatic change
in the physical properties when φ crosses the high symmetry
points φ = 0, 2π/3, and 4π/3. To see that, we treat spins
classically in the spin Hamiltonian Hs

2 (6) [27,47,48], which
allows us to obtain the exact ground states. The ground states
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at the high symmetry points, where the fluxes are zero, are
already known [42,49]. We thus focus on nonvanishing fluxes.

We start for an isolated triangle. Observing the Hamiltonian
is quadratic in spin, a straightforward way is to list all three
spins into a large column spin S ≡ (S1,S2,S3), and diago-
nalize a 9 × 9 matrix H representing the spin Hamiltonian
Hs

2 = S · H · S/2. Specifically, the matrix H is given by

H ≡

⎛
⎜⎝

0 R RT

RT 0 R

R RT 0

⎞
⎟⎠, (14)

where R ≡ R(φn̂). This scheme is generally invalid as the
eigenstates may not be physical due to the different lengths of
spins, e.g., |S1| �= |S2|. For the current problem, however, the
eigenvectors with minimum energy turn out to satisfy |S1| =
|S2| = |S3| always, which makes them physical. Spins are
perpendicular to the SU(2) flux vector �n̂ in the continuously
degenerate ground states, which are given by

S1 = R

(
4π n̂

3

)
S2 = R

(
2π n̂

3

)
S3, 0 < φ <

2π

3
,

S1 = S2 = S3,
2π

3
< φ <

4π

3
,

S1 = R

(
2π n̂

3

)
S2 = R

(
4π n̂

3

)
S3,

2π

3
< φ < 2π.

(15)

For two neighboring triangles, their exact ground states of
the spin Hamiltonian can be patched by matching the spin of
the shared site. This procedure can be extended to the entire
kagome lattice because all the triangles have the same DM
vectors. Specifically, spins labeled by the same number [see
Fig. 1(a)] point in the same direction in the ground states. For
example, the ground states of the spin Hamiltonian Hs

2 with
2π/3 < φ < 4π/3 have all the spins pointing in the same
direction in the plane perpendicular to n̂. Figure 2(a) shows
a ground state of Hs

2 for the angle 0 < φ < 2π/3 and n̂ = ẑ.
The exact ground states of the spin Hamiltonian Hs

1 (5) can
be obtained from those of Hs

2 (15) by reversing the gauge
transformation in Eq. (13).

The ground states of the spin Hamiltonian break the
SO(2) spin-rotational symmetry, which signals the existence
of the BKT transition at finite temperature. In the continuum
approximation, the transition temperature is given by

TKT = (π
√

3/4)S2 cos(�̃/3), (16)

where �̃ = � mod 2π , 2π < �̃ < 4π , when neglecting spin
waves. Figure 2(b) shows the results for the transition
temperatures from a finite temperature classical Monte Carlo
simulation of the spin Hamiltonian Hs

2 and various φ with a
spin length of unity, which agrees well with the theoretical

prediction (16) with a renormalized spin length S = 0.69. The
renormalization of the spin length can be attributed to thermal
spin-wave fluctuations.

V. DISCUSSION

We have shown that the single-band Hubbard Hamiltonian
on the kagome has global U(1) spin-rotational symmetry
even in the presence of SOC. The U(1) symmetry does not
demand a specific shape of the constituent triangles, but
only requires inversion symmetry between the neighboring
triangles centered at the shared site. A linear deformation
of the kagome lattice by strain, for example, would break
the threefold rotational symmetry about the centers of the
triangles, but would preserve the inversion symmetry centered
at the sites and thus maintain the associated U(1) symmetry as
well [50].

We have provided the exact classical ground states of
the spin Hamiltonian, which spontaneously break continuous
symmetry. The BKT transition occurs at finite temperature,
which is governed by the SU(2) flux threading the triangles.
This is an example showing the physical effects of the
SU(2) flux associated with SOC. Its effect on the quantum
Hamiltonian deserves to be investigated. We would like to
mention that the controllable SU(2) gauge field has been
created in optical lattices [51,52], which may afford the
platform to observe the effects of varying flux on the physical
properties of the quantum Hamiltonian.

Preservation of U(1) spin rotational symmetry depends
on the lattice structure. The kagome lattice (with inversion
symmetry centered at the sites) is one of the lattices whose
structure supports U(1) spin rotational symmetry even in the
presence of arbitrary SOC. The approach taken in this paper,
however, can be applied to other lattice systems. For example,
on the square lattice, the Hubbard Hamiltonian with arbitrary
SOC also possesses global U(1) spin-rotational symmetry
provided the inversion symmetry centered at the sites is
respected. The classical ground states of the corresponding
spin Hamiltonian are the Néel states polarized along the SU(2)
flux vector, because the square lattice is bipartite. The ground
states do not break continuous symmetry, and thus the BKT
transition does not occur. It is worth pursuing studies of other
two- and three-dimensional lattices using a similar approach.
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