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Anharmonic stabilization and band gap renormalization in the perovskite CsSnI3
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Amongst the X(Sn,Pb)Y3 perovskites currently under scrutiny for their photovoltaic applications, the cubic
B-α phase of CsSnI3 is arguably the best characterized experimentally. Yet, according to the standard harmonic
theory of phonons, this deceptively simple phase should not exist at all due to rotational instabilities of the
SnI6 octahedra. Here, employing self-consistent phonon theory, we show that these soft modes are stabilized at
experimental conditions through anharmonic phonon-phonon interactions between the Cs ions and their iodine
cages. We further calculate the renormalization of the electronic energies due to vibrations and find an unusual
opening of the band gap, estimated as 0.24 and 0.11 eV at 500 and 300 K, which we attribute to the stretching of
Sn-I bonds. Our work demonstrates the important role of temperature in accurately describing these materials.

DOI: 10.1103/PhysRevB.92.201205 PACS number(s): 63.20.Ry, 64.60.Ej

Four decades after its identification as an unusual phase-
change material [1], the inorganic perovskite CsSnI3 has ex-
perienced a revival of interest in its technological applications.
After being used as a hole transporter in solid-state photo-
voltaics [2], the subsequent explosion in activity surrounding
perovskite solar cells [3] has seen CsSnI3 incorporated into
new devices as a lead-free light absorber [4] with favorable
optical properties [5–8]. Like many perovskites [9] CsSnI3

has a rich phase diagram, driven by low-energy rotations
and tilts of the SnI6 octahedra [10–12]. In addition CsSnI3

has an unusual electronic structure, with a nondegenerate and
highly-dispersive valence band [13] and an intra-atomic band
gap strongly coupled to external strain [13–15].

In a wider context, CsSnI3 is the gateway to understanding
the basic physics of the family of X(Sn,Pb)Y3 perovskites
(X = cation, Y = halogen). Unlike its famous cousin MAPbI3

(MA = methylammonium), CsSnI3 has (i) no permanent
cationic dipole moment [16], (ii) reduced spin-orbit coupling
due to the lighter mass of Sn [17], and (iii) a high-symmetry
cubic (B-α) phase characterized by many studies [10,12,18].
However, theoretical investigations [11,19–21] consistently
find the B-α phase to be unstable against spontaneous rotation
of the SnI6 octahedra, so on energetic grounds this phase
should not exist at all. The answer to this puzzle must
partly lie in the fact that the B-α phase is stable only at
high temperature [12], where both energetic and entropic
contributions determine the free energy F . Unfortunately
the most widely-used approach of calculating F from first
principles, the quasiharmonic approximation [22], cannot be
straightforwardly applied [21] due to the presence of the
unstable (imaginary) phonon modes (Fig. 1).

In this Rapid Communication, we demonstrate the critical
role played by anharmonicity in stabilizing the experimentally-
observed cubic and tetragonal (B-α and B-β) phases of CsSnI3.
We perform our ab initio investigation using a stochastic
implementation of self-consistent phonon theory [24–27].
We show that the SnI6 octahedra are stabilized against tilts
and rotations by interacting with the renormalized vibrations
of the Cs ions. Unexpectedly our calculations also reveal
a temperature-induced opening of the band gap, with a
magnitude of 0.24 and 0.11 eV at 500 and 300 K, respectively.
The significant size of these corrections (36 and 11% of the

uncorrected gaps) places temperature effects at a similar level
of importance as spin-orbit coupling for determining the band
gap in these materials [17], yet usually they are not included
in ab initio studies. We further find that the gap opening is not
consistent with a harmonic theory of band gap renormalization
[28] but can be understood in terms of an increase in average
length of the Sn-I bonds.

All total energy and force calculations in this paper
were performed within a generalized-gradient approximation
to density-functional theory (the PBEsol functional [29]),
expanding the wave functions in a plane-wave basis set
[30] and treating the interactions between electrons and ion
cores within the projector-augmented wave formalism [31] as
implemented in the GPAW code [32].

In Fig. 1 we show the phonon band structure obtained
for the B-α phase calculated in the harmonic approximation
using the finite displacement method [33,34]. Instabilities
corresponding to tilts and rotations of the SnI6 octahedra are
found at the M and R points of the Brillouin zone [11]. One of
the triply-degenerate soft modes at M is shown in Fig. 2,
together with a frozen-phonon calculation of the potential
energy surface (PES) with respect to a distortion xrot along
this mode. The cubic structure (xrot = 0) is metastable, and
the system can lower its potential energy through an octa-
hedral rotation to a new structure with tetragonal symmetry.
These soft modes have been observed under a number of
different computational setups and theoretical approximations
[11,19–21] and cannot be stabilized for example by the
application of a strain. In fact increasing the lattice constant
above its 0 K equilibrium value yields further soft modes,
identified as ferroelectric instabilities in Ref. [21].

The fact that experiments observe only the cubic phase
at temperatures above 440 K [10,12,18] indicates that this
phase corresponds to a minimum of the free energy F . In
the quasiharmonic approximation [22], F is replaced with
F̃ (ω,T ), the free energy of an ensemble of oscillators of
temperature T with frequencies ω = {ω1,ω2,...ων}:

F̃ (ω,T ) = V0 +
∑

ν

[
�ων

2
− kBT ln[1 + nB(ων,T )]

]
. (1)
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FIG. 1. (Color online) Phonon band structures obtained for the
B-α phase of CsSnI3 calculated under the harmonic approxima-
tion or with self-consistent phonon frequencies (SCω). Imaginary
frequencies are shown as negative. The supercell calculations do
not include the nonanalytic correction accounting for the long-
wavelength splitting of polar modes [23].

V0 is the energy of the ions in their equilibrium positions,
� and kB the Planck and Boltzmann constants, and nB the
Bose-Einstein distribution function.

A quasiharmonic treatment of the B-α phase would replace
ω with the phonon eigenfrequencies shown in Fig. 1, but
there are two difficulties: First, Eq. (1) is defined only for
real phonon frequencies, so the contribution to F from the
soft modes cannot be included. Second, from the harmonic
phonon frequencies and eigenvectors of Fig. 1 we calculate
that Cs atoms would undergo typical oscillations with a root
mean-square displacement of 0.8 Å at 500 K, corresponding
to over 18% of the distance to their iodine neighbors at
equilibrium [35]. Such large displacements are unlikely to
be well described within the harmonic approximation.

Determining F for the B-α phase therefore requires
moving beyond the (quasi)harmonic approximation. Different
approaches to this problem have been developed, including
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FIG. 2. (Color online) (a) B-α phase of CsSnI3, with
blue/yellow/gray atoms = Cs/Sn/I. (b) B-α structure distorted
along modes at the M point corresponding to SnI6 octahedral
rotation (orange arrows) and Cs vibration (pink arrows in/out of
page). The respective amplitudes along each mode are xrot and xCs.
(c) Energy V vs deviation in Sn-I-Sn bond angle θ for constant
values of xCs of (in direction of arrow) 0.0, 0.25, 0.5, 0.75, 1.0, 1.5,
2.0, and 2.5, in units of

√
〈x2

Cs〉T =500 K.

methods based on parametrizations and perturbative expan-
sions of the PES [36–38], molecular dynamics [39,40], and
self-consistent phonons [24–27,41]. Here we follow the self-
consistent phonon approach and calculate a fictitious free
energy F(ω,T ) as

F(ω,T ) = F̃ (ω,T ) + 〈V 〉T − 〈Ṽ 〉T . (2)

Here Ṽ is a harmonic approximation to the true PES V , and
〈A〉T is a thermal average of a quantity A with respect to the
fictitious harmonic system, whose exact value is obtained via
Mehler’s formula [42,43] as

〈A〉T =
∏
ν

1√
2π

〈
x2

ν

〉
T

∫
dxν e−x2

ν /2〈x2
ν 〉T A(x). (3)

x gives the amplitudes along each phonon mode ν, with the
mean-square amplitude at temperature T given as 〈x2

ν 〉T . F
is the free energy of the real system evaluated on the thermal
equilibrium state of the fictitious system and is a rigorous upper
bound to the true free energy F [27]. The self-consistent set
of frequencies ω are chosen as those which minimize F .

A fully self-consistent phonon theory (e.g., Refs. [26,27])
also minimizes F with respect to phonon eigenvectors and
equilibrium ionic positions, but in the current study we keep
these quantities fixed at their harmonic values. The reasons for
performing this simplification are (i) for the high-symmetry
B-α phase, many of the phonon eigenvectors (including the soft
modes) are fixed by the crystal symmetry, and (ii) the large unit
cells and low symmetry of the B-β and B-γ phases render a full
minimization of F impractical [44], even after performing the
symmetrization techniques of Ref. [27]. Then, as has been done
previously for calculating free energies [26,27], absorption
spectra [45], and magnetic spectroscopies [46], we evaluate the
thermal averages of Eq. (3) stochastically from an ensemble of
configurations with ionic displacements distributed according
to

∏
ν exp[−x2

ν /(2〈x2
ν 〉T )]. We label the current scheme SCω.

Figure 1 shows the SCω-calculated phonon band structure
obtained at 500 K. There are three points to note. First,
the soft modes at the M and R points are stabilized to positive
energies of 2.3 meV. Second, the vibrational energies of the Cs
atoms appearing at 1–3 meV in the harmonic approximation
[21] are renormalized by more than a factor of two in SCω.
As a result, ferroelectric instabilities involving Cs atoms that
appear at a strained lattice vanish at high temperatures [35].
Finally, the lattice constant which minimizes F is calculated
to be 6.21 Å, which compared to experiment (6.206 Å [12])
is a significant improvement over the values of 6.131 Å found
by minimizing the total energy and 6.160 Å obtained at 500 K
from a quasiharmonic analysis ignoring the soft modes [21].

The significant renormalization of the Cs vibrations points
to the mechanism by which the soft modes are stabilized in
SCω. The SCω potential calculated for octahedral rotations is
far steeper than that expected from a one-dimensional analysis
of a quartic potential, which yields a parabola wide enough for
the system to sample the two minima [35]. Instead one must
consider phonon-phonon interactions between the octahedral
rotations and the vibrations of the Cs atoms. In Fig. 2(c)
we show the PES obtained by simultaneously displacing
the Cs atoms along an M-point phonon while rotating the
SnI6 octahedra. Harmonically for each Cs mode amplitude
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xCs one would expect an identical PES, offset by an energy
1/2MP ω2

Csx
2
Cs (MP is the proton mass). Instead, the PES

changes shape, showing that terms like x2
Csx

2
rot stabilize the

cubic structure. We stress that the analysis of Fig. 2(c) only
couples two phonon modes, whilst SCω includes all couplings.

Crucially, the value of F calculated for the cubic phase is
20 meV per formula unit lower than the tetragonally-distorted
phase at 500 K, showing that at high temperature it is more
beneficial to the free energy to have the Cs atoms vibrating
in a large volume than it is to reduce V0 by rotating the
SnI6 octahedra. Our calculations corroborate the experimental
interpretation of Cs atoms “rattling” within the perovskite
cages [12].

Given the interest in the optoelectronic properties of
CsSnI3, it is desirable to quantify the effects of phonons
on the electronic band gap Eg . There is increasing evi-
dence that semilocal exchange-correlation functionals find a
weaker electron-phonon coupling strength compared to more
sophisticated theories of electronic excitations, e.g., the GW

approximation [47,48]. For this reason we perform elec-
tronic structure calculations using the derivative discontinuity-
corrected GLLB-SC functional of Ref. [49], which has been
found to improve the PBEsol description of the band gap for
a range of materials [14,50]. We calculate a gap deformation
potential of 7.20 eV with GLLB-SC, close to the value of
7.35 eV found from the quasiparticle self-consistent GW

(QSGW) calculations of Ref. [13] and steeper than the values
of 4.73 found with PBEsol or 4.65 eV from the local-density
approximation [13]. The derivative discontinuity is responsible
for this difference [35].

Expanding the lattice constant from 6.131 Å (harmonic,
T = 0 K) to 6.21 Å (SCω, T = 500 K) already accounts for
an increase of the gap Eg from 0.40 eV to 0.66 eV. However in
addition there is a constant-volume renormalization of the gap
due to phonons [51], which in the adiabatic approximation of
Ref. [28] is calculated as 	Eg = 〈Eg〉T − E0

g , where E0
g is the

gap calculated with the ions in their equilibrium positions [43].
We use Eq. (3) to evaluate 〈Eg〉T from the SCω frequencies at
the experimental volume at 500 K. The band gaps calculated
for 300 configurations is shown in Fig. 3. The calculated
	Eg is remarkable for being both large and positive, i.e.,
the electron-phonon interaction increases the gap. Although
the latter behavior has been observed experimentally for
materials like copper halides [51,52], ab initio calculations
of electron-phonon renormalization have so far focused on
semiconductors like diamond and Si where the gap is reduced
by temperature [47,53–55].

We have also studied the technologically-relevant low tem-
perature B-β and B-γ phases at 380 and 300 K, respectively.
Owing to the close agreement of the SCω B-α lattice constant
with experiment, we used the experimental lattice constants
reported in Ref. [12] for the other phases. We show the SCω

band structures in the supplemental information [35]. For the
B-β phase, the SCω calculations remove the unstable modes
and renormalize the frequencies of the Cs modes, whilst for
the B-γ phase some small changes in phonon frequencies
occur across the spectrum [35]. The calculated corrections to
the band gap are again large, yielding +0.70 eV (B-α phase,
500 K), +0.45 eV (B-β phase, 380 K), and +0.31 eV (B-γ
phase, 300 K). However as discussed below these values are
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FIG. 3. (Color online) GLLB-SC band gaps calculated
with/without (green squares/gray circles) derivative discontinuity
contribution for an ensemble of 300 configurations vs average Sn-I
bond length DSnI. A linear fit to the data is shown. Eg is taken as the
difference between the highest occupied state and the average of the
three lowest unoccupied states at R [35]. We also show the gaps of
the unperturbed B-α, B-β, and B-γ structures (orange stars). Note
that these calculations were performed in a 2 × 2 × 2 supercell and
are subject to the finite size effects discussed in the text.

likely to be overestimates due to finite size effects in our
supercell calculations.

To further investigate this band gap renormalization we first
consider the harmonic theory of Ref. [28], where

	Eg ≈ 	E(2)
g =

∑
ν

∂Eg

∂nν

[
nB(ων,T ) + 1

2

]
. (4)

Usually the coupling coefficient ∂Eg/∂nν is defined as
l2
ν ∂

2Eg/∂x2
ν with lν being the characteristic length of the

normal mode [35], but with this definition Eq. (4) gives a too
large gap renormalization of 0.95 eV at 500 K, demonstrating
the failure of a harmonic expansion of Eg with respect to xν .
However Fig. 3 reveals a correlation between the calculated
gap and DSnI, the average Sn-I bond length, which accounts
for the gap increase both from the electron-phonon interaction
and between the unperturbed α, β, and γ phases (orange stars).
Following Ref. [13] we attribute this sensitivity to a weakened
Sn-s/I-p antibonding interaction as the bond length increases,
narrowing the valence band and widening the band gap.
This correlation motivates a resummation and new coupling
constant definition:

∂Eg

∂nν

= l2
ν

dEg

dDSnI

∂2DSnI

∂x2
ν

, (5)

where dEg/dDSnI is the gradient of the straight line in
Fig. 3. In Fig. 4 we plot the spectral functions [56] g2F (ω) =∑

ν ∂Eg/∂nνδ(ω − ων) for the two definitions of ∂Eg/∂nν ,
showing that (a) the harmonic expansion of Eg predicts
much larger contributions from polar modes at 6 meV, and
(b) both expansions yield an important contribution to the
gap renormalization from the octahedral rotations at 2.3 meV,
which can only be described with an anharmonic treatment of
the ground state.

Equation (5) yields a gap renormalization of 0.70 eV for the
B-α phase at 500 K, exactly reproducing the ensemble average
of Fig. 3. Noting that the B-β and B-γ phases display a similar
correlation of Eg with DSnI [35], we combined dEg/dDSnI

from Fig. 3 with ∂2DSnI/∂x2
ν obtained from the phonon

eigenvectors of these phases and found renormalizations of
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FIG. 4. (Color online) Gap spectral functions g2F (ω) calculated
using ∂Eg/∂nν = l2

ν ∂
2Eg/∂x2

ν (red dotted line) and Eq. (5) (blue solid
line). The expected gap renormalization at temperature T is obtained
as

∫
dωg2F (ω)[nB (ω,T ) + 1/2].

0.47 and 0.32 eV, also remarkably consistent with the full
ensemble averages.

The surprisingly large band gap corrections raise two
questions: first whether the adiabatic interpretation of 〈Eg〉T
as the electron-phonon-corrected band gap [28] is sufficient
to describe the photophysics of this polar material [55,57]
and second whether the supercells used to calculate the
gap renormalization have introduced finite size effects (e.g.,
through an oversampling of the soft modes). Current methods
of treating nonadiabaticity have not yet been extended to
systems dominated by anharmonic couplings between dif-
ferent phonon modes [55,58], but we studied the finite size
effect by Fourier interpolating the SCω dynamical matrix to
progressively larger N × N × N supercells of the B-α phase
and repeating the sampling of the band gap, utilizing the
localized-orbital basis sets implemented in GPAW [35,59]. We
indeed observe slow convergence with supercell size, with
an empirical 1/N scaling. Extrapolating this behavior leads

to a significant reduction of dEg/dDSnI by 62%, thus giving
revised estimates of the gap renormalization from Eqs. (4) and
(5) of +0.24, +0.16, and +0.11 eV for CsSnI3 at 500, 380, and
300 K, or corrected GLLB-SC gaps of 0.90, 1.04, and 1.17 eV.
Future work is required to study the nature and origin of this
slow size convergence.

Connecting our work to experimental studies, we note that
Ref. [8] found the peak photoluminescence (PL) to increase in
energy by 0.09 eV from 9 to 300 K. Although this data appears
to agree with our calculated shift of +0.11 eV, we note that
(a) the latter value does not include thermal expansion effects,
and (b) it is unclear whether the PL corresponds to band-band
transitions or defects [12,60]. At higher temperatures, our
calculations indicate that the band gap will reduce, e.g., by
0.14 eV between 380 and 500 K. The measurement of the
absorption spectrum of CsSnI3 over the 0–500 K tempera-
ture range would be highly useful to further explore these
effects.

Finally, we note that while anharmonicity has been demon-
strated to play a crucial role for materials at very high
temperatures or pressures [27,41], the conditions simulated
here are relevant to the expected operating conditions for
solar cells [61]. It is notable that the 0.24 eV shift obtained
for the cubic phase is of similar magnitude to the spin-orbit
correction [13], with opposite sign. Our paper thus illustrates
the importance of anharmonic temperature effects to the
realistic modeling of the X(Sn,Pb)Y3 perovskites.
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