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Drift-induced modifications to the dynamical polarization of graphene
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are presented and a plasmon gain region is identified that is related to interband transitions.
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I. INTRODUCTION

The prominent light-matter interaction of graphene has
attracted immense interest due to the tunable plasmonic
excitations in the THz [1–6] and midinfrared [7,8] regimes.
These charge-density excitations in graphene, which are
mostly explained by the density-density and current-current
correlation functions of its π electron gas [9], are well-
explored in both theoretical [10–13] and experimental [14–16]
directions.

The manipulation of the density of states (DOS) of the
π and π∗ bands of graphene can be a tool for tailoring
its plasmonic excitations—a scenario realizable through the
exposure of graphene to either mechanical stress [17,18] or a
perpendicular magnetic field [19–22]. Also, as implied by the
Pauli exclusion principle, the manipulation of the electronic
occupation within the π and π∗ bands alters the response to the
electromagnetic (EM) perturbations. Gate-controlled optical
absorption of graphene [15] and the broadband optical gain
resulting from the inversion of the electronic population under
femtosecond laser pulse irradiation [23–26] are examples of
altering the EM response of graphene via pushing its electronic
occupation into steady and transient nonequilibrium states,
respectively.

Modifying light absorption by electrical signals would
integrate optics and electronics, a long-sought goal in plas-
monics [27]. Breaking the spatial-temporal symmetries would
also open up the possibility of rectifying the plasmonic current
to convert light signals into directed electrical signals [28,29].
The directional symmetry is most directly broken by applying
an electric field within the two-dimensional (2D) layer. This
will modify the spectrum, alter the response of the system,
and induce nonlinear and thermal effects, while the presence
of electrical contacts can lead to Dyakonov-Shur instabili-
ties [30–32]. Also, population inversion induced by optical
pumping can lead to a negative total dynamic conductivity
in graphene at THz/far-infrared frequencies, paving the way
toward graphene-based laser devices [33,34].
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In this work, we will investigate the interplay between
the electrical conductivity and the plasmonic excitations in
graphene samples by assuming a moderate electric flux across
the sample. To present the essence of our work, we focus on
the analysis of the linear, intravalley response of drifting π

electron gas to longitudinal EM perturbations,

E(r,t) = E0e
i(q·r−ωt), E0 ‖ q. (1)

The paper is organized as follows. Section II contains
the basics of the linear response theory of Dirac systems
and its generalization to nonequilibrium systems. In Sec. III,
we present the analytical approximation valid for small drift
velocities at finite doping. In Sec. IV, a general discussion
for doped systems is given, and in Sec. V, we present the
numerical results for the case of zero doping. We close with
a summary and conclusions. The paper is supplemented by
four Appendixes, which provide details on the analytical
calculations.

II. LINEAR RESPONSE OF A DRIVEN DIRAC SYSTEM

Within the random-phase approximation [35] (RPA), the
response of the π electrons at equilibrium to longitudinal EM
perturbations is mainly described by the intravalley dynamical
polarization function of graphene [10,11],

�(q,ω) = gsgv

(2π )2

∑
s,s ′=±

∫
d2k

{
fs,s ′ (k,q)

× nF [Es ′
(k + q)] − nF [Es(k)]

Es ′ (k + q) − Es(k) − �ω − i0+

}
, (2)

where gs (gv) = 2 denotes the spin (valley) degeneracy, the
prefactor fs,s ′ (k,q) represents the band overlap integral, and
Es(k) describes the energy dispersion of the valence (s = −1)
and conduction (s = 1) bands. Employing the tight-binding
model, if accompanied by the Dirac cone approximation,
yields Es(k) = s(3at0/2)k together with

fs,s ′ (k,q) = 1

2

[
1 + ss ′ k + q cos (θk − θq)

|k + q|
]
, (3)

where a ≈ 0.142 nm, t0 ≈ 2.7 eV, and k are, respectively,
the carbon-carbon bond length, the nearest-neighbor hopping
amplitude, and the crystal momentum measured with respect
to the Dirac points. In addition, θk (q) is the angle between k
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(q) and êx . The equilibrium electronic occupation is described
by the Fermi-Dirac statistics, i.e.,

nF [E] =
[

1 + exp

(
E − EF

kBT

)]−1

, (4)

where EF is the Fermi energy measured with respect to the
neutrality point. The highest occupied eigenstates in reciprocal
space are located at circles centered at the Dirac points. The
disk enclosed by such a circle is referred to as the Fermi
disk, with the Fermi wave vector, kF = 2|EF |/(3at0), being
its radius.

In the presence of drift, the π electron gas reaches a new
equilibrium through gaining momentum and kinetic energy
from the drain-source voltage, Vds, and losing part of it via
electron scattering mechanisms [36,37]. Instead of finding
the eigenstates and energy eigenvalues of the Hamiltonian
that includes Eds (the local electric field corresponding to
Vds) and the sources of scattering, we adopt a semiclassical
approach in which the electronic occupation is altered by
the drain-source voltage, while the crystal Hamiltonian and
consequently its DOS remain intact. As a result of this
approach, the drift-induced modification to the dynamical
polarization of graphene, which is defined as the difference
between the dynamical polarization in the presence of drift
�•(q,ω) by its no-drift counterpart �◦(q,ω), is given by1

��(q,ω) ∼= gsgv

(2π )2

∑
s,s ′=±

∫
d2k

{
fs,s ′ (k,q)

× �nF [Es ′
(k + q)] − �nF [Es(k)]

Es ′ (k + q) − Es(k) − �ω − i0+

}
, (5)

where �nF [E] ≡ n•
F [E] − n◦

F [E] denotes the drift-induced
modification to the electronic occupation.

III. ANALYTIC APPROXIMATION

In principle, the occupation function of the drifting electron
gas can be obtained via solving the Boltzmann transport
equation (BTE) [37]; however, in order to avoid the complex-
ities of solving the BTE, we resort to the phenomenological
shifted Fermi disk model, which describes the nonequilibrium
occupation function of a drifting electron gas without the need
for the details of the underlying scattering mechanisms [38,39].
For a given shift of the Fermi disk from the Dirac point, kshift,
the locus of the highest occupied states of the drifting electron
gas with respect to the Dirac point, i.e., k = 0, is given by

k•
F = kF

{√
1 −

[
kshift

kF

sin θk

]2

−
[
kshift

kF

cos θk

]}
, (6)

where kshift < kF is implied and the shift is assumed to be
leftward, i.e., Eds ‖ êx . We thus limit ourselves to the case of
pure electron or hole transport and relegate the special case of

1In this work, the symbols superscripted with a filled and hollow
circle correspond, respectively, to the cases in which the drift is
present and absent. Any symbol without such superscripts corre-
sponds implicitly to the no-drift case.

doping levels close to half-filling to Sec. V. Within the low-
temperature (kBT 	 |EF |) and low-drift (kshift 	 kF ) regime,
which is a relevant regime for usual doping levels and current
densities, the occupation function of the drifting electron gas
n•

F [E] can be approximated via feeding E•
F = EF (k•

F /kF )
from Eq. (6) into the Fermi-Dirac occupation function. This
yields

�nF (E,k) ∼= −EF

[
kshift

kF

]
δ(E − EF ) cos θk, (7)

with δ being the Dirac delta function. Feeding Eq. (5) with
this spikelike �nF (E,k), if accompanied by the Dirac cone
approximation, yields an analytic expression for ��(q,ω)
(see Appendix A). For brevity, we present this analytic
expression in terms of the dimensionless variables q̃ ≡ q/kF ,
ω̃ ≡ �ω/EF , and ω̃′ ≡ ω̃ + i0+,

��(q,ω) ∼= D(EF )

4

q · vdr

qvF

[
−8ω̃

q̃
+

∑
α=±

αFα(q̃,ω̃)

]
, (8)

where Fα(q̃,ω̃) is a complex function defined in terms of Zα ≡
(2 − αω̃′)/q̃ and Wα ≡ αω̃′/q̃ as follows:

Fα(q̃,ω̃) ≡ q̃
[
1 − Z2

α

]√ [1 + WαZα]2[
1 − W 2

α

][
1 − Z2

α

] (9)

with vF ≡ 3at0/2� ≈ 106 m/s being the velocity of Dirac
Fermions. The factor D(EF ) = gsgv|EF |/[2π (�vF )2] is the
DOS of the Dirac cones at E = EF , and the symmetry-
breaking role of the electric current is manifested as the inner
product of the wave vector q and the drift velocity of the
electron (hole) gas, vdr = sgn[EF ]vF (kshift/kF ). The analytic
expression for ��(q,ω) given by Eq. (8) is the main result of
this work and is shown in Fig. 1. It conforms with the following
principles:

(i) Real charge response. It satisfies the following condition,
which guarantees a nonimaginary charge response,

��(−q, − ω) = [��(q,ω)]∗. (10)

(ii) Causality. Since the integrand of �� has no poles in the
upper half-plane of the complex frequency space, the real and
imaginary parts of the analytic expression for ��(q,ω) are
automatically correlated through the Kramers-Kronig (KK)
relations,

P
∫

��(q,ω′)
ω′ − ω

dω′ = iπ��(q,ω). (11)

(iii) The f-sum rule. The general f -sum rule for a bipartite
tight-binding model [9] implies∫

Im[��(q,ω)]ω dω ∝
∫

E±(k)�nF [E±(k)]d2k, (12)

where the right-hand side (RHS) represents the drift-induced
modification to the kinetic energy of the π electron gas. The
low-drift approximation for �nF (E,k) given by Eq. (7) does
not alter the kinetic energy of the electron gas, i.e., the RHS
vanishes. Within the same level of approximation, the analytic
expression for Im[��] given by Eq. (8) is an even function
of ω and yields a vanishing LHS, thereby satisfying the sum
rule.
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FIG. 1. (Color online) Color-mapped values of the (a) real and
(b) imaginary parts of ��(q,ω) obtained from Eq. (8) and presented
in units of (kshift/kF )D(EF ). The positive and negative qx axes, re-
spectively, correspond to the cases in which q is antiparallel (θq = 0◦)
and parallel (θq = 180◦) to the drift velocity. The computed ��(q,ω)
values are corrected according to Mermin’s approach [40] for a
phenomenological scattering rate of �/τ = 5 meV (see Appendix B).
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FIG. 2. (Color online) The numeric-analytic comparison of
Im[��(q,ω)] for Dirac fermions indicates that the analytic expres-
sion given by Eq. (8) becomes more accurate for smaller amounts of
(kshift/kF ). The numerical evaluation of �� is performed based on
�nF values computed from Eq. (6), and the results are normalized
by (kshift/kF )D(EF ).

It is worth noting that the analytic expression for ��

presented here contains only the terms that are linear in
kshift/kF . The response for arbitrary drift velocity can be
obtained numerically. In Fig. 2, the numerical result for
the imaginary part of �� is shown for several (large) drift
velocities at a fixed wave number q = 1.5kF in the direction
of the drift.

Let us finally note that within the framework of the
shifted Fermi disk model, an exact analytic expression for
the drift-induced intrasubband dynamical polarization of two-
dimensional electron gas (2DEG) [41] is obtainable whose
validity extends beyond the low-temperature and low-drift
regime (see Appendix C),

�•(q,ω) = �◦{q,ω − (�/m∗
e )[kshift · q]}, (13)

which suggests that the drifting 2DEG responds to the EM
perturbation with a Doppler-shifted frequency.

IV. DISCUSSION FOR DOPED SYSTEMS

A. The static limit

Within the low-drift and low-temperature regime, the
analytic expression for the drift-induced modification to the
intravalley static polarization of the π electron gas in graphene
can be obtained from Eq. (8) via setting ω = 0,

��(q,ω = 0) ∼= iD(EF )
q̂ · vdr

vF

Re

[√
1 −

(
q

2kF

)2]
. (14)

One of the notable consequences of such a modification is
the emergence of a drift-induced asymmetry in the Friedel
oscillations (FO) [10]. At far enough distances from the
charged impurity atom, i.e., r � k−1

F , the modification to the
FO in the presence of drift is described by

�nind(r)

ns

∼= αf

c

vF

sgn[Q]

πκ2
0

vdr · r̂
vF

sin (2kF r)

(kF r)2
, (15)

where ns = k2
F /π is the density of dopant electrons or holes,

Q is the charge of the impurity atom, r is the in-plane position
vector, c is the phase velocity of light in vacuum, αf =
e2/4πε0�c (mks units) denotes the fine-structure constant,
and κ0 is the background dielectric constant [10]. Even
though the drift-induced modification to the intervalley static
polarization can be comparable to its intravalley counterpart,
its contribution to the FO is negligible at far enough distances
from the impurity atom, i.e., r � k−1

F . This is because the
relatively large valley separation leads to rapidly oscillating
terms in the summation yielding the intervalley contribution.

B. The local plasmonic limit

Within the local limit, i.e., q̃ 	 |ω̃| 	 1, the dynamical
polarization of doped π electron gas is given by [10]

�(q,ω) ∼= 1

2
D(EF )

(
q̃

ω̃

)2

(16)

and the expression for �� given by Eq. (8) reduces to

��(q,ω) ∼= 1

4

q · vdr

qvF

D(EF )

(
q̃

ω̃

)3

. (17)
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FIG. 3. (Color online) The computed (a) decay rate, (b) ωpl/γpl

ratio, and (c) frequency of the TM-SPP modes of a suspended
graphene channel, propagating parallel (red solid curves) and an-
tiparallel (blue dashed) to the drift velocity, are compared with their
no-drift counterpart (black dotted curves). The agreement with the

√
q

behavior predicted by the local approximation (green dash-dotted) in
the q 	 kF limit can be seen. The impact of the disorder-induced
electron scattering is taken into account by Mermin’s approach using
a phenomenological scattering rate of �/τ = 5 meV.

This translates into the drift-induced modification to the Drude
weight [42] given as follows:

�D = q · vdr

2ω
D0, (18)

where D0 = e2|EF |/(π�
2) is the bare Drude weight of the

dopant electrons or holes. The local-limit expression for
the dynamical polarization given by Eq. (16) yields a

√
q

dependence for the TM-SPP frequency, which is shown in
Fig. 3(c). On the other hand, an additional acoustic branch
with a linear dispersion, i.e. ω ∼ vsq, emerges in a double-
layer [43–45] or gated [46] graphene system. The drift-induced
change to the Drude weight can usually be neglected for the
optical branch, i.e., ω ∼ √

q. For the acoustic branch, however,
this correction might become observable if the sound-velocity,
vs , is comparable to the drift velocity vdr.

C. Modified plasmon dispersion and damping

Any 2D electron gas confined between two dielectric
media of dielectric constants ε1 and ε2 supports transverse
magnetic surface plasmon polariton (TM-SPP) modes whose
dispersion is yielded by the solutions of the following
equation [41,47,48]:

ε1√
1 − ε1

(
ω
qc

)2
+ ε2√

1 − ε2
(

ω
qc

)2
= 2αf hc

q
�(q,ω). (19)

The retardation region is defined as the region in the (q,ω)
plane near the dispersion of light [47,49]. Since the EM fields
corresponding to the modes located in the retardation region
are poorly localized to the graphene sheet [47,48], we discuss
the effects of drift out of this regime, i.e., q̃/ω̃ � vF /c, where
the left-hand side of Eq. (19) reduces to ε1 + ε2. To simplify
our study and block the plasmon damping pathways such as
the plasmon decay into the intrinsic (�ω ≈ 195 meV) and
extrinsic optical phonon modes within the frequency range of
our interest (�ω � 2EF ) [50,51], we assume the Fermi energy
to be low enough (EF � 0.1 eV), and we limit our study to
the case of a nonpolar substrate. Comparing the dispersion
relation in the absence and presence of drift at a fixed q yields

�•(q,ω•
pl(q)) = �◦(q,ω◦

pl(q)), (20)

which implies that the electric flux modifies the TM-SPP
frequency. Within the low-drift regime, Eq. (20) yields the
drift-induced modification to the TM-SPP frequency ωpl(q)
and decay rate γpl(q),

�ωpl(q) − i�γpl(q) ∼= − ��(q,ω◦
pl(q))[

∂�(q,ω)
∂ω

]
ω=ω◦

pl(q)

. (21)

Within the local limit, Eq. (21) yields an expression for the
drift-induced modification to the frequency of the TM-SPP
modes that is valid within the local limit,

�ωpl(q) ∼= 1
4 q · vdr, q 	 kF . (22)

This Doppler-like frequency modification suggests that in
the local limit, the plasmonic charge density excitations are
partially dragged by the drifting π electron (hole) gas. As is
shown in Fig. 3(c), the presence of drift causes the TM-SPP
dispersion of π electron gas to split into two branches each of
which corresponds to the TM-SPP modes propagating parallel
(P), i.e., θq = π , and antiparallel (AP), i.e., θq = 0, to the
drift velocity. This splitting can be inferred from the following
expression:

�ωpl(q) − i�γpl(q) = [q · vdr] ϒ(q), (23)

where Re[ϒ(q)],Im[ϒ(q)] > 0. The computed TM-SPP
branches that are presented in Fig. 3(c) suggest that the
drift-induced frequency splitting, i.e., 2qvdrRe[ϒ(q)], reaches
its maximum near q = qc, with qc denoting the onset of the
Landau damping [10,16] (see Appendix D).

Moreover, according to Fig. 3(a), the TM-SPP mode
propagating parallel (antiparallel) to the drift velocity has
a longer (shorter) lifetime comparing to the case in which
the drift is absent. As is implied by Fig. 3(b), such a drift-
induced change in the propagation length, if measured in
units of the mode wavelength, reaches its maximum for the
modes with q ≈ qc. As a result, the short (few-wavelength)
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propagation length of plasmons, which is the main challenge of
graphene plasmonics [52], can be increased via the application
of a drain-source voltage. This conclusion, nevertheless, is
based on the assumption that the device temperature is not
affected by the presence of the drift. Otherwise, to assess
the overall drift-induced change in the TM-SPP propagation
length, the increase in the temperature-induced plasmon
damping [50,52,53] resulting from the Joule heating of the
current-carrying device should be taken into account. The
higher decay rate for the AP branch suggests the possibility of
the application of dc current as a plasmonic brake to establish
a one-way EM waveguide [54–56].

As was noted in Sec. III, only the terms linear in kshift/kF

are retained in the analytic expression. Such an approximation
produces unphysical results within a tiny neighborhood of
the onset of Landau damping, i.e., qc ± δq and ωpl(qc) ± δω,
where δω = vF δq ∝ vdr · q. The slight dip in the decay rate
curve and the exaggerated peak in the ωpl/γpl curve of the
P plasmons, which are presented by Figs. 3(a) and 3(b),
respectively, are the inevitable consequences of such an
approximation. To remedy this shortcoming, the terms pro-
portional to (kshift/kF )n�2 should be derived and included in
the analytic expression.

V. ZERO DOPING AND PLASMON GAIN

Aside from the mode that was predicted when including the
vertex corrections [58], undoped graphene does not support
any TM-SPP modes at T = 0 K within the RPA [53].
Here, we numerically show that a high enough drain-
source voltage along an undoped graphene channel enables
the channel to support specific TM-SPP modes, even for the
purely hypothetical case of T = 0 K. More importantly, the
numerical results indicate the possibility of the emission of
low-energy (�ω � 30 meV) and long-wavelength plasmons.
Similar proposals can be found in Refs. [33,34] and references
therein.

The crossing nature of the conduction and valence bands in
graphene obligates the drifting electrons in the valence band
to move up to the conduction band because ∇kE

s(k), which is
semiclassically interpreted as the group velocity, is not well-
defined at k = 0 for a single Dirac cone. That is, a drifting
electron passing through the neutrality point must travel to the
other band. As is shown by Fig. 4, if the drain-source voltage
is high enough, the migrant electrons lose a quantum of energy
�� by emitting a phonon mode and backscatter to the valence
band.

The intrinsic high-field transport properties of metallic
single-wall carbon nanotubes (SWCNTs) [59] is one piece
of evidence that proves that such a transport model is a
physically relevant one. In each of the two bands, i.e., s = ±1,
the nonequilibrium electronic occupation can be modeled
by a θk-dependent Fermi energy as illustrated in Fig. 4 and
described by the following expression:

E •
F,s(θk) = s

4
��[| cos θk| − cos θk], s = ±1. (24)

Regarding the 1D nature of the conical subbands of the
metallic SWCNT [59], the model given by Eq. (24) may not
be the best one to describe the similar situation within the
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FIG. 4. (Color online) Depiction of the k-space dynamics [57]
of the π electron gas (the straight arrows along the cross section
of the Dirac cones with the ky = 0 plane) in an undoped graphene
channel subjected to a drain-source voltage. The drifting occupants
of the valence band whose group velocity has an opposite component
to Eds migrate to the conduction band through the Dirac crossing.
Ultimately, the migrants backscatter to the valence band after losing
a quantum of energy �� via the emission of a phonon mode (wavy
arrow).

2D Dirac cones of graphene. However, any other possible
model should also allow for nearly vertical, i.e., qa 	 1,
electron-hole recombination processes, which is a guarantee
for the generation of the long-wavelength interband plasmons.

Here, the dynamical polarization of the π electron gas
in a current-saturated and intrinsic graphene channel is
approximated by feeding the response function with the
nonequilibrium Fermi energy given by Eq. (24). To identify
the well-localized TM-SPP modes in the (q.ω) plane, we rely
on the energy-loss function S(q,ω), which is a measure of the
spectral intensity of these modes [49],

S(q,ω) = −Im

[(
1 − 2αf hc

[ε1 + ε2] q
�(q,ω)

)−1]
. (25)

The computed energy loss, which is presented in Fig. 5,
suggests that (i) the presence of electric current causes certain
TM-SPP modes to emerge (which we refer to as the “drift-
born” modes), and (ii) the electric current does not introduce
any asymmetry to the response. The latter is due to the
peculiar nonequilibrium occupation of the drifting π electrons.
The most important feature of the nonequilibrium response
presented in Fig. 5 is the negative energy loss of TM-SPP
modes with qmin � q � qmax. Accordingly, we propose the use
of the current saturation in a nearly undoped graphene channel
as a mechanism for the amplification of THz plasmons.

Since the electron-electron (e-e) interactions in the π elec-
tron gas in graphene become significant for very low densities

195429-5



SABBAGHI, LEE, STAUBER, AND KIM PHYSICAL REVIEW B 92, 195429 (2015)

T=600K 

-0.04 -0.02  0  0.02  0.04

2qxvF / Ω

 0

 0.1

 0.2

ω
 / 

Ω

-1000

0

1000 

2000

T=300K 

 0

 0.1

 0.2

ω
 / 

Ω

-600

-300

0

300 

600

T=77K 

 0

 0.1

 0.2

ω
 / 

Ω

-400

-200

0

200

400 

600

FIG. 5. (Color online) Color-mapped values of the energy-loss
function, S(q,ω), of the π electrons in a suspended and undoped
graphene channel along which a high drain-source voltage is applied.
The negative energy loss for the TM-SPP modes with qmin � q �
qmax indicates the possibility of the amplification of these modes
through the current saturation mechanism (�� ≈ 149 meV). The
negative and positive qx axes, respectively, correspond to the P and
AP cases.

of dopant electrons [60,61], it is necessary to discuss whether
the validity of the results presented for the undoped case is
challenged by the e-e interactions. Experimentally [62] as well
as theoretically [63], it has been established that there is no gap
opening due to chiral symmetry breaking even at the largest
effective coupling constant present in suspended graphene
(αg = 2.2). However, strong Fermi velocity renormalization
takes place for low densities of the order ns ∼ 1010 cm−2 up to
a factor of 3 [64,65]. To a first approximation, this effect can be
taken into account by using the renormalized Fermi velocity
instead of the bare one (i.e., vF ). Therefore, the e-e interactions
would not hinder the plasmon amplification mechanism
proposed here but rather would modify the quantitative aspects
of the numerical results we presented in the noninteracting
picture (Fig. 5), and additional work is needed to clarify this
issue.

The electron and hole puddles, i.e., the spatial fluctuations
in the Fermi energy, set a technical barrier to achieving a uni-
form neutrality along the graphene channel [66]. Fortunately,
it has been shown experimentally that these charge puddles
can be substantially reduced on a hexagonal boron nitride
(hBN) substrate [67,68], thereby leaving some possibility for
the plasmon amplification mechanism proposed in this work.
However, theoretical investigations [69–71] and experimental
measurements [72,73] suggest that a proper crystallographic
alignment of graphene with the hBN leads to the local breaking
of the sublattice symmetry, thus opening a sizable band
gap at the Dirac point. There are two grounds on which
it can be shown that the use of hBN substrate does not
necessarily induce any band gap: (i) The sublattice symmetry
in graphene can only be broken for specific relative rotation
angles between the crystals, and this is why several works
failed to detect such a gap [67,68,74,75]. (ii) Even if graphene
is properly aligned with the hBN crystal so that the band gap
emerges, placing an additional hBN crystal on top of graphene
would kill the commensurate state and recover the sublattice
symmetry [73,76]. Therefore, such an unfavorable gap, which
obstructs the proposed plasmon amplification mechanism, can
be feasibly avoided by a proper encapsulation of graphene with
hBN.

Regarding the high temperature of a graphene channel
within the current-saturation regime [77], it is necessary to
incorporate the effects of temperature into the evaluation of the
energy-loss function, and as is shown in Fig. 5, the negative
energy loss persists at high temperatures.

VI. SUMMARY AND CONCLUSIONS

We have discussed the dynamical response of a Dirac
system subjected to a source-drain current. This was done
by considering the nonequilibrium distribution function and
feeding it into the well-known Lindhard function [78]. By
this, we were able to obtain closed-form expressions within
the low-drift limit and analyzed the nonequilibrium response.
Since the f -sum rule is obeyed in this limit, our approximation
can be regarded as quasiequilibrium. However, the sum rule
does not hold anymore for the case of kshift ∼ kF , i.e., for
systems out of equilibrium.

For doped systems, the asymmetric response of the drifting
π electron gas was discussed in the static and dynamical limit,
especially commenting on the modified plasmon dispersion
and damping rates. For a neutral system, where the external
electric field does not induce an asymmetric response due to
particle-hole symmetry, numerical results of the energy-loss
function were presented and a plasmon gain region was found
that persists even at high temperatures such as T = 600 K. This
result may be relevant and may lead to potential applications
based on ultraclean encapsulated graphene samples.

We finally discuss the limitations of the shifted Fermi
sea model. Relaxation processes in graphene are known to
be fast—in particular, e-e relaxation tends to equilibrate the
system within femtoseconds. Our model is therefore mainly
valid in the analytical limit kshift/kF 	 1, which is reaffirmed
by the fact that the sum-rule holds in this case of quasiequi-
librium. However, note that the Doppler-like transformation
implied by Eq. (13) is in concordance with the experimental
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measurements on the drifting 2DEG system [79]. This can be
regarded as supporting evidence for our approximate treatment
of the EM response of a driven electron gas. Several extensions
are possible, such as discussing the response of a gapped
system, multilayer systems, and comparing our results with
nonlinear response functions [80].
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APPENDIX A: DERIVATION OF THE DRIFT-INDUCED
MODIFICATION TO THE DYNAMICAL POLARIZATION

For an n- (p-) doped graphene sample, the contribution of
the occupied (empty) eigenstates of the conduction (valence)
band to the dynamical polarization of the π electron (hole) gas
can be separated out as follows [10]:

�(q,ω) − �EF =0(q,ω) = D(EF )
∑
α=±

Uα(q,ω). (A1)

At T = 0, the complex function Uα(q,ω) is given by

Uα(q,ω) =
∫ 2π

0

dθk

2π

∫ kF

0

dk

kF

�α(k,q,ω), (A2)

where �α(k,q,ω) is defined as follows:

�α ≡ vF k
∑
β=±

f+,α(k,q)

βω + vF [k − α|k + q|] + iβ0+ . (A3)

However, in a case in which the rotational symmetry around
the Dirac point is broken (e.g., a θk-dependent Fermi wave
vector), the formalism given by Eqs. (A1), (A2), and (A3) does
not satisfy the condition in Eq. (10). It is straightforward to
derive the general formalism that holds for the nonsymmetric
case directly from Eq. (2). The appearance of βq instead of
q is the feature that distinguishes the general formalism from
the old one,

�′
α ≡ vF k

∑
β=±

f+,α(k,βq)

βω + vF [k − α|k + βq|] + iβ0+ . (A4)

Hence, the drift-induced modification to the dynamical polar-
ization is given by

��(q,ω) = D(EF )

2πkF

∫ 2π

0
dθk

∫ k•
F

kF

{�′
+ + �′

−}dk. (A5)

Within the low-drift regime, Eq. (6) reduces to

k•
F

∼= kF

{
1 − kshift

kF

cos θk

}
,

kshift

kF

	 1. (A6)

Regarding the small drift-induced perturbation to the Fermi
wave vector, i.e., |k•

F − kF | 	 kF , the k-integral can be
approximated as follows:∫ kF −kshift cos θk

kF

�′
αdk ∼= −[�′

α]k=kF
kshift cos θk. (A7)

Substituting this result into Eq. (A5) yields

��(q,ω) ∼= D(EF )

2π

kshift

kF

∫ 2π

0
{B+ + B−}dθk, (A8)

where the integrand in Eq. (A8) is given by

Bα(q,ω,ϕ) = −[�′
α(k,q,ω)]k=kF

cos (ϕ + θq). (A9)

The real part of the integral in Eq. (A8) can be obtained via
applying the following integral identity:∫ 2π

0

dϕ

1 − p cos ϕ
= 2π

�[1 − p2]√
1 − p2

(A10)

with p being a real number and � denotes Heaviside’s step
function. We then arrive at the following expression:

Re[��(q,ω)] ∼= A

[
8ω̃

q̃
+

∑
α=±

DR
α GR

α (q̃,ω̃)

]
, (A11)

where the function GR
α (q̃,ω̃) reads

GR
α (q̃,ω̃) = |ω̃(ω̃ − 2α) − q̃2|[(ω̃ − 2α)2 − q̃2]

q̃
√

(ω̃2 − q̃2)[(ω̃ − 2α)2 − q̃2]
(A12)

and the coefficient DR
α is given by

DR
α = +α�[(ω̃2 − q̃2){(ω̃ − 2α)2 − q̃2}]. (A13)

The following integral identity leads us to the imaginary part
of the integral in Eq. (A8):

Im

[ ∫ 2π

0

N (ϕ)dϕ

M(ϕ) + i0±

]
= ∓π

2∑
j=1

[
N (ϕ)∣∣ dM(ϕ)

dϕ

∣∣
]

ϕ=ϕj

, (A14)

with N (ϕ) and M(ϕ) being two analytic functions within the
range of [0,2π ], and ϕ1,2 are the duet roots of M(ϕ). The
resulting expression for Im[��] is as follows:

Im[��(q,ω)] ∼= A

q̃

∑
α=±

DI
αGI

α(q̃,ω̃) sgn[ω̃ − α], (A15)

where the real function GI
α(q̃,ω̃) is described by

GI
α(q̃,ω̃) = [ω̃(ω̃ − 2α) − q̃2][(ω̃ − 2α)2 − q̃2]

q̃
√

(q̃2 − ω̃2)[(ω̃ − 2α)2 − q̃2]
(A16)

and the coefficient DI
α reads as follows:

DI
α = −α�[(q̃2 − ω̃2){(ω̃ − 2α)2 − q̃2}]. (A17)

Lastly, the coefficient A is given by

A = 1

4
sgn[EF ]D(EF )

[
kshift

kF

]
cos θq . (A18)

The sgn[EF ] factor indicates that the drift-induced asymmetry
in the EF > 0 (EF < 0) case is solely dictated by the drift
velocity, vdr, of the electron (hole) gas; hence, to have a better
presentation of the physical aspects of this phenomenon, we
rewrite the coefficient A in terms of the drift velocity,

vdr ≡ ± vF

πk2
F

∫
�nF [E±(k)] k̂ d2k. (A19)
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FIG. 6. (Color online) The analytic solution for ��(q,ω) can be
specified in each of the six regions in the (q̃,ω̃) plane which are
outlined by the straight lines of ω̃ = q̃ (solid), ω̃ = 2 + q̃ (dash-
dotted), ω̃ = 2 − q̃ (dotted) and ω̃ = q̃ − 2 (dashed).

Plugging �nF (E,k) from Eq. (7), which corresponds to the
case of k̂shift = −êx , into Eq. (A19) yields

vdr

vF

= sgn[EF ]
kshift

kF

. (A20)

Rewriting the coefficient A in terms of the drift velocity from
Eq. (A20) yields the prefactor appearing in Eq. (8). Fortunately,
the expansive expressions for the real and imaginary parts of
��(q,ω) can be compacted into the complex function given
by Eq. (8), which applies to complex frequency values. On the
other hand, in each of the regions specified in Fig. 6, the real
part of ��(q,ω) can be expressed in terms of real functions:

Re[�� ] ∼= 8Aω̃

q̃
+ Aq̃2√

|ω̃2 − q̃2|
×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 1A,

H+ + H−, 1B,

−H+, 2A,

+H−, 2B,

H− − H+, 3A,

H− − H+, 3B.

(A21)
Likewise, the imaginary part of ��(q,ω) is given by

Im[�� ] ∼= − Aq̃2√
|ω̃2 − q̃2|

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H+ + H−, 1A,

0, 1B,

H−, 2A,

H+, 2B,

0, 3A,

0, 3B.

(A22)

The real function Hα(q̃,ω̃) is given by

Hα(q̃,ω̃) =
{
1+αω̃

q̃

[
2 − αω̃

q̃

]}√∣∣∣∣1−
[

2 − αω̃

q̃

]2∣∣∣∣. (A23)

Having evaluated �� in the (q̃,ω̃ > 0) quarter-plane, we can
evaluate �� in the (q̃, − ω̃ < 0) quarter-plane by exploiting
the fact that the real and imaginary parts of �� are odd and
even functions of ω̃, respectively. Note that this is just the
opposite symmetry relation as compared to the equilibrium
case.

APPENDIX B: MERMIN’S APPROACH

Regarding the complexity of the electron scattering mech-
anisms, their impact on the response function can be approx-
imately taken into account by replacing ω in the response
function of the collisionless electron gas by ω + iτ−1, with τ−1

being the phenomenological electron scattering rate, which
is related to the mobility of the graphene sample μ via the
following relation [81]:

τ = ev2
F

μ|EF | . (B1)

Such an imprecise scheme, however, fails to conserve the local
electron number. The following correction formula removes
such a defect for the case of the intrasubband longitudinal
response function of the 2DEG [40],

�τ (q,ω) = �(q,ω + iτ−1)

1 − 1
1−iωτ

[
1 − �(q,ω+iτ−1)

�(q,0)

] , (B2)

where �(q,ω) and �τ (q,ω) denote the collisionless and
the corrected dynamical polarization, respectively. Such a
correction scheme has been shown to be applicable to the
intraband dynamical polarization of graphene [82]; however,
to our knowledge, there is no literature in which the application
of Mermin’s approach to the interband dynamical polarization
of graphene is rigorously justified. Nonetheless, we relegate
the clarification of this matter to the future works and follow
the general trend of applying Eq. (B2) to the case of Dirac
fermions [47,83–85].

The dynamical polarization of the π electron gas in a doped
graphene sample at T = 0 K is given by the following complex
function [86]:

�(q,ω) = D(EF )

{
q̃2 ∑

α=± Gα(Z−α)

8
√

q̃2 − ω̃2
− 1

}
, (B3)

where Zα ≡ (2 − αω̃′)/q̃ and the complex function Gα(z) is
defined as follows:

Gα(z) ≡ z
√

1 − z2 + αi ln [z + √
z − 1

√
z + 1]. (B4)

The effects of the disorder-induced electron scattering on
the dynamical polarization of nondrifting π electron gas
in graphene can be taken into account by feeding the
�(q,ω + iτ−1) values from Eq. (B3) into Eq. (B2). To
obtain �•

τ (q,ω), we have computed ��(q,ω + iτ−1) using
Eq. (8), added it to �(q,ω + iτ−1) given by Eq. (B3), and
fed their sum into Eq. (B2). The �•

τ − �◦
τ values computed

for a phenomenological scattering rate of �/τ = 5 meV are
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presented in Fig. 1. For a Fermi energy of 100 meV, this τ

value corresponds to a sample mobility of μ ≈ 104 cm2

V s , as
suggested by Eq. (B1).

APPENDIX C: THE CASE OF THE 2DEG

Feeding the integral in Eq. (2) with a single parabolic band,
i.e., E(k) = �

2k2/2m∗
e along with excluding gv and fs,s ′ (k,q)

yields the intrasubband dynamical polarization of the two-
dimensional electron gas (2DEG) [41]. Thanks to the absence
of interband transitions and the parabolic energy dispersion, a
change of the integration variable according to k′ = k − kshift

yields an explicit relation between �•(q,ω) and �◦(q,ω) given
by Eq. (13). In spite of the fact that the transformation given
by Eq. (13) provides the best possible approximation within
the framework of the shifted Fermi disk model, we present the
2DEG counterpart of the expression given by Eq. (8) in order
to have a comparative picture:

��(q,ω) ∼= q · vdr

qvF

D(EF )

q̃

∑
α=±

α√
1 − [ 2q̃

ω̃′−αq̃2

]2
, (C1)

with D(EF ) = gsm
∗
e/2π�

2 being the DOS of the parabolic
band, and vdr = vF [kshift/kF ] is the drift velocity.

APPENDIX D: THE ONSET OF THE LANDAU DAMPING
IN THE ABSENCE OF DRIFT

In the absence of drift, the TM-SPP dispersion can be
implicitly obtained via plugging the analytic expression for
the dynamical polarization given by Eq. (B3) into Eq. (19).
The onset of the Landau damping qc is the q value where the
TM-SPP dispersion curve and the line ω̃ = 2 − q̃ meet, which
is yielded by the following equation:

1

16

q̃2
c√

1 − q̃c

G>

(
4

q̃c

− 1

)
= 1 + q̃c(ε1 + ε2)

2gsgvαf (c/vF )
, (D1)

where the function G>(x) is given by

G>(x) = x
√

x2 − 1 − ln [x +
√

x2 − 1]. (D2)
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E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri,
Nat. Mater. 12, 1119 (2013).

[25] A. F. Page, F. Ballout, O. Hess, and J. M. Hamm, Phys. Rev. B
91, 075404 (2015).

[26] A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, and M. Polini,
Phys. Rev. B 88, 035430 (2013).

[27] E. Ozbay, Science 311, 189 (2006).
[28] P. Olbrich, E. L. Ivchenko, R. Ravash, T. Feil, S. D. Danilov,

J. Allerdings, D. Weiss, D. Schuh, W. Wegscheider, and S. D.
Ganichev, Phys. Rev. Lett. 103, 090603 (2009).

[29] I. V. Rozhansky, V. Y. Kachorovskii, and M. S. Shur, Phys. Rev.
Lett. 114, 246601 (2015).

195429-9

http://dx.doi.org/10.1038/nnano.2011.146
http://dx.doi.org/10.1038/nnano.2011.146
http://dx.doi.org/10.1038/nnano.2011.146
http://dx.doi.org/10.1038/nnano.2011.146
http://dx.doi.org/10.1021/nl202362d
http://dx.doi.org/10.1021/nl202362d
http://dx.doi.org/10.1021/nl202362d
http://dx.doi.org/10.1021/nl202362d
http://dx.doi.org/10.1038/nature11254
http://dx.doi.org/10.1038/nature11254
http://dx.doi.org/10.1038/nature11254
http://dx.doi.org/10.1038/nature11254
http://dx.doi.org/10.1038/nature11253
http://dx.doi.org/10.1038/nature11253
http://dx.doi.org/10.1038/nature11253
http://dx.doi.org/10.1038/nature11253
http://dx.doi.org/10.1021/nl300572y
http://dx.doi.org/10.1021/nl300572y
http://dx.doi.org/10.1021/nl300572y
http://dx.doi.org/10.1021/nl300572y
http://dx.doi.org/10.1103/PhysRevB.87.241410
http://dx.doi.org/10.1103/PhysRevB.87.241410
http://dx.doi.org/10.1103/PhysRevB.87.241410
http://dx.doi.org/10.1103/PhysRevB.87.241410
http://dx.doi.org/10.1021/nl400601c
http://dx.doi.org/10.1021/nl400601c
http://dx.doi.org/10.1021/nl400601c
http://dx.doi.org/10.1021/nl400601c
http://dx.doi.org/10.1038/nmat4169
http://dx.doi.org/10.1038/nmat4169
http://dx.doi.org/10.1038/nmat4169
http://dx.doi.org/10.1038/nmat4169
http://dx.doi.org/10.1103/PhysRevB.82.155412
http://dx.doi.org/10.1103/PhysRevB.82.155412
http://dx.doi.org/10.1103/PhysRevB.82.155412
http://dx.doi.org/10.1103/PhysRevB.82.155412
http://dx.doi.org/10.1088/1367-2630/8/12/318
http://dx.doi.org/10.1088/1367-2630/8/12/318
http://dx.doi.org/10.1088/1367-2630/8/12/318
http://dx.doi.org/10.1088/1367-2630/8/12/318
http://dx.doi.org/10.1103/PhysRevB.75.205418
http://dx.doi.org/10.1103/PhysRevB.75.205418
http://dx.doi.org/10.1103/PhysRevB.75.205418
http://dx.doi.org/10.1103/PhysRevB.75.205418
http://dx.doi.org/10.1103/PhysRevB.80.075418
http://dx.doi.org/10.1103/PhysRevB.80.075418
http://dx.doi.org/10.1103/PhysRevB.80.075418
http://dx.doi.org/10.1103/PhysRevB.80.075418
http://dx.doi.org/10.1103/PhysRevLett.99.016803
http://dx.doi.org/10.1103/PhysRevLett.99.016803
http://dx.doi.org/10.1103/PhysRevLett.99.016803
http://dx.doi.org/10.1103/PhysRevLett.99.016803
http://dx.doi.org/10.1103/PhysRevB.77.233406
http://dx.doi.org/10.1103/PhysRevB.77.233406
http://dx.doi.org/10.1103/PhysRevB.77.233406
http://dx.doi.org/10.1103/PhysRevB.77.233406
http://dx.doi.org/10.1103/PhysRevLett.101.196405
http://dx.doi.org/10.1103/PhysRevLett.101.196405
http://dx.doi.org/10.1103/PhysRevLett.101.196405
http://dx.doi.org/10.1103/PhysRevLett.101.196405
http://dx.doi.org/10.1103/PhysRevB.78.201403
http://dx.doi.org/10.1103/PhysRevB.78.201403
http://dx.doi.org/10.1103/PhysRevB.78.201403
http://dx.doi.org/10.1103/PhysRevB.78.201403
http://dx.doi.org/10.1103/PhysRevB.82.115434
http://dx.doi.org/10.1103/PhysRevB.82.115434
http://dx.doi.org/10.1103/PhysRevB.82.115434
http://dx.doi.org/10.1103/PhysRevB.82.115434
http://dx.doi.org/10.1103/PhysRevB.86.115405
http://dx.doi.org/10.1103/PhysRevB.86.115405
http://dx.doi.org/10.1103/PhysRevB.86.115405
http://dx.doi.org/10.1103/PhysRevB.86.115405
http://dx.doi.org/10.1103/PhysRevB.75.125430
http://dx.doi.org/10.1103/PhysRevB.75.125430
http://dx.doi.org/10.1103/PhysRevB.75.125430
http://dx.doi.org/10.1103/PhysRevB.75.125430
http://dx.doi.org/10.1103/PhysRevB.75.245417
http://dx.doi.org/10.1103/PhysRevB.75.245417
http://dx.doi.org/10.1103/PhysRevB.75.245417
http://dx.doi.org/10.1103/PhysRevB.75.245417
http://dx.doi.org/10.1103/PhysRevB.80.085408
http://dx.doi.org/10.1103/PhysRevB.80.085408
http://dx.doi.org/10.1103/PhysRevB.80.085408
http://dx.doi.org/10.1103/PhysRevB.80.085408
http://dx.doi.org/10.1103/PhysRevB.82.205428
http://dx.doi.org/10.1103/PhysRevB.82.205428
http://dx.doi.org/10.1103/PhysRevB.82.205428
http://dx.doi.org/10.1103/PhysRevB.82.205428
http://dx.doi.org/10.1103/PhysRevLett.108.167401
http://dx.doi.org/10.1103/PhysRevLett.108.167401
http://dx.doi.org/10.1103/PhysRevLett.108.167401
http://dx.doi.org/10.1103/PhysRevLett.108.167401
http://dx.doi.org/10.1038/nmat3757
http://dx.doi.org/10.1038/nmat3757
http://dx.doi.org/10.1038/nmat3757
http://dx.doi.org/10.1038/nmat3757
http://dx.doi.org/10.1103/PhysRevB.91.075404
http://dx.doi.org/10.1103/PhysRevB.91.075404
http://dx.doi.org/10.1103/PhysRevB.91.075404
http://dx.doi.org/10.1103/PhysRevB.91.075404
http://dx.doi.org/10.1103/PhysRevB.88.035430
http://dx.doi.org/10.1103/PhysRevB.88.035430
http://dx.doi.org/10.1103/PhysRevB.88.035430
http://dx.doi.org/10.1103/PhysRevB.88.035430
http://dx.doi.org/10.1126/science.1114849
http://dx.doi.org/10.1126/science.1114849
http://dx.doi.org/10.1126/science.1114849
http://dx.doi.org/10.1126/science.1114849
http://dx.doi.org/10.1103/PhysRevLett.103.090603
http://dx.doi.org/10.1103/PhysRevLett.103.090603
http://dx.doi.org/10.1103/PhysRevLett.103.090603
http://dx.doi.org/10.1103/PhysRevLett.103.090603
http://dx.doi.org/10.1103/PhysRevLett.114.246601
http://dx.doi.org/10.1103/PhysRevLett.114.246601
http://dx.doi.org/10.1103/PhysRevLett.114.246601
http://dx.doi.org/10.1103/PhysRevLett.114.246601


SABBAGHI, LEE, STAUBER, AND KIM PHYSICAL REVIEW B 92, 195429 (2015)

[30] M. Dyakonov and M. Shur, Phys. Rev. Lett. 71, 2465 (1993).
[31] A. Tomadin and M. Polini, Phys. Rev. B 88, 205426 (2013).
[32] D. Svintsov, V. Vyurkov, V. Ryzhii, and T. Otsuji, Phys. Rev. B

88, 245444 (2013).
[33] V. Ryzhii, M. Ryzhii, and T. Otsuji, J. Appl. Phys. 101, 083114

(2007).
[34] A. Satou, V. Ryzhii, Y. Kurita, and T. Otsuji, J. Appl. Phys. 113,

143108 (2013).
[35] G. D. Mahan, Many-particle Physics, 3rd ed., Physics of Solids

and Liquids (Springer, New York, 2000), Chap. 5, pp. XII and
785.

[36] X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, Phys.
Rev. Lett. 100, 206803 (2008).

[37] X. Li, E. A. Barry, J. M. Zavada, M. B. Nardelli, and K. W. Kim,
Appl. Rev. Lett. 97, 082101 (2010).

[38] I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, and P. Kim, Nat.
Nanotech. 3, 654 (2008).

[39] H. Yoon, C. Forsythe, L. Wang, N. Tombros, K. Watanabe, T.
Taniguchi, J. Hone, P. Kim, and D. Ham, Nat. Nanotech. 9, 594
(2014).

[40] N. D. Mermin, Phys. Rev. B 1, 2362 (1970).
[41] F. Stern, Phys. Rev. Lett. 18, 546 (1967).
[42] T. Stauber, P. San-Jose, and L. Brey, New J. Phys. 15, 113050

(2013).
[43] E. H. Hwang and S. Das Sarma, Phys. Rev. B 80, 205405 (2009).
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