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Bound states of charges on top of graphene in a magnetic field
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We show theoretically that in an external magnetic field, like charges on top of graphene monolayer may be
mutually attracted to form macromolecules. For this to happen, graphene needs to be in a quantum Hall plateau
state with the local chemical potential being between the Landau levels. One or several graphene electron(s) get
localized in the middle between charges and provide overscreening of the Coulomb repulsion between the charges.
The size of the resulting macromolecules is of the order of the magnetic length (∼10 nm for magnetic field 10 T).
The possible stable macromolecules that unit charges can form on graphene in a magnetic field are classified. The
binding survives significant temperatures, exceeding the mobility barriers for many ionically bond impurities.
The influence of possible lattice-scale effects of valley mixing are discussed. Tuning the doping of graphene or
the magnetic field, the binding of impurities can be turned on and off and the macromolecule size may be tuned.
This opens the perspective to nanoscopic manipulation of ions on graphene by using magnetic field and gating.
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I. INTRODUCTION

More than ten years since the discovery of graphene [1], the
first genuinely two-dimensional material, are marked with a
huge body of research. Its applications range from cancer-drug
delivery [2,3] to novel electronic devices. Still, many of the
proposed uses of graphene depend crucially on its interface
interactions with other compounds and impurities. Typically,
molecular dynamics and DFT methods [4–9] are used to model
the interaction of graphene with substrate and impurities. It
was shown that there are two types of impurity bonding to
graphene [4]: covalently bond impurities (e.g., H, CH3, F, OH,
and O) and ionically bond impurities (e.g., Na, K, Cs, Cl, Br,
and I). Covalently bond impurities act similar to the defects in
graphene structure and typically have large mobility barriers,
while ionically bond impurities have low mobility barriers
(typically lower than room temperature) and act as mobile
electric charges put on top of graphene [4,10,11].

The interaction between impurities has attracted significant
experimental and theoretical interest. It was shown [12] that
short-range covalently bond impurities tend to form bound
clusters due to a fermionic Casimir effect with a binding energy
comparable to the room temperature scale at distances below
2 nm. Related results were presented in Ref. [13] where dilute
adatoms were shown to have a tendency towards a spatially
correlated state with a hidden Kekulè mosaic order. On the
other hand, this effect cannot compete with the Coulomb
repulsion of like charges if the impurities are charged, as is
the case for ionically bond impurities.

Graphene is known to be exceptionally susceptible to mag-
netic fields, with a divergent diamagnetic susceptibility at the
Dirac point and strong nonlinear effects in the magnetization
[14,15]. A magnetic field creates large energy gaps near the
Dirac point that reduce intrinsic screening and help to localize
electrons in the external potentials.

Without magnetic field, graphene will produce nonlinear
screening of external charges [16,17]. When a magnetic field
is applied, the ordinary screening is significantly suppressed
[18,19] and electrons become localized.
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In this work, we discuss the interaction between charged
impurities near the surface of graphene in a strong magnetic
field and show that in some cases the binding due to electrons
in graphene can compete with Coulomb repulsion and stable
nanomolecules may form. The motivation for this work
comes not only from the ionically bond impurities mentioned
above: epitaxial graphene on Si-terminated SiC [20–23] has
an important feature of positively charged donors appearing
dynamically in the “dead” carbon layer just below graphene
[24–26]. This happens due to the dominant effect of quantum
capacitance [27] and due to strong changes in the density
of states near the Dirac point under the influence of a
magnetic field [24,28]. The process looks as the appearance of
localized holes in the insulating “dead” layer due to electrons
transferred to graphene. Consequently, the charge transfer
might dynamically create extra localized states and extra
electrons to keep the system in a robust ν ≈ 2 quantum Hall
plateau state. Since the charge transfer is reversible, the holes
below graphene can be considered on the same footing as
dynamical charged impurities. The process of charge transfer
allows us to talk about a well-defined local value of the electron
chemical potential. The chemical potential is chosen to be in
the gap between the undisturbed Landau levels.

Another possible context is to consider the well-known
semiclassical picture of the quantum Hall effect [29,30]
(QHE). In this context, one typically assumes smooth (on the
scale of the magnetic length) external potentials and derives
the presence of compressible regions where electrons screen
everything and incompressible regions that have exactly inte-
ger local filling factors. For nonsmooth potentials created by
impurities close to graphene sheet, the semiclassical approach
is not fully true. The self-consistent semiclassical approach
gives a smoothly varying effective potential that could be
locally treated as a chemical potential for our purpose. Our
results imply that there is still some life in the incompressible
region due to screening and possible overscreening of point
charges, and thus the local filling factor of incompressible
regions could deviate from integer values. Redistribution of
mobile charges (holes in the substrate surface) can completely
eliminate the compressible regions thus greatly increasing the
precision of quantum Hall quantization.
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TABLE I. Phase diagram for N positively charged ions bound by n electrons at α = 0.4 and d = 0.05lB ; for negatively-charged ions, one
has to replace μ → −μ. μmin gives the minimal chemical potential for the existence of a given phase. Chemical potentials should be understood
as taken relative to Landau level band edges, which are here renormalized to free-particle values 0 and

√
2 for easy match with free-particle

levels. rij is the optimal distance between ions, i.e., the size of the molecule, measured in units of the magnetic length lB . E is the minimal
possible (binding) energy per molecule, which is achieved when μ tends to the band edge (μ = 0 for configurations 1, . . . ,5 and μ = √

2
for configurations 6, . . . ,10). For lower μ, the energy to consider is E − n�μ. The last column, μ interval, indicates the range of chemical
potentials where the phase gives the minimal energy per charge [see Eq.(10)].

No. μmin N ions n electrons rij E μ interval

1 −0.93 3 � 2 symm. 1.5 −1.06 [−0.93, − 0.75]
[−0.55, − 0.38]

2 −0.75 2 1 1.7 −0.52 [−0.75, − 0.55]
3 −0.63 2 2 symm. 1.3 −0.96 [−0.38 , − 0.08]
4 −0.45 1 1 − −0.45 ∅
5 −0.28 1 2 symm. − −0.56 [−0.08,0]
6 0.51 3 � 2 symm. 1.4 −0.95 [0.51,0.67]

[0.95,1.09]
7 0.67 2 1 1.5 −0.47 [0.67,0.95]
8 0.82 2 2 symm. 1.2 −0.85 [1.09,1.39]
9 1.02 1 1 − −0.39 ∅
10 1.19 1 2 anti-s. − −0.45 [1.39,1.41]

For definiteness, we consider the positively charged ions
below, but exactly the same description applies to the negative
ions if one makes a particle-hole transformation and reverts
the sign of chemical potential. We show that when several
charged impurities are at a distance of the order of the magnetic
length lB = √

�/(eB), they can form stable molecules bound
by the electrons in graphene. Depending on its local chemical
potential (taken in the region of a quantum Hall plateu),
graphene may bind either positive ions, or negative, or produce
no significant binding at all, the results are summarized in

Table I and Fig. 4. The described effect may be called either
as overscreening of the Coulomb repulsion of impurities or as
long-range covalent bonding of charged impurities. A related
“overscreening” effect exists for the charging of a quantum
dot [31]; in colloidal systems, a similar effect is called “charge
inversion” [32].

Graphene in a magnetic field hosts an electron hybridization
cloud that can lead to an attraction exceeding the Coulomb
repulsion of same-charge ions, see Fig. 1. Significant binding
of charges occurs only when the electron cloud is centered
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FIG. 1. (Color online) Electron densities for the lowest sublevels of the zeroth and first Landau levels in the field of three ions forming an
equilateral triangle with sides r . Essential binding occurs for r � 3lB where the electron wave function forms a single lump in the center.
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in between the charges (r � 3 on Fig. 1). Similarly to the
signatures of the QHE [33], we show that the effect may
survive the room temperature for magnetic fields of order
10 T.

The paper has the following structure. In Sec. II, we
introduce the formalism and present the results for bound states
bound with one electron; in Sec. III, the results are generalized
to multielectron bound states; in Sec. IV, the obtained results
are combined in a phase diagram; in Sec. V, the qualitative
effects of potentials that are nonsmooth on the lattice scale are
discussed; conclusions are given in Sec. VI.

II. GRAPHENE WITH CHARGED IMPURITIES
IN MAGNETIC FIELD

It is well-known that the one-particle energy levels of an
ideal graphene in a magnetic field B are given by degenerate
Landau levels [1,34–36]:

En = sign(n)EB

√
2|n| , n ∈ Z, (1)

where vF ≈ 106 m/s,

lB =
√

�/(eB) ≈ 26/
√

B/(Tesla) nm, (2)

EB ≡ �vF

lB
≈ 26

√
B/(Tesla) meV. (3)

Each Landau level (LL) is degenerate with density 4 e
2π�

B per
unit area. Working with a finite area, it is convenient to use the
basis of Landau wave functions in polar coordinates. Defining
an oscillator radial eigenfunction

gn,m(r)

= e− r2

4 r |m|
√

2−|m|(|m|+n)!
2πn!(|m|!)2 1F1

( − n; |m| + 1; r2

2

)
,

we have for the wave functions (m < n, n > 0):

ψ0,m(r,φ) =
(

0
eimφg0,m(r)

)
,m � 0, (4)

ψ±n,m(r,φ) = eimφ√
2

(
∓e−iφgn− m−1+|m−1|

2 ,m−1(r)
ign− m+|m|

2 ,m(r)

)
.

The solutions near the second K point are obtained by acting

with iσ2 on the spinor: (	1

	2
) → ( 	2

−	1
).

When the Coulomb impurity potential is present, the orbital
(index m) degeneracy of Landau levels is lifted [19]. This has
been calculated [19,37,38] and demonstrated experimentally
[19] for one Coulomb impurity. Below we consider several
impurities.

Consider a superposition of Coulomb potentials of the form

U (�r) = − e2

4πε0ε

∑
i

1√
(�r − �ri)2 + d2

. (5)

Here the parameter d is a vertical displacement of impurity
from the graphene sheet, but it can also be used to model a finite
localization length of impurity wave function.1 Here, there

1This way we may consider a hole in the “dead layer” of SiC
epitaxial graphene as a mobile impurity.

are two physical cases that may be considered. (1) The wave
function of the localized impurity exceeds the graphene lattice
scale, d � a, but still d  lB . This will be the main topic of the
present work. This may be relevant to the case when the local-
ization of an impurity is determined by a Moire pattern formed
by an incommensurate substrate and graphene. For epitaxial
graphene on Si-terminated SiC this scale is estimated as d ∼
2 nm. Then the impurity potential is smooth on the lattice scale
(note that it is still sharp on the scale of magnetic length) and
single-valley continuum approximation works well, we may
neglect the intervalley scattering. This means that the valley-
mixing splitting is less than the interaction-induced energy and
multielectron wave functions are determined by the long-range
Coulomb interactions. This case is the most universal since it
depends only on the magnetic length scale and the effective
coupling constant. Additional universality comes from the fact
that the dependence of the binding force on the effective range
d of the impurity wave function is weak, see Fig. 5. (2) If the
impurity is more like a point charge, then the impurity potential
is sharp and nonuniversal lattice-scale details come into play
and cause the valley mixing. Continuous approximation (7)
breaks down near the impurity center since sharp potentials
cause intervalley scattering. This is discussed in Sec. V. We
discuss several lattice-related effects, but the main conclusions
of the continuum-model considerations still hold true.

The equations for single-electron energy levels in graphene
in the magnetic field B and any Coulomb potentials can be
rewritten [37] in units of the magnetic length lB , the magnetic
energy EB , and the dimensionless coupling

α = e2/(4πε0�vF εeff) = 2.19/εeff (6)

with the effective dielectric constant εeff = (ε1 + ε2)/2 coming
from substrates on both sides of graphene and from graphene
by itself. For example, α ≈ 1 on SiO2 substrate [19] and α ≈
0.4 on SiC. In dimensionless units, the equation to solve is
[37]

[σ1(i∂x − y) − iσ2∂y]	 =
(

E −
N∑

i=1

α√
(�r − �ri)2 + d2

)
	.

(7)
For “molecules” bound by more than one electron, we will ac-
count for e-e interactions below. To perform the computations,
we evaluate the matrix elements of the impurity potential in
the basis (4) truncated to several Landau levels (of the order of
10) and orbital states (of order of 30) and then do an exact diag-
onalization. In the case of smooth potentials, it is sufficient to
consider only one valley. The truncation of orbital states we use
corresponds to a circular box truncation of space, and to avoid
unphysical boundary contributions, we had to smoothly cut off
the Coulomb potential at large distances (of order of 4lB). As
a result, for interior distances up to 2lB , the precision is better
than 1%, while for larger distances the error may get higher.

The Landau levels that are completely filled do not
contribute significantly to the energy of ions as a function of
their separation (but they do contribute to the renormalization
of the chemical potential [39,40]). This has been verified
numerically and is seen analytically in the leading order of
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FIG. 2. (Color online) Plot of one-particle energy sublevels for
several Landau levels as a function of the distance between two
positively charged Coulomb centers. Here, α = 0.4 and d = 0.05.
A remarkable (but obvious) fact is that if all of the sublevels are
populated, the distance dependence of the total energy disappears.

the perturbation theory in the potential:

E(r12) ∼
∑
m

〈
ψ (0)

n,m

∣∣V (�r − �r1) + V (�r − �r2)
∣∣ψ (0)

n,m

〉
= 2

∑
m

〈
ψ (0)

n,m

∣∣V (�r)
∣∣ψ (0)

n,m

〉 = const, (8)

where we used that the full degenerate set of wave functions,
corresponding to a given Landau level (enumerated by m)
maps to itself under translations (up to a unitary transforma-
tion), and so the above sum is independent of the impurity
positions.

The situation changes drastically if only one or several
lowest Landau sublevels are filled with electrons. This happens
when graphene is in the quantum Hall plateau state correspond-
ing to the chemical potential being in the gap below the band
edge (i.e., between the unperturbed LLs in the one-particle
picture).

Let us start with two positive charges N = 2. The single-
particle energy levels of electrons in graphene are presented
in Fig. 2. Note that only the lowest sublevels are fully
meaningful as filling more levels requires to account for the
e-e interactions.

When the distance between the two ions is of the order
of the magnetic length lB , the lowest energy electron wave
function is centered in the middle between the ions and plays
the role of a hybridization cloud that binds them, Fig. 1. When
only this lowest-energy state is filled, a strong dependence of
the energy on the distance r12 between ions appears, Fig. 2,
creating an attractive force, Fig. 5. If the distance between
charges exceeds roughly 3lB , the lowest energy electron wave
function becomes centered near each of the individual charges
and its energy depends on r12 as E ∼ −1/r12.

In the leading order of perturbation theory, the binding force
is proportional to α. Notably, the mutual Coulomb repulsion
of ions is also proportional to α:

ECoulomb = α

r12
. (9)

Thus, in the leading approximation, the distance where the
attraction would balance the repulsion is independent of α. We
stress here that when expressed in magnetic length and energy
units, there are essentially no free parameters in the problem
and the Coulomb repulsion of ions is of the same order of
magnitude as the hybridization attraction.2 It is a priori not
at all clear if stable bound states of ions can form. Moreover,
strong bound states form only when the chemical potential μ

is near the zeroth and first Landau levels. When μ is near the
other Landau levels (see Fig. 2), the r12 dependence of the
electron energy is substantially weaker leading to a weaker
binding of ions. The main problem with bound states in the
higher plateau states is that they will not survive graphene
rippling and temperature, thus we concentrate on the most
robust ν ≈ ±2 plateau states below.

Let us first study the dependence on the coupling constant
α, see Fig. 5(b). We observe that the zeroth LL is almost
protected from nonlinearity, while a significant nonlinearity
appears in the higher LL already at α ∼ 0.1. The Landau
levels 1 and −1 must have the same energies in the leading
order of perturbation theory as their wave functions differ
only by the relative sign of the sublattice components, but
we see that these levels split already from α ∼ 0.1. This
could be expected due to the large Coulomb field near an
individual impurity. A similar asymmetry is present in the
results of Ref. [19]. The dependence on the distance d of the
ion from graphene (or, on the localization length of charge
wave function) is weak when this distance is much less than
the magnetic length, seexbrk Fig. 5(c).

Below, we present a particular example of α = 0.4 and d =
0.05lB , the results are universal for zeroth LL, while for the
first LL the binding is seen to grow a bit faster than linear in α.

The results for two positive ions bound by one electron
are presented in Fig. 3(a). We observe an absolute minimum
in the energy at a distance r12min ≈ 1.5lB near the first LL or
1.7lB near the zeroth LL. If the chemical potential decreases
below a critical value, determined as the energy per electron
in the bound state, see Table I, there will be no bound states
for positive ions, but, at some point, we start getting bound
states for negatively charged impurities bound by holes. The
calculations and results for negatively charged impurities are
exactly the same and obtained by going to the hole picture.

An analogous calculation shows that the configurations
with three symmetrically positioned impurities bound by one
electron is unstable: despite an appearance of local energy
minimum, the configuration would gain energy if deformed to
a bound pair with the third ion repelled to infinity.

III. MULTIELECTRON STATES

Now consider multielectron bound states. The two-electron
bound state can be in a symmetric or antisymmetric orbital
state. In a conventional molecule, this would correspond to
a spin singlet and a triplet, respectively, but in graphene,
one has an additional valley degeneracy [14,41] and the full
SU(4) symmetry is approximately respected (neglecting the

2This will not be the case for the ordinary 2D electron gas since the
quasiparticle mass will essentially enter the game.
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FIG. 3. (Color online) Energy (electron energy + Coulomb repulsion of ions) of stable macromolecules. The electron energy is counted
from the Landau level edge (fixed to free-particle values 0 and

√
2 for zeroth and first LLs respectively). Here, α = 0.4 and d = 0.05lB . Dotted

lines mark the r → ∞ asymptotic to show stability. (a) Two ions bound by one electron in graphene. (b) Two ions bound by two electrons in a
symmetric orbital state. (c) Three ions forming an equilateral triangle bound by two electrons in a symmetric state.

Zeeman splitting and valley mixing). Group theory tells us
that 4 ⊗ 4 = 10 ⊕ 6 in spin-valley space, so, there are ten
possibilities to form an antisymmetric orbital state and six
for a symmetric one. If the valley-mixing effects discussed in
Sec. V are important (exceed the temperature scale), then the
orbital-symmetric state will be the usual spin singlet.

To find a reasonable approximation to the energy, we use
the variational Hartree-Fock method with a basis formed by
the Slater determinants of low-energy one-particle eigenstates
found above. Looking at Fig. 2, we note that near the first
LL, the two lowest single-particle energy sublevels grow with
r12 thus can potentially bind the ions and can participate in
an antisymmetric orbital wave function. For the zeroth LL,
only the lowest sublevel binds the ions while electrons in
the higher levels do not tend to hybridize, thus the orbital
wave function should be symmetric for a stable ion binding.
These conclusions were checked by explicit computations and
comparison of the energy.

Consider two electrons in the field of a single ion. For α =
0.4, we have energies −0.28 and −0.21 per electron in zeroth
and first LL, respectively, for a symmetric state and −0.24,
and −0.22, respectively, for an antisymmetric orbital. Thus we
expect a symmetric state near zeroth LL and an antisymmetric
state near the first LL. A calculation shows that one unit-charge

FIG. 4. (Color online) Zero-temperature phase energy plot for
dilute mobile charged impurities. The phase with the lowest �Eion is
favored. The legend corresponds to Table I. The chemical potential
should be understood as taken relative to the Landau level edges,
which in this plot are renormalized to the free-particle values of 0 and√

2.

ion cannot hold more than two electrons in the lowest-energy
states: e-e interactions make this too expensive.

Now we consider two positive charges and two electrons.
A calculation shows that a symmetric orbital state is preferred.
The resulting hydrogenlike molecule is very stable with an
optimal interatomic distance of 1.2lB and 1.3lB for the first
and zeroth LL, Fig. 3(b).

The same calculation can be repeated for three ions bound
by two electrons, see Fig. 3(c). We compare the triangle
configuration of ions with a linear chain geometry and find
that the equilateral triangle geometry has lower energy. The
described equilateral triangle with two electrons is prominent
for providing the lowest possible energy per electron, thus, it
is this configuration that appears first in the phase diagram,
Table I. Four ions cannot be bound by two electrons.

Considering now three-electron states in the Hartree ap-
proximation, we found that three electrons cannot form a one-
centered wave function to bind any number of ions since the
e-e interaction gets too high and the resulting energy gain can
by no means compete with the energy of far-separated smaller
clusters described above. The situation is different from the
ordinary molecules since the shape of the wave function is
mostly determined by the Landau level number and not by the
Coulomb potential of charges. For the lowest Landau levels
that are most robust, the shape of wave functions is essentially
circular (similar to s state). The above considerations still do
not exclude the possibility of larger multielectron bound states
with a multicentered electron wave function, but a quantitative
study of such configurations is beyond the scope of this paper.

IV. PHASE DIAGRAM

Having studied the simple macromolecules separately, the
results may be combined in a phase diagram, see Table I.
In each of the above states, one can find the energy per
electron that binds the molecule and thus find a minimal
electron chemical potential μmin for such a molecule to appear.
For a given electron chemical potential, several molecule
configurations may be possible. Let us assume that the number
of ions and the electron chemical potential are fixed. For a
molecule with N ions bound by n electrons, we compute the
free energy gain per ion by the formula

�Eion = (Ebinding + ECoulomb) − μn

N
= E − μn

N
. (10)
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FIG. 5. (Color online) Binding force of two ions bound by one electron: (a) as a function of inter-ion distance r12 for α = 0.4 and
d = 0.05lB ; (b) as a function of coupling α for d = 0.05lB and r12 = 1.5lB ; and (c) as a function of d (distance of ions from the graphene
sheet) for α = 0.4, r12 = 1.5lB

The configurations with minimal �Eion will deliver the
minimal free energy at zero temperature, see Fig. 4. In
particular, Fig. 4 shows that the state of one electron bound by
one ion (lines 4 and 9 on the plot) is never the lowest-energy
state. At high chemical potentials (close to the vacuum LL) the
state with two electrons per one ion wins (lines 5 and 10). All
the other states correspond to bound states of two or three ions,
which are realized when μ ∈ [−0.93,−0.08] ∪ [0.51,1.39] for
the example α = 0.4 considered. Note that for μ < −0.51
and μ < 0.95 the bound states are meta-stable since �Eion

is positive. Finite density of charges may protect such states
from decaying.

Changing α in the leading approximation just linearly scales
the phase diagram around the vacuum Landau level (0 and√

2). As is seen from Fig. 5, the binding of molecules near
ν = 2 should additionally increase with increasing α due to
noticeable nonlinearity.

To come to physical conclusions, consider a realistic exam-
ple of randomly positioned charges. For example, consider
four charges and the ν ≈ 2 plateau state. Looking at the
Table I, we can find the states that deliver the best binding
energy per charge as follows. (1) If the chemical potential
is μ ∈ [0.51,0.67], three charges may be bound with two
electrons in the triangle (state 6) and the fourth is repelled
to infinity since no electrons can be bound to it. In reality, it
would be hard to create such a state since one needs to surpass
a significant Coulomb repulsion gap to form the triatomic
molecule. (2) If μ ∈ [0.67,1.02], two diatomic ions (two ions
bound with one electron) would be the preferred state (again,
it will be hard to create). The state 1 will continue to exist as
well. (3) For μ > 1.02, a single charge can bind an electron,
forming a neutral combination. Now it is much easier to form
molecules since there is no long-range Coulomb barrier. In
particular, the triatomic configuration (No. 6 in the table) is
now much easier to form, note that this configuration has
unit total positive charge. One remaining charge will have
one electron bound to it and this neutral combination will
be attracted by the induced dipole moment to any charged
object. Thus a four-atom molecule may be formed. The precise
determination of its energy is beyond the scope of this paper.
(4) For μ > 1.09, the diatomic charged configurations (No.
6) would shrink in size (from 1.5 to 1.2) to form the neutral
diatomic molecules (No. 8).

Analyzing the above example we may draw the following
conclusions. If there are randomly positioned same-charge

mobile impurities, the active recombination process would
start only when neutral states of one impurity and one electron
(No. 4 or No. 9) may be formed. For a lower chemical potential,
stable bound states exist but they are hard to form due to
significant Coulomb repulsion barriers. The most relevant
recombination channel is to form a neutral hydrogenlike
molecule (No. 3 or No. 8). In general, the clustering process
is mediated by the induced dipole attraction of neutral and
charged macromolecules.

If we are dealing not with real ionic impurities, but with
holes dynamically appearing in the surface layer of a substrate
below graphene, the Coulomb barriers for the formation of
bound states are much lower and all the states in Table I
are relevant. Their appearance will be governed by the local
chemical potential formed by other nonmobile charges.

It should be kept in mind that all these calculations make
sense when the concentration of the mobile impurities is low:
nimp  l−2

B . Correspondingly, the filling factor of electrons
that bind these impurities must be very close to the perfect
values ±2. These conditions could easily be achieved locally
in the incompressible regions appearing dynamically in the
QHE physics. All the “extra” electrons are expelled out to
compressible regions.

V. VALLEY MIXING AND LATTICE EFFECTS

In the case of sharp potentials, we need to consider the
doubled basis, involving the Landau level states in both valleys.
Naively, the matrix element between the Landau states could
be computed by discrete lattice summation in the circle around
the impurity and with continuum integration in the other
regions. On the other hand, using only Coulomb interaction
and Dirac bands in the immediate vicinity of the impurity
would be an oversimplification and the full (e.g., DFT) study
including a high-energy band is needed. Thus we follow
a phenomenological approach and model the impurity as a
smoothed Coulomb potential (as studied above) supplemented
with pointlike scatterers sitting on A and (or) B sublattices.
According to Ref. [4], positively charged impurities (Li, Na,K,
Cs) tend to be located in the center of graphene hexagons
(“h point”) and the negative impurities (Cl,Br,I) prefer to
stay on top of carbon atoms (“t point”). Thus it is natural to
expect a sublattice-symmetric effective potential for positive
ions (VAi = VBi) and a sublattice-asymmetric potential for
negative impurities. In the latter case, similarly to Ref. [12],
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it is interesting to study the difference of same-sublattice
and different-sublattice locations of impurities. A general
point potential is parameterized by its sublattice components
VAAi,VBBi,VABi at each of the impurity positions xi . These
components are naturally combined in a 2 × 2 matrix V (xi).

In the leading order of perturbation theory, these potentials
shift and split the single-valley energy levels discussed above.
Let us consider corrections to the energies of one-electron
bound states in the field of N impurities. The wave functions
with the same energy E0 in the second valley are obtained as
	K ′ = iσ2	K . To discuss the lifting of this degeneracy in the
leading order of perturbation theory, we have the Hamiltonian

H = (E0+V11, V12

V ∗
12, E0+V22

) with matrix elements

V11 =
N∑

j=1

	†(xj )V (xj )	(xj ), (11)

V12 =
N∑

j=1

	†(xj )V (xj )iσ2	(xj ), (12)

V22 =
N∑

j=1

	†(xj )σ2V (xj )σ2	(xj ). (13)

The energy eigenvalues are

E = E0 + V11 + V22

2
±

√(
V11 − V22

2

)2

+ |V12|2. (14)

Note that the sublattice components of the wave functions
for the zeroth and the first Landau levels are strongly
asymmetric: one sublattice component is dominant for a
chosen valley, see Fig. 6. Hence, with a good accuracy, valley
matrix elements are proportional to sublattice matrix elements:
V11 ∼ ∑

i VBBi |	(xi)|2, V22 ∼ ∑
i VAAi |	(xi)|2, and V12 ∼∑

i VABi |	(xi)|2. For negatively charged ions situated on the
same sublattice, we get the main nonzero matrix element
V11 = 2V . This shifts down the energy in one of the valleys
by 2|V |. If the impurities are on different sublattices, we get
V11 = V22 = V , which gives an equal twice smaller energy
shift |V | for both valleys. Thus the location of impurities
on the same sublattice is energetically preferred and the

0 − th LL, B sublattice

1 − st LL, A sublattice

0 − th LL, A sublattice

1 − st LL, B sublattice

0 1 2 3 4 5
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FIG. 6. (Color online) Plot of sublattice components of wave
functions for lowest-energy sublevels of zeroth and first Landau
Levels in the field of two charges at distance r12. Wave functions
are evaluated at the location of charged impurities.

corresponding electronic wave function prefers this sublattice
(assuming that V < 0 ).

For positively-charged ionic impurities, one expects V11 =
V22 due to preferred location of impurity in the centers of
hexagons. Then the sublattice-mixing matrix element V12 plays
the leading role in lifting the valley degeneracy. The preferable
wave function would then be a symmetric or antisymmetric
combination of both valleys or sublattices.

Both effects advocated above lead to an extra gain in
binding energy that would depend on the distance between
the impurities, thus, producing an extra force. The distance
dependence is governed by |	(xi)2|, which, as already stated,
is dominated by only one sublattice component, see Fig. 6.

Figure 6 illustrates that the effects related to scattering on
sharp potentials do further increase the binding force. The
two-electron states discussed before essentially fill the same
orbital state with two electrons, hence, the discussed correction
just doubles. The matrix elements discussed above scale with
the magnetic field as |ψ2(xi)| ∼ 1/l2

B ∼ B. The resulting extra
contribution to energy scales as B and the force scales as B3/2.
This is to be compared with B1/2 scaling of the main term in
the energy.

VI. DISCUSSION AND CONCLUSIONS

To conclude, we have shown that for a significant range
of chemical potential values inside the gap between Landau
levels, the charged impurities (or donor states in the substrate
surface) can form stable bound states. The optimal distance
between charges in the bound state is of the order of the
magnetic length lB = √

�/(eB). The binding energy scales
as EB = �vF

lB
and the binding force at optimal distance scales

as F ∼ EB/lB ∼ vF eB.
The above results were obtained for an ideal monolayer

graphene sheet at zero temperature. The realistic graphene
may have other nonmobile impurities, ripples, corrugations,
and finite temperature. Clearly, mobile charge impurities can
equally well form bound states with the nonmobile ones.
Simultaneously, charged impurities may introduce smooth
inhomogeneities in the chemical potential leading to replace-
ment of chemical potential μ with a local chemical potential
μ + Uimpurities in our considerations. It is also important to note
that a sufficient amount of mobile charged impurities leads to
screening of potential landscape thus making it flatter on large
scales. This may be one of the keys to the understanding of
exceptionally precise Hall quantization in epitaxial graphene
[25].

The temperature and short-range impurities lead to level
broadening. As is clear from Fig. 2, the binding appears
when the lowest Landau sublevel is filled, while the next
ones are empty. The splitting between these levels is of the
order of αEB ≈ 300α

√
B/(Tesla) K (see Fig. 2). The splitting

of levels is twice smaller near the first LL, but in this case,
the second smallest LL is also attractive and the population
of this level does not spoil the binding. So, with α ≈ 0.4, our
results must survive the room temperatures and a small amount
of short-range impurities for magnetic fields above 10 T and
even higher temperatures at larger fields. These conclusions
are also supported by the experiment of Ref. [19]. Note that
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at room temperature (and even below) many types of ionic
impurities are mobile [4].

Another effect of the finite temperature is an entropic
contribution coming from the approximate spin and val-
ley degeneracy. This effectively decreases the energy by
kBT ln n, where n = 4 for one-electron bound states, n = 6
for two-electron symmetric states, and n = 10 for two-electron
antisymmetric states. These numbers are to be changed if the
degeneracy lifting due to the local lattice effects discussed in
Sec. V or Zeeman splitting exceeds the temperature scale.

An important aspect in graphene is rippling and corruga-
tions [42–44]. As argued in Ref. [45], corrugations in graphene
may be described by fluctuations in a perpendicular magnetic
field that lead to considerable broadening of nonzero LLs.
At the same time, the zeroth LL is protected and mainly
broadens due to temperature [45]. Our main results correspond
to chemical potentials in the gap above or below the zeroth LL,
thus the effect of corrugations is expected to be moderate. At
the same time, corrugations may kill any weak binding effects
that might occur in the higher QHE plateaux.

To summarize, we have shown that graphene in a mag-
netic field can mediate strong attraction of like charges

put near graphene. The resulting size and configuration of
macromolecules depend on the magnetic length and local
chemical potential and thus can be easily changed by tuning
the magnetic field or doping of graphene. The results are
expected to survive significant temperatures. This opens a
perspective to nanoscopic manipulation of ions on graphene by
using macroscopic tools and provides further insight onto the
structure of incompressible regions in QHE physics beyond
the semiclassical approximation. Apart from that, the results
might shed light on the microscopic structure of the potential
landscape in SiC epitaxial quantum Hall effect devices.
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