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In order to study quantum effects in a two-dimensional crystal lattice of a free-standing monolayer graphene,
we have performed both path-integral Monte Carlo (PIMC) and classical Monte Carlo (MC) simulations for
temperatures up to 2000 K. The REBO potential is used for the interatomic interaction. The total energy,
interatomic distance, root-mean-square displacement of the atom vibrations, and the free energy of the graphene
layer are calculated. The obtained lattice vibrational energy per atom from the classical MC simulation is very
close to the energy of a three-dimensional harmonic oscillator 3kBT . The PIMC simulation shows that quantum
effects due to zero-point vibrations are significant for temperatures T < 1000 K. The quantum contribution to the
lattice vibrational energy becomes larger than that of the classical lattice for T < 400 K. The lattice expansion
due to the zero-point motion causes an increase of 0.53% in the lattice parameter. A minimum in the lattice
parameter appears at T � 500 K. Quantum effects on the atomic vibration amplitude of the graphene lattice and
its free energy are investigated.
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I. INTRODUCTION

Over the last decades, allotropes of carbon have received
much attention in the scientific community due to their
promising physical and chemical properties. Graphene is an
important example of the carbon allotropes discovered in
the last decade [1]. It is currently the most popular studied
two-dimensional (2D) material. Although numerous studies
have been reported on its peculiar electronic and mechanical
properties [2–4], some of its basic properties are not yet fully
understood, such as its structural stability and the negative
thermal expansion coefficient at room temperature.

The thermal expansion coefficient (TEC) of a graphene
monolayer is one of the key quantities that have been
measured [5,6], and it is important for applications of graphene
in electronic devices. Several theoretical and experimental
investigations of the TEC of a graphene layer and its tem-
perature dependence have been reported in the last decade,
but large discrepancies exist between the results obtained
from different methods. Earlier theoretical studies indicated
that the corrugation experienced by the graphene sheet due to
the out-of-plane vibrations related to the transversal acoustic
phonon modes is responsible for its thermal contraction [7,8].
It is expected that the anharmonicity in a two-dimensional
crystal such as graphene is important because of an intrinsic
bending instability coupled to in-plane stretching modes.
Zakharchenko et al. performed a classical Monte Carlo simula-
tion of the finite temperature lattice properties of graphene [9]
using the empirical bond order potential LCBOPII [10].
They have shown that graphene is strongly anharmonic
due to the soft bending modes yielding strong out-of-plane
fluctuations. Very recently, Michel, Costamagna, and Peeters
presented a theory of anharmonic phonons in two-dimensional
crystals [11]. They presented a systematic study of anharmonic
effects in an atomic monolayer crystal with a honeycomb
lattice structure using both analytical and numerical lattice
dynamical methods. Different theoretical simulations have

been done trying to reproduce the temperature dependence of
the experimentally measured TEC [8,9,11–13]. A very recent
study indicated that both anharmonic and quantum effects are
important in the understanding of the negative TEC of the
graphene monolayer and its temperature dependence [13]. In
Ref. [13] the unsymmetrized self-consistent field theory for
anharmonic crystals was extended to 2D non-Bravais crystals
such as graphene. Quantum corrections were included in the
� expansion for the one particle density matrix. The structural
and thermodynamic properties of a graphene monolayer
were studied with inclusion of anharmonicity and quantum
corrections. The obtained results showed that quantum effects
are important in the thermodynamic properties of graphene for
T < 1000 K. Unfortunately, this theoretical approach breaks
down for very low temperature.

On the other hand, earlier studies have shown that the quan-
tum zero-point vibrational motion of carbon atoms influences
the structural, thermodynamic, and electronic properties of
diamond. In a path-integral Monte Carlo (PIMC) simulation,
in which atomic nuclei were treated as quantum particles
interacting through a Tersoff-type potential, Herrero and
Ramı́rez [14] found that the quantum zero-point lattice ex-
pansion in diamond causes an increase in the lattice parameter
of 0.5% and a decrease in the bulk modulus by 5%. This study
also indicated that, at least for materials with light atoms such
as carbon, the effects associated with the quantum nature of
the atomic nuclei are important for the electronic structure of
the material. It has been confirmed recently that it leads to a
giant zero-point renormalization (615 meV) of the band gap
of bulk diamond [15,16].

In order to investigate quantum effects on the mechan-
ical and thermodynamic properties of graphene, we have
performed PIMC simulations of some basic structural and
thermodynamic quantities of a graphene monolayer at finite
temperature. The PIMC is one of the most powerful methods
that is able to simulate a quantum system at finite tempera-
ture [17]. Our simulation shows that the quantum effects are
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significant for temperatures T < 1000 K. We find an important
contribution of the zero-point energy to the lattice vibration
and to the expansion of the in-plane interatomic distance in
graphene monolayer even at room temperature. In order to
evidence the quantum effects in this system, we compare the
obtained results from our PIMC calculations against those
from classical Monte Carlo simulations.

A variety of atomistic potentials have been used to
investigate the thermodynamic and mechanical properties of
graphene [18–21]. Recently, Magnin et al. have performed sys-
tematically classical Monte Carlo simulations of the thermal
expansion coefficient of free-standing graphene using various
atomistic potentials [21] that are appropriate to sp2 carbon
in order to classify among those potentials which compares
best to existing reference data from experiments or alternate
theories. The potentials covered empirical to semiempirical
bond-order types, as well as a model based on tight-binding
theory. Among the potentials which are successful in dealing
with carbon and hydrocarbon systems is the empirical bond-
order (REBO) potential [19,20]. This potential is used to
describe a great variety of systems and chemical reactions.
In the present paper we treated the carbon atoms in graphene
as quantum particles interacting through a REBO potential.

This paper is organized as follows. In Sec. II, we give a
shot description of the PIMC formalism. In Sec. III we present
the results for the total energy, vibrational energy, the distance
between neighbor atoms, mean-square displacement, and free
energy as a function of temperature. Finally, we summarize
our work in Sec. IV.

II. COMPUTATIONAL METHODS AND DETAILS

We performed both PIMC and classical MC simulations for
a free-standing graphene monolayer in the temperature range
50–2000 K and at zero pressure. In the PIMC simulation, the
carbon atoms of graphene are considered as quantum particles
with a mass of 12.0 amu. Each quantum particle is described by
a set of M beads forming a cyclic chain or a “polymer.” The
REBO potential is used to describe the interaction between
the carbon atoms with the parameters taken from Refs. [19]
and [20]. The PIMC method [22] is based on evaluating the
quantum density matrix

ρ(R0,RM ; β) =
∫

dR1...dRM−1 exp

[
−

M∑
m=1

Sm

]
(1)

by sampling the set of paths, {R0,R1,...RM−1,RM}, with Rk

being the set of beads {r1,k,...,rn,k} and ri,k a bead which
is the position of the ith particle in the kth time slice and
τ = β/M with β = 1/kBT . The action Sm ≡ S(RM−1,RM ) ≡
− ln [ρ(RM−1,RM )] is handled in the primitive approximation.
To evaluate the 3NM-dimensional integrals (with N being the
number of atoms and M the number of beads) in Eq. (1), we
employ the Metropolis bisection sampling technique [17].

The PIMC simulations have been performed in a three-
dimensional (3D) box using a honeycomb unit cell with
periodic boundary conditions in the xy plane, and the atoms
are allowed to move in the z direction. Most calculations are
performed within a simulation box containing 200 spinless
carbon atoms (or 10 × 10 unit cells). A “time step” of

τ = 0.00022 K−1 (corresponding to M = 15 at T = 300 K)
is used for the discretized imaginary time path integrals. The
extrapolation to the τ = 0 limit shows that this approximation
induces an error of about 0.07% in the total energy. Checks for
larger systems showed that the obtained results do not change
within the statistical error when compared to a system with
200 atoms. For the averages we use about 50 000 PIMC time
step.

III. RESULTS AND DISCUSSION

We have first calculated the total internal energy per atom of
the two-dimensional crystal as a function of temperature both
using quantum and classical MC simulations. This energy can
be written as E(T ) = E0 + Evib(T ), where E0 is the cohesive
energy for the classical crystal at T = 0, and Evib(T ) is the
vibrational energy which is temperature dependent. By fitting
the classical MC results for the total energy, we obtained E0 =
−7.3951 eV with the REBO potential employed here, which is
consistent with the result for the cohesive energy (−7.395 eV)
obtained by Lindsay and Broido [23] for the graphene crystal
with the same potential. Figure 1 gives the obtained energy
as a function of temperature in which we have taken zero as
the cohesive energy E0 of the classical crystal. We see that
the classical and quantum MC results approach each other
at high temperatures as expected. However, a considerable
difference between them is found at low temperatures. Figure 1
shows clearly that quantum effects become significant in the
vibrational energy of the graphene layer for temperatures
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FIG. 1. (Color online) The vibrational energy per atom of the
graphene monolayer as a function of temperature at zero pressure.
The red circles and blue squares are the PIMC and classical MC
results, respectively. The green triangles are the difference between
the PIMC and MC results. The black dashed line is the energy of a
3D harmonic oscillator 3kBT .
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T < 1000 K. The classical MC result Evib is very close to a
straight line passing through the origin, while the PIMC result
approaches a finite value in the low-temperature limit due to
quantum effects, i.e., the zero-point energy. The difference
between the quantum and classical MC vibrational energy
is given in the figure by the green triangles. This energy
difference is of pure quantum origin. For T � 400 K, this
quantum contribution is larger than the vibrational energy of
the classical crystal. In Fig. 1 we also plot by the black-dashed
line the total energy of a 3D harmonic oscillator 3kBT which
is very close to the classical MC vibrational energy. Their
difference is 0.015 eV (about 3% only) at T = 2000 K.
This means that within the REBO interaction potential the
vibrational energy of the free-standing 2D graphene crystal
(when it is considered as a classical crystal) is basically given
by that of a 3D harmonic oscillator.

Another quantity which is influenced by strong quantum
effects is the in-plane distance between the carbon atoms
or the lattice parameter a. In Fig. 2(a) we show the lattice
parameter a (i.e., the in-plane distance between the atoms
of the second nearest neighbors) from both the quantum
and classical MC simulations. The classical MC results
from the REBO potential are consistent with those found
in previous work by Magnin et al. [21]. It increases almost
linearly with increasing temperature. However, the PIMC
simulation shows that the distance between the atoms in a
graphene layer has a very different behavior as a function of
temperature. The zero-point lattice expansion in the graphene
layer causes an increase in the lattice parameter of 0.53%. Its
value in the zero-temperature limit obtained from the PIMC
calculation is 2.4734 Å against 2.4602 Å from the classical
MC simulation. With increasing temperature from zero, the
PIMC simulation shows that the lattice parameter decreases
to a minimum value of a = 2.4715 Å at T ≈ 500 K, beyond
which it increases with increasing temperature. We have also
calculated the interatomic distance a1 between the atoms of the
nearest neighbors which are shown in Fig. 2(b). The obtained
interatomic distances a and a1 from PIMC simulations have a
very similar temperature dependent behavior with a minimum
at about 500 K. The ratio of their values is basically equal to√

3 within less than 0.1%. The value of a/(
√

3a1) from PIMC
calculations as a function of temperature is given in the inset
of Fig. 2(a). The PIMC results of the interatomic distances a

and a1 are fitted using a fifth-order polynomial (c0 + c1T +
... + c5T

5) given by the red solid curves in the figure. The
coefficients of the corresponding polynomials are given by
c0 = 2.4734 Å, c1 = −5.5889 × 10−6 Å/K, c2 = −1.7526 ×
10−9 Å/K2, c3 = 1.5503 × 10−11 Å/K3, c4 = −1.0739 ×
10−14 Å/K4, and c5 = 2.3255 × 10−18 Å/K5 for the lattice
parameter a and c0 = 1.4284 Å, c1 = −1.7329 × 10−6 Å/K,
c2 = −5.5316 × 10−9 Å/K2, c3 = 1.524 × 10−11 Å/K3, c4 =
−9.7212 × 10−15 Å/K4, and c5 = 2.0378 × 10−18 Å/K5 for
the interatomic distance a1 between the atoms of the nearest
neighbors. The thermal expansion coefficient α of the graphene
layer can be estimated from the derivative (1/a)da/dT [and
(1/a1)da1/dT ] and is given by the solid (dashed) curve in the
inset in Fig. 2(b). The derivatives are obtained from the fitted
curves of the interatomic distances in Figs. 2(a) and 2(b).
Notice that the estimated α in the inset obtained from a and a1

are very close to each other.
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FIG. 2. (Color online) Temperature dependence of the in-plane
interatomic distances in the graphene monolayer between the atoms
of (a) the second and (b) the first nearest neighbors obtained from
the PIMC (red circles) and classical MC (blue squares) simulations.
The red curves are a fifth-order polynomial fitting of the PIMC results.
The inset in (a) gives the ratio of the interatomic distances of the
second to the first nearest neighbors divided by

√
3, and the inset

in (b) shows the thermal expansion coefficient obtained from the
derivatives of the fitted interatomic distances of the second (solid
curve) and first (dashed curve) nearest neighbors from the PIMC
simulations.

When we compare the obtained PIMC results of the lattice
vibrational energy and lattice parameter from our calculations
with those of diamond obtained by Herrero and Ramı́rez
(Figs. 3 and 8) in Ref. [14], we see that quantum effects
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FIG. 3. (Color online) The rms displacement D of the carbon
atoms in the graphene layer as a function of temperature. The lower
inset shows the relative contribution from the z direction to the total
mean-square displacement. The upper inset shows the convergence of
D on the number of beads M in the PIMC simulation for T = 300 K.
The red circles and blue squares are the results obtained from PIMC
and classical MC simulations, respectively.

are significant at low temperature both in 2D graphene and
3D diamond lattices. The zero-point motion of the carbon
atoms lead to a lattice parameter expansion of about 0.5% at
T = 0 K in both systems. But an important difference is that
quantum effect pushes the minimum of the lattice parameter
in 2D graphene to T � 500 K which does not happen in 3D
diamond. In diamond, the minimum lattice parameter is at
T = 0 K. This may contribute to the origin of the negative
thermal expansion coefficient of graphene at low temperatures
(T � 500 K).

From the PIMC simulations, we also estimate the dis-
placement of the atoms from their equilibrium position at
finite temperature due to thermal vibrations. The mean-square
displacement D2 of a quantum particle is given by [24]

D2 = 1

M

〈
M∑
i=1

(ri − 〈r〉)2

〉
, (2)

where 〈· · · 〉 indicates a thermal average at temperature T and
r is the centroid of the “polymer.”

The root-mean-square (rms) displacement D of the carbon
atoms in the graphene layer obtained both from the classical
and quantum MC simulations are given in Fig. 3. The upper
inset shows the convergence of the rms displacement on
the number of beads M in the PIMC simulation. At low
temperatures the PIMC results of the rms displacement are
slightly larger than those obtained from our classical MC
simulations. We also confirm that the contribution to the
mean-square displacement from the movement of the carbon

atoms in the z direction (perpendicular to the graphene layer)
is much larger than that in the xy plane [25,26]. This is shown
in the lower inset of Fig. 3 where the contribution from the
movement of the atoms in the z direction Dz to the total
mean-square displacement D in the graphene layer is plotted.
It indicates that, when the atoms are considered as classical
particles, the thermal vibrations in the z direction contribute
more than 90% of the total mean-square displacement. When
the carbon atoms are treated as quantum particles, the PIMC
calculation shows that such a contribution decreases at low
temperatures (T � 300 K), and the relative contribution in the
xy plane Dxy to the total mean-square displacement increases.
It means that the quantum movement of the carbon atoms
in the xy plane in the graphene layer is of importance for
its temperature dependent properties such as the vibrational
energy and the interatomic distances for temperatures below
room temperature.

We can write D2 as resulting from contributions from the
following two terms,

D2 = 1

M

〈
M∑
i=1

(ri − r)2

〉
+ 〈

(r − 〈r〉)2
〉 = D2

q + D2
c . (3)

The first term D2
q in the above expression corresponds to the

average spatial extension of the paths of the quantum particles,
and the second term D2

c gives the mean-square displacement
of the centroid. In the high-temperature limit, only the second
term remains because each path collapses onto a single point.

As the atomic vibration in the graphene layer is anisotropic,
we need to analyze separately the rms displacement of the
atoms in the z direction and in the xy plane. The PIMC
calculation shows that the rms displacement in the z direction
Dz is basically determined by the centroid displacement Dc,z,
i.e., the classical movement is dominant in the z direction.
Such behavior is expected because the graphene layer is free
standing in this direction. In the xy plane, the rms displacement
Dxy is mainly determined by Dc,xy for T � 1000 K. But
different behavior is observed at lower temperatures where
Dq,xy becomes significant, as is shown in Fig. 4. This happens
because in the xy plane the carbon atoms are being subjected
to a strong potential due to the covalent bond of graphene, and
quantum effects from the zero-point lattice vibration become
significant at low temperatures. For T � 250 K the radius of
gyration of the paths gives a larger contribution to the in-plane
rms displacement. The enhancement of the quantum delocal-
ization of the atoms in the xy plane at low temperatures is
consistent with the quantum lattice expansion observed above.

We finally compute the free energy of the graphene layer
using the adiabatic switching (AS) [27] and reversible scaling
(RS) [28] methods. The AS method is an efficient alternative
for the high computational cost involved in the standard
thermodynamic integration method [29]. Its efficiency comes
from the coupling parameter varying continuously during the
simulation and the integration along the thermodynamic path
being performed dynamically. Although the AS method is
very efficient, it provides only the free energy at a single
temperature. For problems that require the knowledge of
the free energy in a certain range of temperatures, several
simulations are needed. The RS method allows us to obtain
the free energy for a large interval of temperatures. To apply
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FIG. 4. (Color online) The PIMC results of the in-plane rms
displacement Dxy (red circles) as a function of temperature. The
rms displacement of the centroid Dc,xy (blue squares) and the rms
radius-of-gyration Dq,xy (green diamonds) of the quantum paths are
also given. The inset shows the dependence of Dxy on the number of
beads M for T = 300 K.

this method we just need the previous knowledge of the value
of free energy for one temperature which can be obtained using
the AS method. The extension of these methods to the path
integral formalism can be found in Refs. [30] and [31].

We have calculated the free energy of the system using the
AS method. This method requires a reference system whose
Helmholtz free energy is known in advance. Normally the
Einstein crystal is used as a reference for the solid phase. The
Einstein crystal is a collection of harmonic oscillators with
the mass of the carbon atom. In the temperature range under
consideration, we choose an anisotropic Einstein crystal with
in-plane oscillation frequency ω1 = 300 cm−1 and frequency
ω2 = 100 cm−1 for the oscillations in the perpendicular direc-
tion. We have used about 105 Monte Carlo steps for the calcula-
tion of the difference of Helmholtz free energy between the one
of the graphene layer and the Einstein crystal both in the classi-

TABLE I. The classical and quantum MC results of the free
energy obtained from the adiabatic switching (AS) method at different
temperatures. The digits in parentheses are estimated standard errors
in the last decimal places.

Free Energy (eV)

T (K) MC PIMC

200 −7.3030(13) −7.2105(11)
600 −7.2894(11) −7.2466(11)
1200 −7.4014(8) −7.3792(6)
2000 −7.6736(13) −7.6607(12)
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FIG. 5. (Color online) Free energy of the free-standing graphene
monolayer. The results obtained from the AS method are given
by the red circles and blue squares for the PIMC and classical
MC simulations, respectively. The red and blue curves are the
corresponding results from the RS method.

cal and quantum simulations. The obtained free energies from
the AS method at different temperatures are given in Table I.

Using the free energy estimated by the AS method at
T = 2000 K, we performed simulations in the range of 9 × 106

MC steps within the NPT ensemble using the RS method in
order to determine the temperature dependence of the free
energy. In Fig. 5, we show the results of the free energy
obtained from the RS method in the temperature range from
200 to 2000 K for both classical and quantum Monte Carlo
simulations, together with the AS results given in Table I. The
difference between AS and RS results are within the error bar
indicated in Table I. As expected, similar convergent behavior
at high temperature is observed between the classical and
quantum MC results as found in the total energy calculation.
Figure 5 also shows that with decreasing temperature the
free energy from the classical MC simulation deviates from
the quantum results. For T � 400 K the classical calculation
yields unphysical behavior for the free energy, showing a
negative variation of the system entropy. This unphysical
behavior points clearly to the importance of quantum effects
in the graphene layer at low temperatures.

IV. CONCLUSION

We have performed both classical and path-integral MC
simulations in order to study quantum effects on the structural
and thermodynamic properties of a free-standing graphene
monolayer. The same REBO potential is used to describe the
interatomic interaction. The obtained PIMC results at low
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temperatures are very different from those of the classical
simulation. The quantum effects of zero-point vibration are
significant for temperatures up to 1000 K, and the quantum
contribution to the lattice vibrational energy becomes larger
than that of the classical lattice for T < 400 K. The zero-point
lattice expansion in the graphene layer causes an increase in the
lattice parameter of 0.53% leading to a minimum of the lattice
parameter at T � 500 K and, consequently, a negative thermal
expansion coefficient for T < 500 K. We also analyzed quan-
tum effects on the atomic vibration amplitude of the graphene
lattice and its free energy. The free energy of the graphene
layer is calculated in the temperature range 200–2000 K.

The temperature dependence of the free energy shows that
the classical MC simulation cannot describe correctly the free
energy of the system for T < 400 K indicating once more
the importance of quantum effects on the thermodynamic
properties of the free-standing graphene layer.
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