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We study the low-frequency admittance of a small metallic island coupled to a gate electrode and to a massive
reservoir via a multichannel tunnel junction. The ac current is caused by a slowly oscillating gate voltage. We
focus on the regime of inelastic cotunneling in which the dissipation of energy (the real part of the admittance)
is determined by two-electron tunneling with creation of electron-hole pairs on the island. We demonstrate that
at finite temperatures but low frequencies the energy dissipation is ohmic whereas at zero temperature it is
superohmic. We find that (i) the charge relaxation resistance (extracted from the real part of the admittance)
is strongly temperature dependent, and (ii) the imaginary and real parts of the admittance do not satisfy the
Korringa-Shiba relation. At zero temperature the charge relaxation resistance vanishes in agreement with the
recent zero-temperature analysis [M. Filippone and C. Mora, Phys. Rev. B 86, 125311 (2012); P. Dutt, T. L.
Schmidt, C. Mora, and K. Le Hur, Phys. Rev. B 87, 155134 (2013)].
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I. INTRODUCTION

During the last decades Coulomb blockade has become
a powerful tool for observation of interaction and quantum
effects in single electron devices [1-6]. This phenomenon
is widely observed in low-temperature electron transport
through a single electron transistor. Another system in which
low-temperature properties are affected by Coulomb blockade
is a single electron box (SEB). It is schematically shown in
Fig. 1. A small metallic island is coupled capacitively to the
gate electrode with the voltage U,. The number of electrons
on the island is not conserved due to the tunneling in and out
of an equilibrium electron reservoir. A time-dependent gate
voltage U,(t) generates ac current through the device.

The equivalent electric circuit of a SEB (see Fig. 1)
is characterized by two capacitances. The gate capacitance
C, controls the external (induced) charge ¢ on the island,
q = C,U,. The total capacitance C determines the so-called
charging energy E. = ¢?/2C. It is the latter that is responsible
for the Coulomb blockade effects. The tunnel junction is char-
acterized by the dimensionless (in units e?>/h) conductance
g. Throughout the paper we use a standard assumption that
the Thouless energy of the island is the largest energy scale
in the problem. This allows us to work in a zero-dimensional
approximation neglecting spatial dependence of all quantities.

Since there is no dc transport through the SEB, an essential
dynamic characteristic becomes the admittance which char-
acterizes the response of ac current I, to the infinitely small
ac part U,, of the time-dependent gate voltage U,(t) = Uy +
U, coswt: G(w) = 1,/U,. Long ago it was demonstrated that
the admittance of SEB is affected by Coulomb blockade at low
temperatures T < E. [7]. However, since then the majority
of works have addressed the so-called quantum capacitance:
Cet = 0Q/0U,, where Q is the average charge on the
island, which determines the imaginary part of the admittance
[8—14]. Classically, at high temperatures T >> E. the effective
capacitance coincides with C,. As temperature decreases Cef
starts to deviate from C, due to interaction and coherence
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effects. In seminal paper [15] it was suggested that the real
and imaginary parts of the admittance in a SEB can be related
in a universal way. After the paper [15] a SEB admittance
has attracted significant theoretical interest [16-20]. The
admittance in the quasistatic regime was measured in a single
channel SEB constructed in two-dimensional (2D) electron
gas [21]. At present, there exists a number of measurements
of admittances for different realizations of a SEB performed
with the help of radio-frequency reflectometry [22-25].

The classical electrodynamics of a SEB suggests the
following expression for the admittance at low frequencies,
oL gE.:

G(w) = —iwC,y + *C,CR, (1)

where R = h/(e*g) stands for the classical resistance of the
tunnel junction. In Ref. [15] the following generalization of the
classical result (1) has been proposed for the quantum coherent
SEB with C = C,:

G(w) = —iwCeir + w*C4 Ry, )

where R, was termed as the charge relaxation resistance.
Treating the Coulomb interaction within the Hartree-Fock
approximation, the authors of Ref. [15] demonstrate that for
single channel tunnel junction the charge relaxation resistance
in Eq. (2) becomes universal, R, = h/ (2¢2). The full quantum-
mechanical treatment of the charging energy in the case of
a single-channel tunnel junction demonstrates that at zero
temperature R, = h/(2¢*) (R, = h/e*) for frequencies w < §
(w > &) [26]. Here 6 denotes the mean level spacing of
single-particle states inside the island of a SEB. Both results
follow from two observations: (i) the effective low-energy
Hamiltonian of single-channel SEB is of Fermi-liquid type; (ii)
the Korringa-Shiba relation [27,28] for the response function
iG(w)/w holds within Fermi-liquid low-energy description
[26]. Recently, the analysis of Ref. [26] has been generalized
to the case of a SEB with a weak (g <« 1) multichannel tunnel
junction and a large island, § — 0. It was found [29,30] that at
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Upt+U,coswt

FIG. 1. (Color online) The setup: a SEB subjected to a time-
dependent gate voltage U, (¢) (left) and the equivalent electric circuit
(right).

zero temperature the charge relaxation resistance is inversely
proportional to the number of channels in a tunnel junction
and is independent of the external charge; R, vanishes in the
limit of an infinite number of channels for any value of g.

Contrary to the admittance which is uniquely defined
the charge relaxation resistance can be introduced in many
ways. At finite temperatures the SEB with a multichannel
tunnel junction in the limit of negligible mean level spacing,
8 — 0, has been analyzed in Ref. [31]. In particular, it was
demonstrated that in the limit of weak tunneling, g < 1,
and near the charge degeneracy points the SEB admittance
at low frequencies (w < g max{|A|,T}) can be set down in
the following form:

C
G(@) = —ioCer + & C;Ry. 3)
8

Here A denotes the electrostatic energy due to one excess
electron on the SEB island. It depends on the external charge g
and satisfies the inequality |A| < E. near a charge degeneracy
point. The quantity C, = 9 Q/dUj stands for the renormalized
gate capacitance which measures the response of the effective
charge Q, introduced in Refs. [32,33] by one of us, to the
static part of the gate voltage. Contrary to the average charge
0 on the island, the effective charge is expected to be integer
quantized at zero temperature [32-34]. This implies that C,
vanishes at 7 = 0 contrary to Ce. The charge relaxation
resistance in Eq. (3) is determined by the renormalized
tunneling conductance g(T), R, = h/[ezg(T)] > h/ez. The
very same conductance g(7') determines the dc conductance of
the single electron transistor (SET) under small bias between
source and drain. We also note that Eq. (3) was proposed
for the SEB with arbitrary relation between C and C,. For
the case of weak tunneling the treatment of Ref. [31] was
restricted to the sequential tunneling approximation dressed
by the renormalization due to virtual processes. The processes
of inelastic cotunneling [35] which dominate the dc transport
through the SET at low temperatures T < Ti, ~ |A]/In(1/g)
were not taken into account. Therefore, the extrapolation of
Eq. (3) down to the zero temperature and comparison with the
result of Refs. [29,30] were not possible.

The real part of the admittance of a SEB with a multichannel
tunnel junction in the regime of inelastic cotunneling has been
studied in Ref. [7]. It was found that the real part of admittance
is proportional to g?w? max{T*,w*}/E?. This results implies
the zero charge relaxation resistance at 7 = 0 in agreement
with the result of Refs. [29,30] extrapolated to the limit of the
infinite number of channels in the tunnel junction. However,
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the analysis of Ref. [7] has been restricted to Coulomb valleys,
i.e., to integer values of gq.

In this paper we address the following question: How does
the zero-temperature result for the charge relaxation resistance
obtained in Refs. [29,30] cross over to the finite temperature
result of Ref. [31]? To answer this question we performed
a detailed study of the admittance of the multichannel SEB
near the charge neutrality points in the low-temperature
regime where the inelastic cotunneling processes dominate
the dynamics. We found that the real part of admittance is
proportional to g?w? max{T?,w?}/A*. The charge relaxation
resistance [extracted from Eq. (2)] is strongly temperature
dependent and small, R, ~ (h/e*)(T/A)* < h/e*. In agree-
ment with Refs. [26,29], we obtained that R, is independent
of g and vanishes at zero temperature. Our explicit results
demonstrate strong violation of Korringa-Shiba relation for
the response function i G(w)/w and, consequently, support the
non-Fermi-liquid behavior of the multichannel SEB near the
charge degeneracy points.

The structure of the paper is as follows. In Sec. I we
introduce the Hamiltonian and Kubo formula for admittance
of a single electron box. The pseudofermion representation for
the low-energy Hamiltonian valid in the cotunneling regime
is presented in Sec. III. The results of the calculation of
the admittance at low frequencies to the second order in
the tunneling conductance g are given in Sec. IV. Finally,
discussion of our results and conclusions are presented in
Sec. V. The details of calculations are summarized in the
Appendix. We use units with s = ¢ = 1 throughout the paper
except for the final results.

II. FORMALISM
A. Hamiltonian
We start with the standard Hamiltonian describing Coulomb
blockade in a SEB [36-38]:
H=H+H;+H +H,. “

Here H; (H;) denotes the free-electron Hamiltonian in the lead

(the island),
H = Z s,ia)aiak,
k

" o)
Hd = Z 8((1 )d;da,
o
where operators a£ (dl) create an electron in the reservoir

(the island). Energies 8](:1),8((;1) are counted from the chemical
potential. The Hamiltonian

He = Ec(hg — ), fa =) dids, 6)

takes into account the electrostatic energy due to the finite size
of the island.
The Hamiltonian

H, =Y noaldy +He. )
k,a

describes tunneling of electrons between the island and the
reservoir. In order to characterize the tunnel junction, following
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Ref. [31], we introduce the Hermitian matrix

oo = QP[] Y e (e ®)
k

acting in the Hilbert space of the island’s states. Here the &
functions are assumed to be smoothed on some intermediate
scale between § and min{7,|w|}. The matrix g allows one
to define the number of open channels N, and the effective
channel conductance gcp:

gy

tr g2
Nch = ~2 =
trg

geh = ——. (€))
trg

The dimensionless conductance g which characterizes the
tunnel junction in classical electrodynamics is given as g =
8ch N ch-

In the present paper we assume that N, >> 1 and 1/N3, <
gch < 1. Although within these assumptions the classical
conductance g can be still large, in what follows we restrict our
consideration to the case 1 > g > 1/N.,. We are interested in
temperatures much smaller than the charging energy but much
larger than the mean level spacing, E. > T > §.

B. Admittance and polarization operator

The admittance of a SEB being the linear response of the
ac current to the ac part of the time-dependent gate voltage,
Uy(t) = Uy + U, cos wt, can be expressed as [31]

G(w) = —iwC,[1 + T (w)/C], (10

where T8 (w) stands for the Fourier transform of the retarded
polarization operator of electrons on the island:

() = iO()([Aa(0),2a(0)]). an

Here ©(¢) denotes the Heaviside step function. In the qua-
sistatic regime @ — 0, the polarization operator IT%(w) can
be expanded in regular series in w:

¥ (w) = mo + iwm, + O(w?), (12)

where both 7y and m; are real functions. We stress that we
assume |w| >> § throughout the paper. The static part m is
fully determined by the average charge on the island Q:

¢ C C (13)

g = Ceff — C,
0 c, ff

where we remind that Ces = 0Q /09Uy with Q = (7i4). This
result holds by virtue of the Ward identity which relates the
static polarization operator and the compressibility [39]. We
note that on the classical level Cey = C, and 7y = 0. The
classical electrodynamics result (1) implies 7r; = 27 C?/g on
the classical level. In what follows we discuss how quantum
effects due to inelastic cotunneling change naive classical
expectations for mp and 7.

III. WEAK-TUNNELING REGIME

A. Projected Hamiltonian

In what follows, contrary to Ref. [7], we confine our con-
sideration to the vicinity of the one of the charge degeneracy
points, i.e., points where the external charge ¢ =k + 1/2
where k is an integer. At these points the gap A = 2E.(k +
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1/2 — g) between the ground and the first excited state of
the charging Hamiltonian H, vanishes. In the vicinity of the
degeneracy point, the gap A is small in comparison with
the charging energy, |A| < E.. The processes of inelastic
cotunneling become important at low temperatures 7 < |A|.
At |A| <« E., one can truncate the Hilbert space of electrons
on the isolated island to two charging states characterized
by O =k and Q =k + 1 [8]. The projected Hamiltonian
acquires the form of a 2 x 2 matrix acting in the isospin 1/2
space of these two charging states [8]:

H=H+H +I:I+AS+A2+EC (14)
= 11 d t z 4Ec 4 s
where H, 4 are given by Eq. (5), and
H =Y neald,S" +He. (15)

k,a

Here %, S* = §* +iS” stand for standard spin-1/2 operators.
The Hamiltonian (14) is the Hamiltonian for the N, channel
Kondo model. The gap A between the charging states plays
the role of an effective magnetic field.

In the presence of ac component of the gate voltage, the
energy detuning from the degeneracy point becomes time
dependent: A(t) = A — (C,/C)U, coswt. Then, as follows
from Eq. (14), the linear response of a SEB to ac gate
voltage U,, is determined by the longitudinal dynamical isospin
susceptibility:

(1) = i0@)([S:(1), S (0)]). (16)

In particular, the admittance G(w) is given as [31]
C
G(w) = —ia)?gl'lf(a)). A7)

We note that the average charge on the island can be written as
0 =k+1/2—(S,), i.e., it is related to the isospin magneti-
zation. As the consequence of Eq. (13), the dynamical isospin
susceptibility should satisfy the relation I1 f (0) = CCer/C,.

B. Pseudofermion effective action

To deal with spin operators we employ the method of
Abrikosov’s pseudofermion operators. Following Ref. [40],
we introduce fermion operators ¥/, ¥, such that

S = 3VaOapp. (18)

Here o0 = {0,,0,,0;} denotes standard Pauli matrices. To ex-
clude redundant unphysical states (the states with >, ¥ ¥y >
1) we add to the Hamiltonian A an artificial chemical potential
n for the pseudofermions. It is necessary to take the limit
n — —oo at the end of any calculation.

We remind that the physical partition function Z and cor-
relation functions (O) can be found from the pseudofermion
ones with the help of the following rules:

Z= lim ——
n——oo gebn

pra
(19)

n——00

(O) = lim {<O>pf+—

In the case Nep > 1 and 1> g > 1/Ngy, after the in-
tegration over electrons in the reservoir and the island the
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Hamiltonian (14) can be transformed into the following
imaginary-time effective action [31]:

_BA? B o.A g [*f
S = AL, +'/0 drgﬁ(&r + ) - n)w + ZA dridrm,
x a(T)[Y (t)o_ Y ()W ()04 ¥ (12)]. (20

Here 0+ = (0x & i0,)/2 and the kernel

T .
—— . —uu,,r, 2]
a(t) an le 1)

Wy

where w, = 2w Tn is the bosonic Matsubara frequency. We
note that the action similar to Eq. (20) has been first analyzed
by Larkin and Melnikov in Ref. [41]. Effective action (20)
corresponds to the XY Bose-Kondo model for the spin 1/2
[42-44].

The dynamical spin susceptibility (16) is determined by the
pseudofermion dynamical spin susceptibility:

I pi(7) = (T [P (@)oY (DY (0)o ¥ (0)]), (22)

where 7; denotes the imaginary-time ordering and the average
is taken with respect to the effective action (20). According to
Eq. (19) we also need the expression for the physical partition
function. It can be written as

2 = lim Zye Py G, () (23)

T—>0""

where G, (1) = —(T; ¥, (1)¥,(0)) stands for the exact
imaginary-time pseudofermion Green’s function.

As we discussed in the Introduction, in the Fermi liquid the
imaginary and real parts of the dynamical spin susceptibility
are related by the so-called Korringa-Shiba relation [27,28].
Taking into account that A in the effective action (20) plays
the role of magnetic field, the Korring-Shiba relation for 1%
should have the following universal form:

Im MR (@) % 2r0[Re RO, w—0. (24

If this relation were correct, the low-frequency admittance
G(w) = —iw(Cy/CYCo + ia)C&Rq) would be characterized
by the universal charge relaxation resistance, R, = h /e,
similar to the single-channel case. Here we introduce Cy =
(C/Cq)Cetr. As we shall demonstrate below by direct calcu-
lation, the Korringa-Shiba relation (24) does not hold for the
effective action (20).

IV. ADMITTANCE IN THE COTUNNELING REGIME

The effective action (20) is suitable for the perturbation
theory in g < 1. Here we evaluate the imaginary part of the
dynamical spin susceptibility IT;(w) to the second order in g.
The Feynman rules for action (20) are shown in Fig. 2. The

€n 1 glwn|

4

FIG. 2. Feynman rules for the pseudofermion action (20).
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bare pseudofermion Matsubara Green’s function is given as
follows:

1

Golign) = ———————-
i, +n—oA/2

(25)
Thus from Egs. (22) and (23) in the zeroth order in g we
find

BA

2P =1, 29 =2cosh o N9 (iw,) =0.  (26)

P

A. Perturbation theory in g: Sequential tunneling

Before discussing the inelastic cotunneling regime (second
order in g) we remind briefly the result of Ref. [31] for the
pseudofermion dynamical spin susceptibility in the regime
of sequential tunneling. In Fig. 3 we present diagrams con-
tributing to the pseudofermion dynamical spin susceptibility
I (i w,) in the first order in g. Their evaluation demonstrates
that Im [TX(w) suffers from singularity at @ — 0:

8 _BA

Im T80 () = .
m L) = o Snh(BA)

27
This unphysical divergence stems from noncommutativity
of the limits w — 0 and g — 0 in the structure of the
Im ¥ W(w). Summing the ladder-type diagrams and taking
into account finite (the lowest order in g) broadening of
the pseudofermion Green’s function, we obtain the following
expression [31]:

A A A\
meog) = £ _PE (L 88 i BA) T g
47 sinh(BA) 2m 2

We note that the broadening of the singularity at @ = 0 in
Im prf(w) is determined by the sum of in- and out-rate of
single electron tunneling [3]. At low temperatures 7 < |A],
the result (28) implies (|o| K g|A|/2m)

2nBw

ZIa] e PNl (29)

Im TR0 () =
Such Arrhenius-type dependence, exp(—|A|/T), is charac-
teristic of real processes in which an additional electron or
hole remains on the island after each tunneling event. We
remind that the SET conductance in the sequential tunneling
approximation is also of the same Arrhenius-type form at low
temperatures 7 < |A| [3,31]. As it is well known, at low
temperatures SET conductance has also a power law (in T/|A|)
contribution of the second order in g due to the processes of
inelastic cotunneling [35]. As we shall demonstrate in the next
section there is a similar contribution to the admittance.

B. Perturbation theory in g: Inelastic cotunneling

The processes of inelastic cotunneling becomes important
at temperatures 7 < Tj, < |A|. However, these processes are
of the second order in the tunneling conductance. Diagrams of
the second order in g for the pseudofermion dynamical spin
susceptibility are shown in Fig. 4. We remind that diagrams
with pseudofermion loops vanish in the limit n — —oo.
Evaluation of the ten diagrams in Fig. 4 yields the following
result for the imaginary part of the low-frequency dynamical
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FIG. 3. Feynman diagrams for the pseudofermion dynamical spin susceptibility in the first order in g.

spin susceptibility (see the Appendix):

g'w T2+w—2 lo|,T < |A
247 A2 azz ) b ‘
(30)

This expression dominates over the contribution (29) due to
sequential tunneling at low temperatures, T << Tij.

In the discussion above we do not consider renormalization
of the effective action (20) between the ultraviolet energy
scale of the order of E. and the infrared scale of the
order of max{|A|,T} [8,41,45]. The renormalized effective
action can be obtained from Eq. (20) by the following
substitutions ¥ — ~/Zy, ¥ — VZ¥, g - § = Z%g, and
A — A = Z2A, where the field renormalization factor Z is
given within one-loop approximation as [41]

g E.

~12
In— ¢ | 31
272 nmax{|A|,T}] 3D

We note that the pseudospin operator S, renormalizes accord-
ing to S, — Z2S. [31]. Then from Eq. (30) we find

Im 5 ?(w) =

Z:|:l+

247w A4 472

Remarkably, the field renormalization parameter Z drops out
from Eq. (32) such that it coincides with Eq. (30) in spite of
the renormalization.

Taking into account one-loop renormalization of the ef-
fective action, one finds the following result for the average
charge on the island [8]:

7452 2
ImMAQ ) = 222 (T2 + ‘”—> (32)

Q—k—i—l—z—ztanhA (33)
2 2 2T
In the case of low temperatures, T < Ti,, Eq. (33) can be
simplified, and we obtain

0 _ 7'

ReM*V(0) = —— = —=—.
eI O = =38 = &7

(34)
We note that the factor Z* can be derived in the following
way. Equation (31) determines the one-loop renormalization-
group equation for the field renormalization factor. Then taking
into account that (i) the relation dA/0A = Z? holds within

logarithmic accuracy and (ii) the renormalized conductance g
corresponds to the energy scale A, one can obtain the result
(34). Alternatively, the appearance of the factor Z* can be
checked with the help of the expression for Q derived to the
second order in g [33]. We emphasize that Eq. (34) implies that
at T < T, the effective capacitance becomes very different
from Cy: Cepr = CoZ*ZE./(272|A)).

Combining together Egs. (30) and (34) we obtain the
following result for the admittance of a SEB (o] < T < Tjy):

Z*g’T?E,
12 A4

ZE.

Q(a)) = —ingznz—lm @ Cg

(35)
This is the main result of the present paper. Results (32)
and (34) for the imaginary and real part of the dynamical
isospin susceptibility implies strong violation of the Korringa-
Shiba relation (24) at low temperatures when the processes
of inelastic cotunneling dominate. Using the Korringa-Shiba
relation, one overestimates erroneously Im IT¥(w) by a large
factor (A/ T)?> > 1. The violation of the Korringa-Shiba
relation signals that the Hamiltonian (14) and, consequently,
the effective action (20), involves non-Fermi-liquid physics.

V. DISCUSSION AND CONCLUSIONS

According to Eq. (2), the result (35) for the admittance im-
plies the following result for the charge relaxation resistance:

h 72 T \? |A|
R, = Z?(ﬁ) B e

We emphasize that due to Coulomb interaction the charge
relaxation resistance is strongly temperature and gate voltage
dependent. Moreover, R, depends on the tunneling conduc-
tance g although through the field renormalization factor
only. Therefore, the charge relaxation resistance depends in
nontrivial way on the parameters of a SEB in contrast to
the zero-temperature predictions of Refs. [29,30] and original
ideas of Ref. [15]. Also the charge relaxation resistance is
much smaller than the resistance quantum, R, < h /ez. At
T = 0 the charge relaxation resistance vanishes, R, = 0. This
behavior is in agreement with the zero-temperature result of
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e+ 2
€+ w2

IV, 0 IVq

FIG. 4. Second order in g diagrams for the pseudofermion
dynamical spin susceptibility.

Refs. [29,30], R,(T =0) = (h/ez)/Nch, which implies zero
charge relaxation resistance at 7 = 0 and N, — 0.

The real part of the admittance determines the energy
dissipation rate of a SEB, W = C,E.Re G(w)U2, which
appears due to the time-dependent periodic gate voltage

PHYSICAL REVIEW B 92, 195412 (2015)

o
—
m
-

€4
- -~ * 53/ *
c;/\ €3 ‘o

f
-@- -@- O
-@- €2 -O- €9 -O- €2

€1 €1 €1

FIG. 5. The processes of inelastic cotunneling. The intermediate
state has an additional electron (a) and hole (b).

modulations. The result (35) leads to the ohmic dissipation
at low frequencies:
22U TE; C U2
3AT 80
This result for the dissipation rate has the following physical
explanation. Let us estimate the rate ['j, for the two-electron
process in which one electron with energy ¢, tunnels from the
island into the reservoir and occupies the state with energy
&4 whereas the other electron with energy &, tunnels from the
reservoir into the island occupying the state with energy &3
(see Fig. 5). For € # &3 this process is inelastic and results in
the electron-hole pair on the island at the end. It can go through
two different intermediate states: with an additional electron
and an additional hole on the island. The former costs the
energy of the order of 2E, whereas the latter costs the energy
of the order of |A|. In the considered case |A| < E,., we can
neglect the contribution due to the intermediate state with an
additional electron. Provided such transition is accompanied
by a periodic perturbation which supplies the energy w to the
final state, we can estimate the corresponding rate as follows:

W=w lo| K T < Ti. 37

2 4 00
[ ~ % 1_[1/;00 dej | fr(epDll — fr(e3)]fr(e2)
=

X [1— fr(ea)ld(es +e4 —e1 —e2—w).  (38)

Here we use the fact that typical electron or hole energies in
the integral in Eq. (38) are of the order of max{7T,|w|} < |A].
Thenfor |w| « T <« |A|we find that the frequency-dependent
part of the rate is estimated as T'® ~ g>T2w/A%. In fact,
this rate is similar to the rate derived for a SET biased by
voltage in which case the role of w is played by dc voltage
[35]. The quadratic dependence of I'{“” on T is responsible
for the T? factor in the expression (37) for the energy
dissipation rate. Indeed, averaging I'\*” over time-dependent
gate voltage, taking contribution proportional to U2 and
multiplying the result by w, one gets the estimate for the
rate of energy dissipation, W ~ w(3*I'{*) /d A?)(C,U,,/ C)?,
which, up to numerical factors, coincides with the result
(37). At zero temperature the rate of inelastic cotunneling is
given as 'y, ~ g?w®/AZ. This suggests the following estimate
for the energy dissipation rate: W ~ w*g?E*C,U, /A%, ie.,
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nonohmic dissipation of energy at zero temperature. Using the
result (32) with T = 0, we obtain the following expression for
the energy dissipation rate at zero temperature:

_ LR
T 12mAY T8

It is worthwhile to discuss the result of Ref. [7] which is
complementary to the result of the present paper. In Ref. [7]
the real part of admittance was analyzed in the regime of
inelastic cotunneling but precisely at ¢ = k, i.e., at Coulomb
valleys. It was found that Re G(w) o g*w? max{T4,w4}/EC6.
We emphasize that the result of Ref. [7] is quite unexpected.
For example, the contribution due to inelastic cotunneling is
proportional to T2/A? near the charge neutrality points and
to T2/ EZ at Coulomb valleys [35]. Therefore, on the basis
of our result one could expect that at Coulomb valleys the
energy dissipation rate is given by Eqgs. (37) and (39) with
A substituted by E.. However, this naive argument leads to
overestimation of the energy dissipation rate by large factor
E?/ max{T?,w?}. The result of Ref. [7] comes from particular
cancellation of terms proportional to @*T?/E# and »*/E? in
Re G(w) (see comment at the end of the Appendix).

We mention that our result (35) is at odds with the
expression (3) proposed by us in Ref. [31]. Since the effective
charge Q is expected to be robustly integer quantized at zero
temperature [32-34], the renormalized gate capacitance C,
is exponentially small at 7 < |A| [33]. The renormalized
conductance is known to be proportional to the temperature
squared, g(T) ~ g>T?/A?, in the regime of the inelastic co-
tunneling [33,35]. Therefore, Eq. (35) suggests the exponential
suppression of the energy dissipation at T < |A| contrary
to the result (37). Thus for g <« 1 the expression (3) works
within the sequential tunneling approximation dressed by
renormalization due to virtual processes only.

The effective action (20) predicts zero value of g under
the renormalization in the infrared. The N, channel Kondo
model (14) has the unstable fixed point at finite value of
& = g« ~ 1/Ng, [8,46]. Therefore, our results obtained within
the effective action (20) are applicable for the Hamiltonian
(14) while g > g,.. As follows from Eq. (31), this condition
implies that our results hold not too close to the charge degener-
acy point, |A| 3> (gE/n%)exp(—n/g.). Since g, ~ 1/ Ny,
the scale (gE./m?)exp(—m?/g,) becomes extremely small
already for not too very large values of N,. Comparing our
result (36) with the zero-temperature result of Refs. [29,30], we
find that for the case of finite number of channels the charge
relaxation resistance is given by Eq. (36) for temperatures
T > |Al/v/Nep.

To summarize, we have studied the low-frequency admit-
tance of a multichannel SEB under a slowly oscillating gate
voltage. Focusing on the regime of inelastic cotunneling, we
have calculated the admittance G(w) [see Eq. (35)] near the
charge degeneracy points. We found the following:

(1) At finite temperatures but low frequencies, Tj, > T >
|w|, the energy dissipation rate (determined by the real part of
the admittance) is ohmic and scales as the temperature squared,
see Eq. (37), in agreement with qualitative arguments.

(i) At zero temperature the energy dissipation rate is
superohmic, ~ w*, see Eq. (39), in agreement with qualitative
estimates.

T <ol <Al (39)
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(iii) The imaginary and real parts of the response function
iG(w)/w do not satisfy the Korringa-Shiba relation. This
supports the non-Fermi-liquid behavior of the model near the
charge degeneracy points.

(iv) The charge relaxation resistance R, is strongly tem-
perature dependent and small, R, ~ (h/e’)(T/A)* < h/e>.
It vanishes at 7 =0 in agreement with the recent zero-
temperature analysis of Refs. [29,30].

(v) The relation between the real part of admittance and
the effective charge Q conjected by us in Ref. [31] holds
within the sequential tunneling approximation dressed by
renormalization due to virtual processes only; it breaks down
at low temperatures T < Tiy.

Finally, we mention that our result (35) for the admittance
can be tested in a single electron box with small metallic island
via radio-frequency reflectometry measurements [22,25]. Also
we mention that following the approach of Refs. [47,48] our
results can be extended to nonequlibrium conditions, e.g.,
different temperatures of the island and the reservoir.
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APPENDIX: COMPUTATION OF THE POLARIZATION
OPERATOR: DIAGRAMS OF THE SECOND ORDER IN g

In this Appendix we present details of computation of the
polarization operator within the second-order perturbation the-
ory in g. There are contributions from the ten diagrams shown
in Fig. 4. The task is simplified considerably by the fact that
we only need the imaginary part of the retarded polarization
operator. Each diagram consists of six pseudofermion Green’s
function lines and two interaction lines. Thus each diagram
involves the summation over three internal energies: fermionic
¢ and two bosonic ones 2,9Q’. As usual the fermionic sum
is easily undertaken with the help of the following identity:
Ty, fe)= (4mi)~! 55(15 tanh(e/2T) f(¢) where the con-
tour of integration circles around all the poles of tanh.

1. Diagram I

The contribution from diagram I to the polarization operator
can be written as

2.0,
H_(Y’;f (iwy,)

T3 s .
=7 Z o’ Z a(iQ)ai )Gy (i)
o=+ £,Q,Q
X Gylie +iwy)G_o(ic +iQG_o(ie +iQ+iw,)
X Go(ie +iQ+iQNGo(is +iQ+iQ +iw,),
(AD)

where we introduce the kernel &(i2) = ga(i)/4 =
g|€2|/(4m). Evaluating the sum over the fermionic energy ¢ and
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performing analytic continuation, iw, — ® + i0, we obtain

T
IS @) = = = 3 (fy + f1) Im K V()
o=%

- Zi % Im [KX0D(@)]P. (A2)

Here f, = fr(—n+ Ac/2), f, = 8f1:(8)/88|5=7n+A0/2, and
fr(e) = 1/[1 + exp(e/T)] denotes the Fermi-Dirac distribu-
tion function. The functions K X" (w) are retarded function
corresponding to the following Matsubara function
K((jnm)(l(l)) -7 Z [(Y(Z.Q + la)) Ol(l Q)] . (A3)
= (w)"(i2 4+ Ao)™

2. Diagrams Ila and IIb

The contribution from diagram Ila to the polarization
operator can be written as

] T3 JUN ~ N
Hf;’fna(lwn) =- Z o2 Z a(iQ)ai’)
o=%

,Q,Q
x G2(ie)G,(ie +iw,)G* (ie +iQ)
X Golie +iQ2+iQ). (A4)

The contribution from diagram IIb can be found from the

expression above by reverting the sign of w,: I"Ifl))’fnb(i wy) =
@I

spf (—i®y). Evaluating the sum over the fermionic energy ¢,
combining two contributions together, and performing analytic
continuation, we find

m 152 = — 0y Y 7yt i 000
o=%

T / / (2,
+ 5 L) MK CD(@). (AS)

o=%
Here we introduce the following function:
Yo=TY o) (A6)
S i2+4+ Ao
Strictly speaking the sum defining Y, is divergent. The
summation is truncated at Q2 = Q,.x ~ E. which is the model
cutoff. The function Y, is therefore cutoff dependent. It is also
important to note that when evaluating summation over boson
frequencies €’ and coming across divergent expressions we
assume symmetric limits —Quax < Q' < Quax. Truncated
symmetric sums allows us to repeatedly shift a summation
variable safely.

3. Diagrams IIla and IIIb

The contribution from diagram IIla to the polarization
operator can be written as

T3
I Gw) = — — Y 0 Y aiQai)
4 o=% £,Q,Q
x G2(i8)Gy(ie +iw,)G _,(ie + i)
X G_g(ie +i). (A7)
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The contribution from diagram IIIb can be found from the

expression above by reverting the sign of w,: ngg'fmb(iw,,) =
@ 1ia

spf (—ioy,). Evaluating the sum over the fermionic energy
e, combining two contributions together, and performing
analytic continuation, we find

R,(2),111
Im 117 ()

— f(,—_f,(, R(1,D . \]?
_; e Im[K 50D ()]

+> :—f" _2f“’ Y, Im K 20D (), (A8)
w
o=%

4. Diagrams IVa, IVb, IVc, and IVd

The contribution from diagram IVa to the polarization
operator can be written as

T3
- > (=0?) > aiaiQ)
o=+

,Q,Q
X G2(ie)Gy(ie +iw,)G_o(ic + i)

X G_s(ie +iQ)G_(ie +iQ+ iwy).
(A9)

2),Iva,.
I w,) =

The contribution from the other three diagrams can be found
from the expression above by reverting the sign of w, and

the sign of o and the summation sign: Hfg’fl\/b(ia)n,a) =
2)Va, . 2).IVc . 2).1Va, .

I (—iwy, — 0), T ((wn,0) = TN i w,, — o),

and Hi?;}IVd(i wy,0) = Hi?z)‘flva(—i w,,0). Evaluating the sum

over the fermionic energy &, combining all four contributions
together, and performing analytic continuation, we find

R,(2),IV
Im 11 ()

fa - ffa
=—0a ) F— Y, Im KEX0D(w)
o=%

+ 2 %Im [Kf,u,l)(w)]Z

fo+ flo
-T Zi =t Im[2K 0 N 0) — 0KV )],
(A10)

5. Diagram V

The contribution from diagram V to the polarization
operator can be written as

Mo Geon)
T‘3 2 2
=—— Z o Z a(i Qi Q)G (ie)
o=+ £,Q,Q

x G2(ie + iwn)G_g(ic +iQ)G_o(ic +iQ). (All)
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Evaluating the sum over the fermionic energy ¢ and performing
analytic continuation, we find

R,(2),V
Im I35 (o)

- Z %y{y Im K00 ()

—aAZf" f"YI KROD()
o=+
fot 1o
_TZ: 8w

Im 2K V(w) — 0K PP (w)].

(A12)

6. Result for Im IT f,pf(w) in the second order in g

Combining all contributions, Egs. (A2), (AS), (AS8), (A10),
and (A12), together, we find

Im pr(tz)(a))

= g Z(f; + £ ) Im KRG ()

—23Azf" f"YI KROD ()

TZf f_

+23° —f" ~ S 1 [K OO
o=+ @

(A13)

The following comment is in order here. Alternatively, one
can compute the admittance by means of the current-current
correlation function [7]. The latter consists of two operators
which are of the first and second order in g [49]. Then the first
and second lines in Eq. (A14) come from the renormalization
of the operator of the first order in g whereas the third and
fourth lines correspond to the contributions from the operator
of the second order in g. Using Eq. (26), we find

Im IT7 @ (w)

= —2tanh — Z

2 sinh(BA /2)
+ cosh(BA /2) 9 GZ:;[ w

Zlm[ KR(ZZ) 1

This expression is convenient for analysis at |w|,T < |A].
Converting the sum over Matsubara frequencies in Eq. (A3)
into the integral and performing analytic continuation, i®w —
w + 10, we obtain

R,(2,1
Ka ( )(w)

KR (1, 1)((,())]
Y, Im K XD ()

K(f’(z’l)(w)]. (A14)

[ee]

Im KD (w) = / 2 (B, ~ Byyu)Im D (e)
o0 2T W
x Ima®(e + w). (A153)
Here B, = coth(e/2T), aR(w)=—a*(w)= —igw/@r),
and  DR(e) = [¢ + Ao +i0]! Since  Im DX(e) =
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TABLE I. The first few integrals ;.

I = —w(w? + 472T2)/3

L = o*(@* +47°T?)/6

I = —wGw* + 20m2T?w? + 3274T*)/30
I = 0¥ (" + 107%T?w? 4 2474T*) /15

—n8(e + Ao), the imaginary part of KX-(- is exponentially
small, ~ exp(—|A|/T). We note that K&(1:1 is defined by
the divergent Matsubara sum. It should be understood as a
finite sum truncated at 2 = Qp,,x ~ E.. Then the analytical
continuation is possible. Moreover the imaginary part of
KXU-D s E. independent.

The terms proportional to K&('1) are responsible for the
renormalization of the first-order perturbative result (27).
Therefore, only the last line in Eq. (Al4) contributes to
Im [MTF®(w) in the regime |o|, T < |A|.

Again converting the sun over Matsubara frequencies in
Eq. (A3) into the integral and performing analytic continua-
tion, iw — w + 0, we find

oo

Im K(f"l”(w) — / — B,)Re Df(s)lm&R(s)

de
) (BEJra)
w

[e¢]

x ImaR(e + w) = (i)ziﬂ. (A16)
k=1

47 Tw(Ao)k

Here we perform expansion in series in 1/A. The functions
are defined as follows:

I = /Oo de e (e + 0)(Bogw — Be). (A17)

We list several first functions [ (fork = 1,2,3,4)in Table I. We
note that the very same functions /; determine the imaginary
part of KX (w):

Im K} () =
_ ( g )2i k(=11
~ \4n — T2 (Ao K+

Using the functions I; from Table I, from Eq. (A14) we obtain
the result (30) in the main text.

Finally, we note that for the case of ¢ =k, ie., at
the Coulomb peaks, one cannot adopt the pseudofermion
technique and has to take into account all charging states. Then,
the contribution to Re G(w) due to the inelastic cotunneling is
given by the last line of Eq. (A14) multiplied by a factor of 2
and with the following substitutions: A — E. and

—0da Im K22 ()

(A18)

Loy o’ (A19)
- = — _ ).
w w 2E.RE. — wo)

It is due to this additional term the contribution of the order
of 1/E# cancels and the admittance becomes proportional to
1/E® [7].
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