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We show how to achieve optical, spin-selective transitions from the ground state to excited orbital states of
group-V donors (P, As, Sb, and Bi) in silicon. We consider two approaches based on either resonant, far-infrared
(IR) transitions of the neutral donor or resonant, near-IR excitonic transitions. For far-IR light, we calculate
the dipole matrix elements between the valley-orbit and spin-orbit split states for all the group-V donors using
effective mass theory. We then calculate the maximum rate and amount of electron-nuclear spin-polarization
achievable through optical pumping with circularly polarized light. We find this approach is most promising for
Bi donors due to their large spin-orbit and valley-orbit interactions. Using near-IR light, spin-selective excitation
is possible for all the donors by driving a two-photon � transition from the ground state to higher orbitals with
even parity. We show that externally applied electric fields or strain allow similar, spin-selective � transition
to odd-parity excited states. We anticipate these results will be useful for future spectroscopic investigations
of donors, quantum control and state preparation of donor spin qubits, and for developing a coherent interface
between donor spin qubits and single photons.
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I. INTRODUCTION

The optical spectroscopy and control of shallow group-
V donors (P, As, Sb, Bi) in silicon has a long history [1,2].
Recent work has focused on achieving optical control of the
group-V donors for applications to quantum information [3]
and far-infrared (IR) lasers [4]. One common approach takes
advantage of the excited orbital states of the neutral donors (D0

states), which have hydrogen-like s-, p-, d-, etc. orbitals [5].
Resonant excitation into these states allows one to turn on and
off interactions between donors by exciting and de-exciting the
system [6–8] or to create population inversion for lasing [4,9].

The second class of approaches makes use of the neutral,
donor bound exciton state consisting of a hole bound to the
doubly occupied donor (D0X states) [2]. This state is appealing
to use for optical control because it has a long lifetime, a
large spin-orbit splitting, and an easily accessible transition
frequency in the near-infrared [10]. It has been successfully
employed for electron and nuclear spin state preparation and
measurement and spin-to-charge conversion for spin readout
of P and Bi donor ensembles [10–14].

In this paper, we describe several approaches to achieve
optical, spin-selective excitation from the ground state to the
excited orbital states. Figure 1 illustrates the energy scales
and terms relevant for optical spectroscopy and control of the
group-V donors. We first analyze control schemes based on
near resonant, far-IR transitions. These transitions are most
promising for Bi donors because of their large spin-orbit
and valley-orbit interactions. Using multivalley effective mass
theory [15–23], we calculate the dipole matrix elements
between the spin-valley-orbital states for all the donors and
estimate the maximum rate and amount of electron-nuclear
spin-polarization achievable with this technique. We then
consider optical approaches in the near-IR using the D0X

state. In this case, spin-selective excitation is possible for
all the donors by exploiting a two-photon � transition from
the ground state to higher orbitals with even parity (e.g., 2s

and 3d). Using externally applied electric fields or strain,

we show it is also possible to achieve similar, spin-selective
�-transitions to odd-parity (e.g., 2p) excited states.

The paper is organized as follows. In Sec. II, we review
the effective mass theory (EMT) used to describe the donor
orbital wave functions and the donor bound exciton state. In
Sec. III, we use EMT to calculate parity forbidden dipole
matrix elements between spin-valley-orbital states of the
donors. To take into account the large corrections from the
donor impurity potential for the 1s states, we use the recently
developed variational solutions provided in Ref. [18]. Using
these calculated dipole elements, we consider the achievable
amount and rate of electron-nuclear spin polarization via
optical pumping through the spin-orbit split 1sT2 states. In
Sec. IV, we consider several different schemes to achieve
spin-selective excitation to the excited orbital states of the
donor through the D0X state. We calculate the relative strength
of the dipole transition from the D0X state to the even-parity
states by using a Hartree-Fock variational solution to the
D0X ground state [24]. We then show how to excite the
odd-parity, 2p states through two-photon transitions using a
static electric field or externally applied strain. Throughout
this work, we use simple symmetry arguments and variational
solutions to obtain order of magnitude estimates for these
effects. A detailed and accurate understanding of these effects
will require a combination of more refined measurements and
ab initio theory.

II. EFFECTIVE MASS THEORY

In this section, we outline the formulation of the effective
mass theory and variational solutions to the donor wave-
function orbitals. The donor atom is a pointlike defect in
the lattice, while the bound electron wave function extends
across hundreds of lattice sites. As a result, the combined
system probes the silicon lattice at both long and short wave
vectors. Early on it was realized that the excited orbital states
cam be understood within a hydrogen-like model and have
a universal spectrum [5]. The electron in the ground state,
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FIG. 1. (Color online) Energy scales in optical spectroscopy of
group-V donors in silicon. Here, A1, T2, and E refer to irreducible
representations of the tetrahedral group, J is the total angular
momentum quantum number, F is the hyperfine quantum number,
and I is the total nuclear spin quantum number.

however, has a large overlap with the donor atom, resulting in
a large, donor-specific valley splitting, i.e., chemical shift [5].
The interaction with this core potential results in sufficient
complexity that a first-principles understanding of these
effects is only now being developed through a combination
of scanning tunneling microscopy measurements, atomistic
simulations, and variational methods [18,22,23,25–28].

In what follows, we assume the validity of electronlike
quasiparticle excitations on the semiconductor vacuum with
a local crystal potential and a static, isotropically screened
Coulomb interaction. This approximation has been very
successful in semiconductors and results in an effective
Schrödinger equation for the donor electron in the presence
of an impurity of the form

E ψ(r) =
[
−�

2∇2

2m0
+ V 0(r) + U (r)

]
ψ(r), (1)

where � is Planck’s constant, m0 is the electron mass, V 0(r)
is the periodic potential of the undoped Si lattice, U (r) is
the attractive potential of the impurity, and E is the electron
energy.

Si is an indirect band gap semiconductor and, consistent
with the tetrahedral symmetry, the conduction band has six
degenerate valleys located along the crystallographic 〈100〉
directions at the points ki0 = k0 ı̂ with ı̂ = ±x̂,±ŷ,±ẑ and
k0 ≈ 0.85 × 2π/asi (asi = 0.543 nm is the lattice spacing).

The eigenstates of Eq. (1) take the form

|ψ〉 =
∑

μ

αμ

∫
d3kμFμ(kμ)|kμ + kμ0〉, (2)

〈r|kμ + kμ0〉 = u0(kμ + kμ0,r)ei(kμ+kμ0)·r , (3)

where μ = ±x,±y,±z sums over the conduction band minima
and u0 is the Bloch wave function, which is invariant under
lattice translations. The effective mass approximation assumes
kμ � kμ0 so that we can replace u0(kμ + kμ0,r) ≈ u0(kμ0,r).
In this case,

〈r|ψ〉 ≈
∑

μ

αμFμ(r)uμ(r)eikμ0·r , (4)

where Fμ is the envelope function. Far away from the impurity
U (r) reduces to the Coulomb potential and Fμ satisfies the
effective mass equation

E Fμ(r) =
(

−�
2∂2

μ

2m||
− �

2∂2
μ⊥

2m⊥
− e2

4πε0 ε r

)
Fμ(r), (5)

where ∂2
z⊥ = ∂2

x + ∂2
y (similarly for other μ), m||(⊥) ≈

0.916(0.191) m0 is the effective mass in the direction paral-
lel(perpendicular) to μ̂, m0 is the electron mass, ε0 is the
dielectric constant, e is the electron charge, and ε ≈ 12 is the
static dielectric constant of Si.

Equation (5) suggests that the ground state of the donor
is sixfold degenerate; however, this degeneracy is broken by
intervalley coupling induced by the donor atom. These effects
can be self-consistently included in the EMT through the
multivalley equation [15,16]

E Fμ = T̂μFμ +
∑

ν

u∗
μuνe

i(kν0−kμ0)·rU (r)Fν, (6)

U (r) = − e2

4πε0 ε r
+ Ucc(r), (7)

where T̂μ is the anisotropic kinetic energy operator from
Eq. (5) and Ucc is the so-called “central cell” potential, which
takes into account deviations from the Coulombic potential in
the vicinity of the donor. Several approximation schemes have
been developed to extract Ucc based on fitting the potential by
comparing experimentally measured quantities such as energy
splittings or the hyperfine coupling to the same quantities
extracted from variational solutions to Eq. (6). The solutions
to Eq. (6) will only be reliable if the resulting Fμ(k) remain
strongly localized around kμ0. Provided this constraint is
satisfied, the multivalley EMT is a powerful computatonal
approach which has provided insight into the electronic
structure and relaxation rates of the donors [15–17], hyperfine
and quadrupolar interactions of the donor nucleus [18,19],
static Stark effects [20,21], and exchange coupling between
donors [22,23].

Although Eq. (6) breaks the valley degeneracy, the effective
Hamiltonian still commutes with the tetrahedral symmetry
group Td . As a result the eigenstates of Eq. (6) split into
irreducible representations of Td . The character group for the
six valley sites in the reciprocal lattice splits into χvalley =
A1 + E + T2. The lowest-energy state of Eq. (5) is a 1s-like
state. The Kohn-Luttinger variational solution to Fz away from
the central cell is given by [5]

Fz ≈ 1√
πab2

e−
√

(x2+y2)/a2+z2/b2
, (8)

and similarly for the other μ, where a and b are variational
parameters. The six 1s states have the same symmetry as χvalley
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and, in the orbital space, the representations are given by

αA1 = 1√
6

(1,1,1,1,1,1),

αE =
{

1

2
(1,1,−1,−1,0,0),

1√
12

(1,1,1,1,−2,−2)

}
,

αT2 =
{

1√
2

(1,−1,0,0,0,0),
1√
2

(0,0,1,−1,0,0),

1√
2

(0,0,0,0,1,−1)

}
,

where the six entries correspond to the (+X,−X,

+Y,−Y,+Z,−Z) valleys, respectively, and 〈r|ψn〉 =∑
μ α

μ
n Fn,μuμeikμ0·r . These irreducible representations are

also important for the 2s states, which have a large overlap
with the donor nucleus; however, for states such as 2p, which
vanish at the donor site, the valleys remain decoupled and, to
a good approximation, Fn,μ is described by Eq. (5).

III. FAR-IR SPIN-VALLEY-ORBITAL CONTROL

In this section, we show how to achieve spin-selective
excitation of the donor ground state by exciting the system
with far-IR light through the spin-orbit split 1sT2 states. We
calculate the dipole moment for this transition and estimate the
achievable electron spin polarization. This approach should be
most effective for Bi donors due to the large nuclear mass and,
thus, spin-orbit splitting induced by Bi.

The spin-orbit splitting of the excited states of the donor
is negligible due to the strong dielectric screening and weak
spin-orbit coupling in silicon. However, in the vicinity of the
donor nucleus, the 1s states have a strong interaction with the
donor nucleus, which can enhance the spin-orbit splitting. In
particular,

Hso = �
2

2m2
0c

2
∇U × p · s ≈ �

2

2m2
0c

2

1

r

dUcc

dr
L · s (9)

where p, s, and L are the electron momentum, spin, and
angular momentum, respectively. The spin-orbit coupling
matrix elements in the 1sT2 manifold are given by [34]

λ = 3�
2

2m2
0c

2
〈Tx |1

r

dUcc

dr
Lz|Ty〉

≈ 3�
2

2m2
0c

2

∫
d3rF ∗

y Fxu
∗
yux

1

r

dUcc

dr
k0y sin k0y cos k0x. (10)

The 1sT2 states have a spin-one representation with respect
to L̂ and split into effective spin-1/2 and spin-3/2 manifold
separated by λ. The eigenstates |J,mJ 〉 are characterized by the
usual total angular momentum J and and z-angular momentum
mJ such that [35]

J = 1/2 : |1/2,1/2〉 =
√

2/3|T+ ↓〉 −
√

1/3|T0 ↑〉, (11)

J = 3/2 : |3/2,3/2〉 = |T+ ↑〉, (12)

|3/2,1/2〉 =
√

1/3|T+ ↓〉 +
√

2/3|T0 ↑〉, (13)

Here, |Tm〉 are the projections of L̂z eigenstates into the 1sT2

space.

TABLE I. Table of parameters relevant for far-IR spin-valley-
orbital control. Here, μ̄2

ab = 1
3

∑
i=x,y,z |〈b|i|a〉|2 is the average dipole

moment given in Debye.

P As Sb Bi

E1sT2;�7 − E1sA1 (meV)a 11.7 21.1 9.7 38.1
E1sT2;�8 − E1sA1 (meV)a − − 10.0 39.1
E2p0 − E1sA1 (meV)a 34.1 42.3 31.2 59.5
E2p± − E2p0 (meV)a 5.1 5.1 5.1 5.1
λ (meV)
Theory 0.02b 0.09b 0.34b 1.03b

Exp. − − 0.29a 1.0a

μ̄1sA1,1sT2 (D)
Theory 0.02c 0.04c 0.02c 0.05c

Exp. − − − ∼1d

μ̄1s,2p0 (D)
Theory 31e 25e 34e 15e

Exp. 13f 10–30g − −
μ̄1s,2p± (D)
Theory 59e 45e 65e 28e

Exp. 49h 33h − −
aExp., Ref. [29].
bTheory, Ref. [30].
cTheory, this work.
dExp., Ref. [31], see Ref. [29], p. 180 for reproduction of data.
eTheory, Ref. [32].
fExp., Ref. [8].
gExp., Ref. [33].
hExp., Ref. [32].

Taking Fμ to be of the form of Eq. (8) with a and b given
by the Kohn-Luttinger values [5,36] gives an estimate that
the spin-orbit interaction should be reduced from the atomic
value by a factor of 10−3–10−4 [34]. This rough estimate is
consistent with the calculated values (P, As, Sb, Bi) and the
measured values (Sb, Bi) shown in Table I.

A. Parity-forbidden transitions

Taking advantage of these spin-orbit split states for quan-
tum control requires optical addressing of these transitions.
Unfortunately, the 1sA1 → 1sT2 transition is neither dipole
nor Raman allowed within the single valley EMT. This is
because the 1s states are parity eigenstates within the EMT
with eigenvalue +1, while dipole transitions should change
the parity when it is a good quantum number. At the same
time, the absence of Raman transitions follows because the
1sT2 states are antisymmetric combinations of opposing valley
states, while the 1sA1 states are symmetric combinations; thus
a very large wave vector ∼k0 is required to induce a transition
between these states.

Although parity is preserved within the single valley EMT,
parity is not a good quantum number within the tetrahedral
group, thus, within the multivalley EMT these transitions
become dipole allowed. The dipole matrix element is given
by

μ = 〈T0|z|1sA1〉 = i√
3

∫
d3r

(
F ∗

T2,z
FA1,zz sin 2k0z

+ 4F ∗
T2,z

FA1,xz sin k0z cos k0x
)
, (14)
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(a) (b) (c)σ−
1sT2

J = 3/2

J = 1/2

||↓

mJ = 3/2

mJ = 1/2

1/31

1sA1

λ

F = I + 1/2

F = I − 1/2

A(I + 1/2)

− 2/3 1/3 2/3

πz

− 1/3 2/3

σ+

11/3

FIG. 2. Selection rules and Clebsch-Gordon coefficients for (a) left-hand-circularly polarized light σ−, linearly polarized light along the
z-axis πz, and (c) right-hand-circularly polarized light σ+. We also show the two hyperfine manifolds, however, this energy splitting is typically
smaller than the 1sT2 linewidth so is not resolvable in these transitions.

where we have approximated the product of Bloch functions
u∗

νuμ = 1 for all ν and μ. Similarly 〈Tm|x ± iy|1sA1〉/
√

2 =
μδm±. The polarization selection rules for the 1sA1 to 1sT2

triplet are analogous to the case for an s to p transition in a
spherically symmetric atom: light polarized along the z axis
(πz light) will excite the state T0, while circularly polarized
light x̂ ± iŷ (σ± light) excites the states T±, respectively. We
show the full selection rules, including the Clebsch-Gordon
coefficients in Fig. 2.

To calculate the dipole matrix elements, we use the recently
developed variational solutions for the 1s states for each donor
from Refs. [18,37]. These variational solutions, together with
the approximate form for Ucc, give the correct energies of
the six 1s states for the four group-V donors and give good
agreement with the measured hyperfine coupling of the 1sA1

ground state [18]. The results are shown in Table I for μ̄1sA1,1sT2

defined by μ̄2
ab = e

3

∑
i=x,y,z |〈b|i|a〉|2. This quantity is related

to the oscillator strength for the a → b transition

fab = 2m∗

e2�2
(Eb − Ea)μ̄2

ab, (15)

where m∗ = 3 (1/m|| + 2/m⊥)−1 is the average effective mass
for the Si conduction band. In Table I, we tabulate μ̄ab using
measured oscillator strengths and Eq. (15). The oscillator
strengths were taken from previously reported values based
on absorption measurements in doped samples [29]. We also
show the theoretical and experimental values for the 1s to
2p0,± transitions, which are about three orders of magnitude
larger. The forbidden 1sA1 to 1sT2 transition has only been
directly observed in absorption measurements on Bi doped
samples [29,31], which is consistent with the expectation that
Bi has the largest overlap of the 1s states with the nucleus.
(Note that this in contrast to the deep chalcogen donors in
silicon, where the 1sA1 to 1sT2 transitions are more readily
observable [38].) However, the measured dipole moment for
Bi donors is 20 times larger than what we calculate from
the variational wave functions. It is possible that umklapp
processes, neglected in the EMT, strongly contribute to this
transition or that the variational wave functions are inaccurate.
With all this taken into account, we conclude that, due to the
combination of a large spin-orbit splitting and dipole element,
Bi and Sb are the most promising donors for the purposes of
direct optical spin manipulations through the 1sT2 state.

Finally, we end this section by remarking that for all the
donors it would be possible to resonantly enhance this transi-
tion using strain and electric fields via the techniques described
in Sec. IV B. This would allow resonant manipulation via a
Raman transition from 1sA1 to a hybridized state of 2p0 and
2s and then to the 1sT2 states. As the method is similar to what
we describe below, we leave the detailed analysis to Sec. IV B.

B. Electron-nuclear spin polarization

The selection rules shown in Fig. 2 allow optical pumping
of any donor into an electron spin-polarized state by driving
the system with circularly polarized light. This process is
illustrated in Figs. 3(a) and 3(b) for x + iy polarized light [39].
In this section, we analyze this process in more detail and find
the pumping rates and total electron-nuclear spin polarization
as a function of the spin-orbit coupling. We consider the high
and low magnetic field regimes, which are defined by the
condition that the electron Zeeman energy is much larger or
smaller than the hyperfine splitting, respectively.

In the high-field regime, the electron and nuclear spins
decouple and we can describe the electron spin dynamics
independently of the nuclear spins. We take the control
field on resonance with the J = 1/2 manifold. Assuming the

J = 3/2

J = 1/2

||

mJ = 3/2

mJ = 1/2

(a) (b) |

|
R↑↓ω0 A I

↑
↓

mI = I

mI = I

(c)

R↑↓

ω0 A I
Low Field

High Field

FIG. 3. (Color online) (a) Electron spin polarization due to opti-
cal pumping with σ+ light. The spin-flipping optical pumping term
(dashed line) requires the spin-orbit coupling to be larger than the
1sT2 linewidth. (b) In the high-field regime, the electron and nuclear
spin are decoupled. The electron spin is polarized into the up state
(red) at the rate R↑↓ [see Eq. (20)]. (c) In the low-field regime, the
electron and nuclear spins are admixed by the hyperfine coupling
(vertical arrows). This competes with the optical pumping to drive
the system into the fully polarized electron-nuclear spin state (red).
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electron initially starts in the down state, for Rabi frequencies
� = μE/� � γ (E is the electric field amplitude) and short
times, we can make the approximation

|ψ〉 ≈ |↓〉 + c−|1/2,1/2〉 + c+|3/2,1/2〉, (16)

ċ+ = −(γ + iλ/�)c+ + i�/
√

3, (17)

ċ− = −γ c− + i
√

2/3 �, (18)

where the eigenstates |J,m〉 are given in Eq. (11) and c± ∼
�/γ � 1. Then the quasi-steady state is given by

|ψ〉 ≈ |↓〉 + i�

γ

(
�γ + iλ/3

�γ + iλ
|T+ ↓〉−

√
2

3

iλ

�γ + iλ
|T0 ↑〉

)
.

(19)

The optical pumping rate out of the state |↓〉 into the state |↑〉
is

R↑↓ = 2γ |〈T0 ↑|ψ〉|2 ≈ 4

9

�2

γ

λ2

(�γ )2 + λ2
. (20)

Therefore the minimal requirement to have rapid optical
pumping is that λ � �γ ≈ (0.01 − 0.1) meV, which is satisfied
for all the donors as shown in Table I.

If we allow for electron spin relaxation at rate 1/T1 � R↑↓,
then this optical pumping process leads to an electron spin
polarization given by

p = 1 + R↑↓T1

2 + R↑↓T1
≈ 1 − (R↑↓T1)−1. (21)

For Bi with resonant, far-IR light at an intensity of 10 W/cm−2,
μ = 1 D [40], and γ /2π = 1.5 GHz, we find �/2π = 200
MHz and R↑↓/2π = 80 MHz. The T1 depolarization time
varies from ≈1 s in nanodevices at large magnetic fields to
�1000 s in bulk samples [41–45], both much slower than the
polarization rate. Consequently, this optical pumping process
would lead to rapid polarization of the electron spin p > 0.999
in ∼100 ns. For P, As, and Sb, we suspect similar dynamics
to Bi because our estimate for the dipole moment is the same
order of magnitude (see Table I); however, unlike Bi, these
transitions have never been directly observed in these donors.

In the low magnetic field regime, we also need to take into
account hyperfine coupling. The Hamiltonian for the electron-
nuclear spin system is of the form

Hhf = �ω0sz − �ωnIz + �A s · I, (22)

where s(I) is the donor electron(nuclear) spin operator, I =
1/2,3/2,5/2, and 9/2 for P, As, Sb, and Bi, respectively,
ω0(n) is the Zeeman energy of the electron(nuclear) spin, and
A = (117.53,198.35,186.80,1475.4) MHz are the hyperfine
coupling constants for (P, As, Sb, Bi). The two fully po-
larized states |↑,I 〉,|↓,−I 〉 are eigenstates for any magnetic
field.

Taking the same configuration for the optical driving field as
the high-field regime, we can assume R↑↓ � A. In this case,
the nuclear spin will rapidly polarize with the electron spin
because the only pure electron spin up state is |↑I 〉. The other
mI states are admixed with the spin-down state through the
hyperfine coupling and are not steady states [see Fig. 3(b)]. In

this limit, the occupation probability pm of the states |↑,m〉 is
perturbatively suppressed in 1/R↑↓T1, i.e., pm ∼ pm−1R↑↓T1.
Therefore the electron-nuclear spin polarization pI is similar
to the case without the nuclear spins, and scales as

pI ≈ 1 + R↑↓T1

2 + R↑↓T1
≈ 1 − (R↑↓T1)−1. (23)

Similar to the high field regime, this allows for rapid polariza-
tion of the donor electron-nuclear spin system pI > 0.999 in
�100 ns.

We end this section by noting that strain will shift the
relative energies of the six valley states, which will admix the
states |3/2,±1/2〉 with |1/2,±1/2〉. When this strain coupling
is much larger than λ, then the polarization process will no
longer be effective because the eigenstates become pure spin
states. Using the values for the strain parameters in Si from
Ref. [46], we find that for P and As, the strain coupling is
equal to λ for strains around 10−5, while for Bi, this occurs
around 10−4. Strains as large as ∼10−3 are common in Si
nanodevices [47], indicating that this polarization process
is most applicable to Bi in nanodevices, but will also be
achievable in low strain environments, such as bulk samples,
for the other donors.

IV. NEAR-IR SPIN-VALLEY-ORBITAL CONTROL

In this section, we consider near-IR control of the donors
using two-photon transitions through the spin-3/2 donor
bound exciton states D0X (see Fig. 1). We calculate the
dipole matrix elements for transitions to even-parity states and
consider schemes using external electric fields and strain to
couple to odd-parity states of the donor. The D0X state forms
when exciton binds to the neutral donor state D0. Despite
the indirect band gap of Si, this transition is optically active
because the pointlike nature of the donor enables momentum
conservation during photon absorption or emission [24].

In Table II, we compile some of the relevant parameters for
near-IR control of the donors. It is important to note that, due
to Auger recombination processes, these states are far from
radiatively broadened and the ratio of their natural linewidth
to the radiative linewidth is τr/τ ≈ 4000 for P and As and
40 000 for Bi. As a result, creating an efficient optical interface
to the donor spin states with these states is challenging. They
have proven to be a powerful resource for electron-nuclear
spin to charge conversion for spin readout, spin control, and
state initialization [10–12,14]. Here we explore their potential
use for quantum control of the spin-valley-orbital states of the
donor.

To characterize these optical transitions it is important to
consider how the Coulomb interactions between electrons and
holes affect the D0X ground state. To treat this problem, we
use a Hartree-Fock approximation with the assumption the
two electron ground state is predominantly a spin-singlet in a
single orbital state with A1 symmetry [24,50]. This is a good
approximation because of the large orbital splittings of the
donor. For valley electron and hole envelope functions Fν

e and
Fh, respectively, the Hartree potentials take the form [24,50]

UeH = U (r) − eVe(r) − eVh(r), (24)

195411-5



M. J. GULLANS AND J. M. TAYLOR PHYSICAL REVIEW B 92, 195411 (2015)

TABLE II. Table of physical parameters relevant for near-IR
spin-valley-orbital control. As the free exciton recombination energy
is around 1.1545 eV [49], we can see that the D0X state has a
binding energy around 5 meV (note the Si conduction band gap
Eg ≈ 1.17 eV), τ is the D0X state lifetime limited by Auger
scattering, and τr is the radiative lifetime calculated from μ̄1sA1,D0X .

P As Sb Bi

ED0X − E1sA1 (eV)a 1.150 1.149 1.150 1.147

τ (μs)a 0.272 0.183 − 0.0086

μ̄1sA1,D0X (D)b 0.033 0.039 0.033 0.058

τr (μs)c 1100 750 1100 350

β2/β1

Exp. 0.24d 0.14d 0.32d −
Theory 0.06e − − −
β3/β1

Theory 0.03e − − −
β4/β1

Theory 0.02e − − −
aExp., Ref. [2].
bExp., Ref. [48].
cEstimated from μ̄1sA1,D0X .
dEstimated from the ratio of photoluminescence intensity for no-
phonon (P, As) or transverse-optical phonon sideband (Sb) transitions
ending in 1s versus 2s reported in Ref. [49].
eTheory, this work (neglects central cell corrections).

UhH = e2

4πε0εr
+ 2eVe(r), (25)

Ve(r) = − e

4πε0ε

1

6

∑
ν

∫
d3r ′

∣∣Fν
e (r ′)

∣∣2

|r − r ′| , (26)

Vh(r) = e

4πε0ε

∫
d3r ′ |Fh(r ′)|2

|r − r ′| . (27)

Within the single-valley EMT, this gives rise to the Hartree-
Fock (HF) equations for the two electrons and the hole

εeF
H
eν = (T̂ ν + UeH )FH

eν , (28)

εhF
H
h =

(
−�

2∇2

2mh

+ UhH

)
FH

h , (29)

where the index ν refers to the valley state and mh =
0.49(0.16)m0 is the heavy(light) hole mass.

To solve the HF equations, we use a pair of variational
solutions for the electrons and the holes. For the electrons, we
take a Kohn-Luttinger form for the variational wave function
shown in Eq. (8), while for the hole, we take a hydrogenic
wave function of the form [24]

FH
h = 1

2c5/2

r√
3π

e−r/2c, (30)

with c a variational parameter. FH
h vanishes at the origin, where

the donor potential is repulsive, and is spherically symmetric,
which is consistent with the symmetry of the valence band and
the symmetric form of UhH . To find the variational parameters,

we fix c and minimize the expectation value of Eq. (28) with
respect to a and b, and similarly for the hole, we fix a and b

and minimize the expectation value of Eq. (29) with respect to
c. Self-consistent variational solutions occur when these two
minimization procedures produce the same values for a, b, and
c. For the heavy hole, we find a = 2.79 nm, b = 1.60 nm, and
c = 1.34 nm, while for the light hole, we find a = 2.74 nm,
b = 1.57 nm, and c = 1.99 nm. This is to be compared to
the case for the D0 state where the Kohn-Luttinger values are
a = 2.51 nm and b = 1.44 nm [36].

A. Two-photon transitions to even-parity states

We now explore the potential for spin-selective Raman
transitions from the 1sA1 ground state to the even parity
excited orbital states of the donor such as the 2sA1 and
3sA1 states. The two electrons in the D0X ground state are
expected to primarily pair in a spin-singlet in the 1sA1 orbital,
as a result the nsA1 orbitals will become admixed with the
ground state through the Coulomb interactions between the
electrons and holes. Such two-photon transitions have been
used to explain some of the satellite emission lines observed in
photoluminescence spectra of the donor bound excitons [2,49].
In Table II, we list the ratio of the dipole moments for the
no-phonon transitions D0X → 1sA1 versus the D0X → 2sA1

states based on these early measurements [49].
We can also calculate this ratio using the Hartree-Fock

theory. Our variational solution has the same symmetry as
the ns states of the singly occupied donor, which allows the
expansion

∣∣ψH
eν

〉 =
∑

n

βn

∣∣ψν
ns

〉
, (31)

βn = 〈
ψν

ns

∣∣ψH
eν

〉 =
∫

drF ν∗
ns (r)FH

eν (r). (32)

We approximate the ns states by an orthogonal set of
hydrogenlike wave functions [51]

Fν
ns = 1√

π n5a2b
L

(1)
n−1(2ρ/n)e−ρ/n, (33)

ρ =
√

(x2 + y2)/a2 + z2/b2, (34)

where L
(1)
n−1 are the generalized Laguerre polynomials for the

ns states and we take the same values for a and b as the 1s

state to ensure orthogonality. The ratio of the dipole matrix
elements is then given by

μn′sA1,D0X

μnsA1,D0X

= βn′

βn

. (35)

In Table II, we tabulate these ratios for the first few 1s states.
In general, we find βn ∼ 1/n as n increases. We show the full
selection rules, including the Clebsch-Gordon coefficients, for
these transitions in Fig. 4

Additional two-electron transitions have also been observed
to the 1sE and 1sT2 states [2]. However, these states become
admixed with the D0X ground state through valley-orbit
interactions, which we have not included in the Hartree-Fock
analysis.
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(a) (b) (c)σ−

||↓

mJ = 3/2

1sA1

D0X
Jh = 3/2

|↑|
2sA1

β2

β1 β1/
√

3

β2/
√

3

πz

||↓1sA1

|↑|↓
2sA1

β1
2
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β1
2
3

β2
2
3

β2
2
3
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√

3

β2/
√

3

FIG. 4. Selection rules, Clebsch-Gordon coefficients, and overlap factors for exciting from the 1sA1 and 2sA1 states to the D0X state for
(a) left-hand-circularly polarized light σ−, linearly polarized light along the z-axis πz, and (c) right-hand-circularly polarized light σ+.

B. Two-photon transitions to odd-parity states

In this section, we show how to achieve two-photon transi-
tions to the np states by applying either a static electric field or
strain to the donor system. This additional control is required
because the hydrogenic model is a good approximation for the
donors and parity is a good quantum number. Parity can be
broken by applying a static electric field, which will mix ns

and np-like states. We analyze this case in Sec. IV B 1 below.
Alternatively, valley-orbit interactions can break the parity
symmetry because the tetrahedral group does not conserve
parity. Similar to the case in Sec. III, there is a direct transition
from the D0X state to the 2p0 states which are antisymmetric
combinations of the same valley states. This occurs with the
relative dipole moment

μ2p0,D0X

μ1sA1,D0X

≈ i

∫
d3r u∗

−zuzF
z∗
2p0

FH
ez sin k0z, (36)

Unfortunately, this is suppressed by a factor of ∼103 compared
to the nsA1 transitions, due to the rapidly varying Bloch phase.
In Sec. IV B 2, we show that these transitions are resonantly
enhanced for certain values of strain when the 2s states are
degenerate with the 2p states to within ∼(10 − 100) μeV.

1. Static electric field

When an electric field E is applied to the donor the single-
valley EMT is modified to

EFμ(r) = [T̂μ + U (r) + eE · r]Fμ(r). (37)

By analogy with Stark effect for a hydrogen atom, we can
write an ansatz for the 2p0 state in the ±k0z valley [5,18]

F±z
2p0

= Nz(1 + qz)e−
√

(x2+y2)/a2+z2/b2
, (38)

where N is a normalization constant, q, a, and b are variational
parameters and we took E parallel to the z-valley axis. For
each value of |E|, we minimize the energy expectation value
to find the variational parameters. For finite q, the symmetric
combination of these valley states has a direct overlap with
1sA1 Hartree-Fock orbital, which results in the ratio of dipole
moments

μ2p0z,D0X

μ1sA1,D0X

= 1√
3

∫
d3rF z∗

2p0
FH

ez . (39)

For small fields, we are justified in taking the zero-field
envelope function for the Hartree-Fock orbital because of the
weak dipole moments of the D0X state compared to the 2p0

state.
In Fig. 5, we show this ratio under the application of

experimentally relevant electric fields (note the donors are
ionized at electric fields around 2 V/μm [18]). We also plot
the relative shift in the energy of the 2p0 state and the D0X

state with applied electric field. For the D0X we used, the
Stark shift parameter 2p8 ≈ 33 μeV/(V/μm)−1 measured in
Ref. [14]. The shift in the D0X state is just a few-percent
of the binding energy, indicating the zero-field envelope is a
good approximation to the wave function. The shift in the 2p0

energy is much larger, but it is still small compared to the 2p0

binding energy. From the figure we see that at the optimal
value of the electric field, the ratio of the dipole moment to the
odd-parity 2p0 state is the same order as the ratios we found
for the even-parity transitions at zero field. Similar arguments
also hold for the various 2p± states. Thus we can conclude
that a static electric field is a realistic approach for achieving
two-photon transitions to these odd-parity valley-orbit states.

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

E  (V/µm)

ΔE2p0(E)/(E2p0(0) − Ec)
ΔED0X(E)/(ED0X(0) − EX)
μ2p0,D0X/μ1sA1,D0X

FIG. 5. (Color online) (Black) Relative dipole moment for op-
tical transitions from D0X ending in the odd-parity 2p0 state with
increasing electric field, which breaks the parity symmetry. (Blue/red)
Energy shifts of 2p0/D

0X states relative to their binding energy with
applied electric field. The peak in the dipole moment occurs when
both shifts are relatively small. For small fields, the dipole moment is
small because parity is only weakly broken, while for large electric
fields the 2p0 state becomes further shifted away from the donor site
where it has a large overlap with the 1sA1 state.
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FIG. 6. (Color online) (a) Spectrum of donor transitions for Si:P
from the D0 ground state to the excited D0 states and the D0X state
with increasing compressive force along the [001] axis. Note for P the
spin-orbit splitting of the 1sT2 and 2p states is negligible compared
to the linewidth of these states. (b) Energies of 2p and 2s states with
energy measured relative to the conduction band at zero detuning.
Resonances appear at specific strain values. Also shown are the states
for Si:Bi where resonances appear between 2s and 2p0 and 2p±
at similar pressures. (c) Avoided crossing between the symmetric
combination of lower-valley 2s� states and the four uppervalley 2pu

0

states for � = 10 μeV. Two of the five states repel each other due to
valley-orbit interactions, while the other three are unaffected.

2. Strain enhanced valley-orbit interactions

We now show that it is possible to achieve comparable
two-photon transitions to the 2p states without applying an
additional electric field. In Fig. 6, we show the shift in the
energy levels of the D0 and D0X states with a compressive
pressure along the [001] axis for phosphorous donors using
the model developed in Ref. [14]. For pressures around
5(30) MPa we see that the lower(upper) valleys of the 2s

states becomes resonant with the upper(lower) valleys of
the 2p0(±) states. In Fig. 6(b), we also show the 2sA1 state
for bismuth donors, which has the coincidence that these
resonances occur near the same value of the pressure around
15–20 MPa.

Within the single-valley EMT these states remain decou-
pled even under the application of a small electric field
because the electron is localized in opposite valleys. However,
when the valley-orbit interactions are included, these become
avoided crossings because the donor potential can induce
transitions between valleys. Looking more closely at the
2s�-2pu

0 crossing [�(u) refers to the lower(upper) valley states
under the application of strain], we can express these states
as

α2s�,± = 1√
2

(0,0,0,0,1,±1), (40)

α2pu
0 ,±x = 1√

2
(1,±1,0,0,0,0), (41)

α2pu
0 ,±y = 1√

2
(0,0,1,±1,0,0), (42)

The valley-orbit interactions are given by the matrix elements

�n,n′ = 〈ψn|U |ψ ′
n〉. (43)

Because of the odd-parity of the 2p0 states and the even parity
of the 2s states, this will only be nonzero for the states α2s�,+
and α2pu

0 ,−x(−y), in which case

� = 2i

∫
d3r u∗

zuxF
z∗
2s (r)U (r)Fx

2p0
(r) cos k0z sin k0x. (44)

A simple estimate suggests this should be ∼10−3 times the
valley-orbit splitting of the 1s states, which implies that it
can be as large as 10–40 μeV, depending on the donor. This
is comparable to the lifetime of these states. In Fig. 6(c),
we show a small region of pressure around this avoided
crossing for phosphorous. We see that the width of the
avoided crossing corresponds to about 1 MPa, indicating that
it would be possible to stabilize the system at this point with
suitable control of the stress. At the avoided crossing when
E2s�,+ = E2pu

0
, the eigenstates are given by

�E = � : α = 1√
6

(1,−1,1,−1; 1,1), (45)

�E = 0 : α =
{

1√
2

(1,1,0,0; 0,0),
1√
2

(0,0,1,1; 0,0),

1

2
(1,−1,−1,1; 0,0)

}
, (46)

�E = −� : α = 1√
6

(−1,1,−1,1; 1,1), (47)

where �E = E − E2pu
0

and it is should be understood that the
first four entries are associated with the 2pu

0 valley envelopes
and the last two entries with the 2s� valley envelopes. At this
resonance, the ratio of the dipole moments will then be given
by

μ2p0,D0X

μ1sA1,D0X

= 1

3

∫
d3rF z∗

2s FH
ez = 1

3

β2

β1
, (48)

where we took the zero-stress form for the Hartree-Fock
solution, which is valid approximation for these small stresses
because the ground state wave function is protected from
deforming by the large valley-orbit splitting. This results in
an enhancement of the dipole moment by a factor of ∼103

compared to the Eq. (36).
We end this section by noting that although strain is

common in silicon nanodevices (it can be as large as ∼10−3

corresponding to P ≈ 200 MPa [47]), the approach described
here would require additional static tuning of the strain to
bring the donor states near these resonances. Furthermore, in
this discussion we have only considered the influence of axial
strain, in realistic nanodevices there is also a contribution from
shear strain. Shear strain leads to additional energy shifts and
it changes the effective masses of the conduction band [52].
This latter effect will change the valley splittings, but will
not qualitatively change the character of these resonances.
Therefore the main challenge for exploiting these resonances
in nanodevices will be achieving the resonant strain condition
in a deterministic manner. Alternatively, mixing between s and
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p states might be induced by other effects such as proximity to
an interface. In bulk samples, these resonances should be more
readily achievable by applying a global stress to the sample,
as we have assumed in this section.

V. CONCLUSIONS

We have shown how to use far-IR or near-IR optical fields
to achieve spin selective excitation of the group-V donors from
the ground state to excited orbital states. In the case of far-IR
light, we calculated the dipole moments for transitions which
are parity-forbidden within the hydrogenic approximation for
the donors, but are allowed due to valley-orbit interactions.
These transitions have only been directly observed in the case
of the Bi donor. For Bi, our calculated dipole moment disagrees
is two orders of magnitude smaller than the estimate based
on these absorption measurements. This suggests that further
experimental and theoretical work is required to account for
such a large discrepancy. We then showed that these transitions
obey selection rules consistent with excitation from a J =
1/2 ground state to spin-orbit split J = 3/2 and 1/2 excited
states. This enables optical pumping into electron-nuclear spin
polarized states through the application of circularly polarized
light. We calculated the timescale and final polarization for
this process and found it is most promising for Bi donors,
due to their large spin-orbit splitting and strong valley-orbit
interactions.

For near-IR light one can make use of the J = 3/2 donor
bound exciton state D0X, which has weak, dipole allowed
transitions from the donor ground state to D0X. We used a
Hartree-Fock variational solution to the electron-hole wave
functions for this state. Using this solution we estimated
the relative strength of the transition from the 1sA1 ground
state to D0X versus the transitions from the nsA1 excited
states to D0X. For the 1s versus 2s transitions, our calculated

values agree with previous experimental measurements within
a factor of five. Resonant excitation on these two transitions
would enable spin-selective, two-photon � transitions from
the ground state to the nsA1 excited states. We then showed
that one can achieve similar � transitions to 2p states by
breaking the parity symmetry present within the hydrogenic
approximation for the donors. We considered two approaches.
In the first approach, an applied electric field directly breaks
the parity symmetry and admixes the nsA1 states with 2p

states. The second approach uses strain to bring the 2s and 2p

states into resonance. In this case, the valley-orbit interaction
is resonantly enhanced and the antisymmetric combination of
2p valley states becomes strongly admixed with the symmetric
combination of 2s valley states. This enhances the � transition
from the 1sA1 to the 2p states by a factor of ∼103 at zero
applied electric field.

We anticipate that these results will help guide future
spectroscopic investigation of the donors. In particular, many
of the effects investigated here probe the poorly understood
interaction between the donor bound electrons and holes and
the donor nucleus. For quantum information applications,
these results provide a path forward for achieving full optical
quantum control and state preparation of group-V donors, as
well as a coherent interface between donor spin qubits and
single photons [53].
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