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Ballistic transport in graphene antidot lattices
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We observed commensurability magnetoresistance arising from ballistic electron transport in a triangular
antidot lattice of high-mobility graphene. For both the monolayer and bilayer, magnetoresistance peaks were
observed at the commensurability magnetic fields of the cyclotron orbit with an antidot lattice. This condition
was approximately unchanged for massless and massive Dirac fermions. The peaks appeared when the carrier
mean free path was roughly larger than the lattice constant of the antidot, which indicates that the effect stems
from the short-range characteristics of the carrier’s scattering with antidots. We also found that the magnitude of
the commensurability peak diminished with changing the gate voltages to the charge neutrality point. This arose
from the screening of the charged impurity in graphene, which is dependent on the carrier density.
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I. INTRODUCTION

Graphene has attracted interest in a variety of fields because
it is expected to be a promising candidate for next-generation
devices [1,2]. It has a number of significant features [1,2]
that differ from conventional electron systems, and which
have been extensively studied since its discovery [3]. One
of its remarkable features is the linear dispersion relation
of its electronic band structure. Unlike conventional electron
systems, external fields do not change the magnitude of
velocity. The other feature is a bipolar property. Also, graphene
has a π -Berry phase. It would seem that all these would affect
the wave packet dynamics of a carrier in graphene, but this
remains unclear. The most logical way to study the wave
packet dynamics would be to measure the transport properties
in the ballistic regime. Although there have been a number of
experimental studies in the diffusive regime, ballistic transport
has been less explored. In this paper we investigate one such
phenomenon, commensurability magnetoresistance, using the
antidot lattices of high-mobility graphene.

An antidot lattice is a two-dimensional conductor with a
regular array of holes. In low magnetic fields, the motions
of the ballistic electrons are chaotic because cyclotron orbits
are interrupted by successive collisions with the antidots. [See
Fig. 1(a).] However, at magnetic fields of the commensurate
condition, regular orbit connecting antidots appear (orbits 4
and 5) [4–7]. The simplest commensurability condition is for
orbit 4, given by

2Rc = a, (1)

where Rc = �kF/eB is a cyclotron radius and a is the lattice
constant. (kF is the Fermi wave vector and B is a magnetic
field.) This is the condition in which runaway orbits connecting
to nearest-neighbor antidots appear. Electrons propagate one
dimensionally via successive collisions with antidot lattices,
which results in a magnetoresistance peak. There are other
regular orbits whose center of gravity is unchanged, but these

do not contribute to the commensurability magnetoresistance
peaks.

In terms of conventional two-dimensional electron systems,
the electronic properties of antidot lattices have been exten-
sively studied both theoretically and experimentally using
GaAs/AlGaAs heterostructures since the 1990’s [4,8–13].
Commensurability magnetoresistance has been used in studies
on composite fermions [14,15], quasiparticle dynamics in
the Andreev reflection process [16,17], Hofstadter’s butterfly
energy diagram [18], and to determine the shape of a Fermi
surface [19]. In terms of graphene, there have been a few
experiments on antidot lattices in diffusive regimes [20–22].

II. EXPERIMENT

To observe ballistic electron transport, the mean free
path of a carrier should be larger than the typical structure
of the device. The experiments performed in the present
study were done using triangular antidot lattices made of
high-mobility graphene. We fabricated graphene used in this
study by mechanically exfoliating high-quality Kish graphite.
Graphene was transferred directly on a SiO2/Si substrate or
on a thin h-BN flake that was mechanically exfoliated on
a SiO2/Si substrate. The antidot structure was formed by
electron beam lithography and oxygen plasma etching. Electric
leads were connected to graphene to perform four-probe
measurements. The Si substrate was conducting and served
as a back gate to change the carrier density. Resistance
measurements were done with a standard lock-in technique.
The typical excitation current was 100 nA. A magnetic field
was applied with a superconducting solenoid. Figure 1(b)
shows the optical micrograph of a graphene antidot device
on h-BN. The values of carrier mobility for devices without
an antidot lattice structure were about 3 × 104 cm2/V s and
1.5 × 104 cm2/V s for graphene on h-BN flakes and on SiO2

substrates, respectively. (See the Appendix.) The mean free
paths lF at the high carrier density (n) regime were larger
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FIG. 1. (Color online) (a) Schematic views of triangular antidot
lattice and electron orbits in a magnetic field. a is the distance between
the centers of the neighboring antidots and d is the diameter of an
antidot. Generally, electron orbits are chaotic in low magnetic fields.
Left: However, regular orbits exist under particular conditions. Right:
Orbits 1 and 2 enclose one and three antidot(s), respectively. Orbit 3
does not enclose any antidot. The centers of gravity are fixed for these
orbits. Orbits 4 and 5 are runaway orbits. (b) Optical micrograph of a
graphene device on an h-BN flake. A bar is 10 μm. (c) Carrier density
n dependence of mean free path lF of two-dimensional graphene, i.e.,
without antidot structures. Dashed lines indicate some of the values
of a for comparison with lF . Carriers are electrons for n > 0 and
holes for n < 0. (d) SEM micrograph of graphene antidot device on
BN. Right: A bar is 10 μm. Left: A bar is 1000 nm.

than the antidot lattice periods. As shown in Fig. 1(c), lF
reached about 600 nm (for antidot lattice samples with a = 400
and 300 nm) and 250 nm (for a = 200 nm). The values of
a in the actual device and the diameter d of the antidots
were determined by a scanning electron microscopy (SEM)
micrograph [Fig. 1(d)].

III. RESULT AND DISCUSSION

Characteristic magnetoresistance arising from the antidot
lattice structure was observed in the low magnetic field regime.
Figure 2(a) shows a color scale mapping of dRxx/dB as a
function of carrier density n and magnetic field B for an
antidot sample with a = 400 nm (d = 180 nm). Here, Rxx

is a diagonal resistance. Fan-shaped stripes in high magnetic
fields are peaks due to the Shubnikov–de Haas (SdH) effect.
The antidot sample was verified to be a monolayer because
all the Landau levels, including the zero mode appearing at
the charge neutrality point, had the same degeneracy [3].
In the low magnetic field regime, we could discern broad

FIG. 2. (Color online) Commensurability magnetoresistance of
monolayer graphene antidot lattice. (a) A color scale mapping of
dRxx/dB for a graphene antidot sample with a = 400 nm made on an
h-BN flake. Rxx is the diagonal resistance, and B is the magnetic field.
a is an antidot lattice constant. n is the carrier density. Carriers are
electrons for n > 0 and holes for n < 0. Dashed lines denoted by α are
commensurability magnetoresistance peaks, 2Rc = a. Dashed lines β

are for a condition 2Rc = (a − d), i.e., the cyclotron diameter equals
the minimum conducting channel width (a − d). The illustration
shows typical carrier orbits under these conditions. (b) A mapping
for a graphene antidot sample with a = 200 nm made on a SiO2

substrate. (c) A mapping for a 2D graphene sample (without an antidot
structure).

magnetoresistance peaks (dashed line α) originating from the
antidot structure. The peak positions shifted to higher magnetic
fields for smaller antidot period samples, as seen in the results
[Fig. 2(b)] for antidots with a half lattice constant (a = 200 nm,
d = 100 nm). In samples without antidots, no such peaks
were visible in the low magnetic field regime [Fig. 2(c)].
The observed Vg dependence of the peak magnetic fields Bp

could be explained by commensurability magnetoresistance.
The dashed lines α are theoretical values of Bp for the basic
commensurability condition

Bp = (2�/ea)
√

π |n|, (2)

which was yielded from Eq. (1). Here, n = Cg(Vg − V0)/e, V0

is the gate voltage of the charge neutrality point, and Cg is a
gate capacitance.

The peak structure is clearly visible in traces of the magnetic
field sweep, as shown in Fig. 3(a). The red arrows are peak
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FIG. 3. (Color online) Analysis of commensurability peak posi-
tions. (a) B dependence of normalized diagonal resistivity Rxx/Rxx(0)
for different gate voltages. Vg is the gate voltage. B is the magnetic
field. Rxx is the diagonal resistance. Rxx(0) is for zero magnetic field.
Data are for a monolayer graphene antidot device with a = 400 nm
(left) and 200 nm (right). Data for different Vg’s are offset. Red
arrows are commensurability peak positions for the nearest-neighbor
antidots. Black arrows are commensurability peak positions for the
next-nearest-neighbor antidots. (b) Dependence of peak magnetic
field Bp on carrier density n. Dashed lines are Bp calculated using the
commensurability condition. (c) Numerical simulation of diagonal
magnetoresistance. Rxx is the diagonal resistance. Rxx(0) is Rxx at
zero magnetic field. Data were offset. Rc is the cyclotron radius.
a is an antidot lattice constant. lF is the mean free path. Arrows
at a/Rc ≈ 2 and 1.2 indicate commensurability conditions for the
nearest-neighbor and the next-nearest-neighbor antidots, respectively.

positions calculated with Eq. (2). With increasing Vg from
Vg = −50 V (top), the peak magnetic fields shifted to the
lower magnetic fields, and near the charge neutrality point
(Vg ∼ 0 V), they turned and started shifting to the higher
magnetic fields. Large peaks visible near the neutrality point
are due to Landau levels with index N = 0 or ±1.

To investigate the details of the commensurability condi-
tion, we plotted the n dependence of the peak magnetic fields
in Fig. 3(b) for antidot devices with different values of a,
together with peak positions calculated with 2Rc = a. The
peak magnetic field had a square-root dependence of the carrier
density as in Eq. (2). This is fundamentally different from the
behavior of the SdH oscillation peaks. They have a linear
dependence on n because the degeneracy of the Landau level
is proportional to the magnetic field. Peaks for samples with
smaller values of a appear in higher magnetic fields because
Bp is inversely proportional to the lattice constant, as expected
from Eq. (2).

Generally, ballistic transport requires a sufficiently long
mean free path lF . An issue that needs to be considered is how
long the lF should be for observing commensurability peaks.
Figure 3(c) shows the numerically calculated magnetoresis-

tance of Dirac electrons for a triangular antidot lattice using a
Kubo-type formula [5],

σij = A

∫ ∞

0
〈vi(t) · vj (0)〉 exp(−t/τ )dt, (3)

where A is a constant, σij is a conductivity, vi and vj are
the i and j components of velocity, and 〈· · · 〉 is the average
over phase space. Conductivity components σxx and σxy were
calculated using Eq. (2), and ρxx was obtained by tensor
inversion. The parameter for this simulation is d/a = 0.4,
which is close to that of the experiment. The orbits and
velocities were calculated semiclassically. It was assumed that
there is no potential variation in the conducting channel, that
a carrier orbit consists of a circle or arcs of circles, and that
specular scattering occurs at the boundary of the antidots. A
peak structure was clearly visible around a/Rc = 2, which is
equivalent to the basic commensurability condition. (Note that
a/Rc is proportional to the magnetic field.) The peak survived
at lF ∼ a, which could be realized in the present experiment.
Qualitative agreement between the theory and the experiment
ensured that the peak structures in the magnetoresistance
were due to commensurability magnetoresistance. The fact
that a basic commensurability magnetoresistance peak was
observable in magnetic fields as low as lF = a indicates that
it does not necessarily require a long runaway orbit, but rather
occurred from short-range scattering characteristics, as pointed
out by Ishizaka and Ando for conventional two-dimensional
electron gas (2DEG) [7]. Skipping orbits connecting the
nearest-neighbor antidots have an important contribution to
the commensurability peak.

Commensurability magnetoresistance was also observed in
bilayer graphene. The left panel in Fig. 4(a) shows the results
in a bilayer antidot sample with a = 400 nm (d = 180 nm).
The results in monolayer graphene with the same value of a are
shown in the right panel, for comparison. In the low magnetic
field, a broad peak structure due to the antidot structure was
also observed in the bilayer, as indicated by the dashed lines
in Fig. 4(a). The peaks satisfied the basic commensurability
conditions, as in the monolayer case. In high magnetic fields,
SdH oscillation showed a zero energy Landau level with
double the degeneracy of the monolayer graphene. Figure 4(b)
shows traces of magnetoresistance for n = 3.3 × 1012 cm−2.
The magnetic field for commensurability is approximately the
same, but the SdH peaks at the same value of n are inverted
between the monolayer and bilayer. Results of Bp for other n

are plotted in Fig. 4(c). Commensurability magnetoresistance
peaks could be described by Eq. (1) for both monolayer and
bilayer graphene.

So far, we have seen the peaks for the basic commensu-
rability condition. It is also possible for commensurability
with the next-nearest antidots [orbit 5 in Fig. 1(a)]. The
commensurability condition is then

2Rc =
√

3a. (4)

Peaks for this condition correspond to small peaks at a/Rc =
2/

√
3 ≈ 1.2 in the simulation [Fig. 3(c)]. In Fig. 3(a),

calculated magnetic fields for this commensurability condition
are indicated by black arrows. Near these magnetic fields,
hump structures or the indications are visible, though weak, at
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FIG. 4. (Color online) Commensurability peaks for bilayer
graphene antidots. (a) Color scale mapping of dRxx/dB for graphene
antidots with a = 400 nm made on h-BN flakes. Rxx is the diagonal
resistance. B is the magnetic field. n is the carrier density. a is the
antidot lattice constant. The left panel is for bilayer graphene. The
right panel is monolayer graphene. The dashed line is the calculated
commensurability peak position. (b) B dependence of resistance for
monolayer and bilayer antidot samples. Values of the carrier density
n were 3.3 × 1012 cm−2. Rxx(0) is the diagonal resistance at zero
magnetic field. Data for 2L are shifted by 0.5. (c) Dependence of Bp

on the carrier density. Bp is the magnetic field of a commensurability
peak. Red points are for monolayers and blue points are for bilayers.
Dashed lines are theory.

some gate bias voltages. Those peaks are also much smaller in
magnitude than the basic peak as in the simulation because
the carriers travel a longer distance before colliding with
the next antidot. To observe large peaks, samples with a
larger lF are required, which can be attained by reducing
impurity scattering. The magnitude of the commensurability
magnetoresistance peaks is not only determined by a mean free
path but also by the aspect ratio that determines the width of the
conducting channel. It becomes increasingly difficult to satisfy
the commensurability condition for larger cyclotron diameters
because of geometrical restrictions. It would be possible that
the quality of graphene became a bit, but not significantly,
lower than that of a two-dimensional one because of the
additional fabrication process to drill the antidots. However, by
comparing the calculation with the experiment, lF was close to
1 because of the presence of the main commensurability peaks.

As shown in Fig. 3(a), the magnitude of the commensu-
rability magnetoresistance diminished as Vg approached the

charge neutrality point, i.e., Vg ∼ 0 V, and it is hardly visible
around its vicinity. This can be understood by the variation
of lF with carrier density: lF decreased with decreasing |n|,
as shown in Fig. 1(c). This resulted from screening of the
impurity potential, that becomes less effective in the low
carrier density regime [23]. The mean free path is expected to
decrease as ∝√

n, which is in good qualitative agreement with
the experimental results, especially for the higher-mobility
samples.

The origin of the observed peak differs from the boundary
scattering resistance in one-dimensional wire or thin films
[24–26]. The boundary scattering that intervenes with cy-
clotron motion leads to a magnetoresistance peak. The peak
appears when the wire width or thickness of the film w

satisfies a condition 2Rc = 2w/0.55. If an antidot lattice is
regarded as a network of wires, the minimum width of the
conducting channel is (a − d). The peak magnetic fields for
boundary resistance were estimated to occur at 2Rc = 950
and 510 nm for monolayer antidot samples with a = 400 and
200 nm, respectively. The corresponding peak magnetic fields
are smaller by factors of about 0.39 and 0.42 than the values
for the commensurability peak position.

One other type of commensurability effect is relevant to
the cyclotron radius and antidot geometry: threshold magnetic
fields for observing the SdH effect. Plotted with dashed lines
β in Figs. 2(a) and 2(b) are the threshold magnetic fields
for observing the SdH effect, which were calculated with
2Rc = (a − d). This is a condition in which a cyclotron
diameter equals the minimum conducting channel width. In
low magnetic fields, the SdH effect is suppressed because
every cyclotron motion is interrupted by collisions with
antidots. Complete cyclotron motion becomes possible in
larger magnetic fields [orbits 1 and 2 in Fig. 1(a)], but the phase
volumes for these orbits are still small because chaotic orbits
are dominant. For larger magnetic fields where the cyclotron
diameter becomes close to or smaller than (a − d), the phase
volume is dominated by fixed orbits [orbit 3 in Fig. 1(a)], and
the SdH effect becomes distinct. For this condition, although
there are orbits that collide with the antidots, the phase volume
for those states diminishes rapidly with increasing magnetic
fields. The threshold is irrelevant to the poor mobility of
graphene because a SdH effect as low as B = 1 T was observed
in the samples with no antidot lattice.

IV. SUMMARY

Magnetotransport of a graphene antidot lattice was studied
using high-mobility graphene. For both monolayer and bilayer
graphene, we observed commensurability magnetoresistance
peaks. The magnetic fields of the peaks were approximately
the same in monolayer and bilayer graphene. The basic
commensurability peaks occurred when the distance between
the nearest antidots equaled the cyclotron diameter. A numer-
ical simulation based on the Kubo-type formula qualitatively
reproduced the magnetoresistance traces observed in the
experiment. The fact that the commensurability peak appears
when lF is larger than about a indicates that short-range
scattering characteristics are an important mechanism in the
commensurability magnetoresistance.
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APPENDIX: BASIC CHARACTERISTICS OF SAMPLES

1. Mobility and mean free path of graphene

The mobility of graphene was estimated using separate 2D
graphene samples without antidot structures. Graphene and
h-BN flakes for these samples were exfoliated from the same
batch of crystals. Graphene was transferred on h-BN using a
reported technique [27–29]. Excepting transfer processes, all
the samples were made using the same fabrication process.
For 2D graphene samples, dependences of ρxx on carrier
density n are plotted in Fig. 5(a). Apparently the full width
at half maximum of the peak structure and values of ρxx

for |n| > 0.5 × 1012 cm2 are significantly smaller in h-BN
graphene than in SiO2 graphene. This is due to the diminished
carrier scattering and potential fluctuation in h-BN graphene.
Figure 5(b) shows the carrier density n dependence of mobility.
Here, mobility μ0 was estimated by

μ0 = 1/[|n|eρxx(0)], (A1)

where ρxx(0) is a diagonal resistivity at zero magnetic field.
μ0 for graphene on h-BN reached about 2.1 × 104 cm2/V s
and 3.2 × 104 cm2/V s at electron and hole densities of 3 ×
1012 cm−2, respectively. Both of them increased to about ∼
7 × 104 cm2/V s almost linearly at carrier densities of ∼ 2 ×
1011 cm−2. In contrast, for graphene on SiO2, the electron and
hole mobilities varied from 1.5 × 104 to 3.7 × 104 cm2/V s in
the same range of carrier density. The mean free path l was
estimated using

l =
(μ

e

)
�kF, (A2)

where kF = √
π |n|.

2. Determination of number of layers

The layer number of graphene was verified by analyzing
the green signal intensity of the digitized optical images. We
also used Landau fan diagrams obtained by measuring the
Vg and B dependences of the Shubnikov–de Haas effect as
shown Figs. 2(a)–2(c). The detailed Vg dependence of Rxx

and σxy at high magnetic fields is shown in Figs. 5(c) and 5(d)
for antidot samples with a = 400 and 200 nm, respectively.
Measurements were done at about B = 7 T and T = 4.2 K.
The SdH effect indicated that each Landau level had an

FIG. 5. (Color online) (a) n dependence of ρxx for a 2D graphene
device fabricated to estimate the quality of graphene. (Samples are
different from antidot lattices but were made from the same batch
of crystal using the same fabrication process.) T = 4.2 K. B = 0 T.
Blue and red curves are for graphene on h-BN and SiO2 substrate,
respectively. (b) n dependence of μ0 for a 2D graphene device. The
blue and red curves are for graphene on h-BN and the SiO2 substrate,
respectively. [The same samples as (a).] (c) Vg dependence of Rxx

and σxy for a monolayer antidot device with a = 400 nm. T = 4.2 K.
B = 7.1 T. (d) Vg dependence of Rxx and σxy for a monolayer antidot
device with a = 200 nm. T = 4.2 K. B = 7.5 T. (e) Vg dependence
of Rxx of a monolayer antidot sample with a = 400 nm. T = 4.2 K.
B = 0 T. (f) Vg dependence of Rxx of a monolayer antidot sample
with a = 200 nm. T = 4.2 K. B = 0 T.

identical degeneracy—fourfold—which was verified from
the Hall conductivity calculated from σxy = ρxy/(ρ2

xx + ρ2
xy),

which showed half-integer steps at σxy = 4e2(N + 1/2)/h,
(N = 0, ± 1, ± 2, ± 3, . . .). These facts are hallmarks of
single layer graphene.

The Vg dependences of Rxx at zero magnetic field are
plotted in Figs. 5(e) and 5(f) for monolayer antidot samples
with a = 400 and 200 nm, respectively.
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