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Theory of strain in single-layer transition metal dichalcogenides

Habib Rostami,1,2,* Rafael Roldán,3 Emmanuele Cappelluti,4 Reza Asgari,2 and Francisco Guinea3,5

1NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56126 Pisa, Italy
2School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran

3IMDEA Nanociencia Calle de Faraday, 9, Cantoblanco, 28049, Madrid, Spain
4ISC-CNR, Deptarment of Physics, University of Rome “La Sapienza,” P.le A, Moro 2, 00185 Rome, Italy

5School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
(Received 16 August 2015; published 5 November 2015)

Strain engineering has emerged as a powerful tool to modify the optical and electronic properties of
two-dimensional crystals. Here we perform a systematic study of strained semiconducting transition metal
dichalcogenides. The effect of strain is considered within a full Slater-Koster tight-binding model, which provides
us with the band structure in the whole Brillouin zone (BZ). From this, we derive an effective low-energy model
valid around the K point of the BZ, which includes terms up to second order in momentum and strain. For a
generic profile of strain, we show that the solutions for this model can be expressed in terms of the harmonic
oscillator and double quantum well models, for the valence and conduction bands respectively. We further study
the shift of the position of the electron and hole band edges due to uniform strain. Finally, we discuss the
importance of spin-strain coupling in these 2D semiconducting materials.
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I. INTRODUCTION

The outstanding stretchability of the new families of 2D
crystals makes them excellent candidates for their use in
strain engineering [1]. This opens the possibility to fabricate
nanodevices in which the optical and electronic properties
are tunable by controlled application of external strain. Sin-
gle layer of semiconductor transition metal dichalcogenides
(TMDs) with the form MX2 (where M = Mo, W is a transition
metal, and X = S, she is a chalcogen atom) can sustain
large amounts of strain before rupture of the membrane.
For these materials, a direct-to-indirect band gap transition
is expected for uniaxial/biaxial tensile strain of the order of
∼2%–3% [2,3], and a semiconducting-to-metal transition has
been predicted for 10%–15% of tensile biaxial strain [4,5].

Like graphene, low-energy excitations of insulating MX2

are mainly localized close to the two inequivalent points K and
K ′, also denoted as “valleys,” paving the way for the possibility
of valleytronics, namely convey the information in the valley
degree of freedom. The peculiarities of these materials suggest
also possible ways to manipulate the valley-bit. The effect of
strain on standard silicon semiconductor physics is known to
lead to an enhancement of the electron and hole mobilities,
and to the valley-degeneracy breaking [6]. However, silicon
devices cannot sustain strains larger than ∼1.5%, whereas
single layer TMDs support strength deformations higher than
10% [7,8]. The strong spin-orbit coupling (SOC) indeed
yields a different spin-polarization of the valence band.
Therefore several degrees of freedom are strongly entangled
in TMDs [9,10]. Tuning the spin-orbit coupling of mechanical
deformation has been explored in conventional GaAs based
semiconductors and quantum wells where a linear strain
dependence is found in this coupling [11–13]. Indeed very
recently, a coupling between single electron spins and the
motion of mechanical resonators based on crystal strain has

*habib.rostami@nano.cnr.it

been reported experimentally [14]. Therefore controlling and
tailoring their properties, at the applicant as well as at the
theoretical level, represents thus the current challenge for a
wide community of scientists.

In the last years, graphene has become the natural platform
to test strain engineering physics. One of the main theoretical
studies of deformed graphene-based material was done by
Kane and Mele [15] who used a tight-binding model to study
the effect of long-wavelength deformations on the low-energy
electronic structure of carbon nanotubes. They showed that
the effects of the tubule geometrical features and symmetry
on its electronic structure are included through an effective
vector potential. Such gauge field has been also predicted
by Suzuura and Ando [16] in the context of electron-phonon
scattering in carbon nanotubes, and a group symmetry based
survey has been done by Mañes [17]. For specific profiles
of strain, it was predicted theoretically [18] and then proved
experimentally [19–21] that pseudo-Landau level quantization
corresponding to strong effective magnetic fields can be real-
ized in graphene. Moreover, this kind of pseudomagnetic field
is also observed in an artificial molecular graphene assembled
by atomic manipulation of carbon monoxide molecules over
a conventional two-dimensional electron system on a copper
surface [22].

Strain engineering methods have been applied to other 2D
crystals, and recently the possibility to tune the band gap
with strain has been experimentally proven for MoS2 [23–26]
and WS2 [27–29]. Moreover, spatially modulated biaxial
tensile strain has been applied to single layer MoS2, leading
to the realization of an optoelectronic crystal consisting of
artificial atoms, due to the spatial modulation of the band
gap in the sample [30]. Piezoelectricity and piezoresistivity
effects have been recently reported for single-layer and
multilayer MoS2 [31,32]. Therefore there is a need for a deeper
understanding of the effect of external nonuniform strain on
the physical properties of semiconductor TMDs.

Here, we theoretically investigate the effect of strain on the
electronic structure of a monolayer MX2. Our main focus will
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be to study the effect of inhomogeneous strain on the low-
energy physics of the system. We start by considering a Slater-
Koster tight-binding model which contains the relevant orbital
character in the valence and conduction band, originated from
d3z2−r2 , dxy , and dx2−y2 orbitals of the M metal atom, and px ,
py , and pz orbitals of the chalcogen atom X [10,33]. Strain
is considered in this model by means of a modification of the
corresponding hopping terms [25]. From that model, we use
the Löwdin partitioning method [34] to obtain an analytical
two-band k · p Hamiltonian valid in the vicinity of the K

points of the Brillouin zone (BZ). This model differs on the
previously used Dirac-like Hamiltonian [35,36] in the fact that
we include terms up to second order in momentum and strain,
which are needed to capture some of the main features of the
MX2 electronic band dispersion at low energies. One of the
consequences is that strain leads to the appearance of not only
one pseudo gauge field in the theory, but also to the existence
of several pseudovector potentials that couples in the relevant
terms in the low-energy theory for MX2, and which are absent
in the well-known case of strained graphene [37,38].

We further apply our model Hamiltonian to the case of arc-
shaped deformation, and find that the corresponding solutions
are well described in terms of the harmonic oscillator and
double quantum well models, for the valence and conduction
bands, respectively. Finally, we study the strain-induced
change of the valence and conduction band edges, as well as
the coupling between spins and strain on this family of TMDs.

The paper is organized as follows. In Sec. II, we consider
the effect of strain within a full Slater-Koster tight-binding
model. From it, a low-energy k · p Hamiltonian is derived in
Sec. III, and the impact of pseudovector fields on the electronic
properties is discussed in Sec. IV. In Sec. V, we do an analytical
analysis of the low-energy electronic spectrum of single layer
TMDs using single-band pictures. In Secs. VI and VII, we
discuss the effect of strain on the position of the valence-
band and conduction-band edges, and spin-orbit coupling,
respectively. Our main results are summarized in Sec. VIII.

II. TIGHT-BINDING MODEL FOR STRAINED TMDS

Monolayer MoS2 is a direct band gap semiconductor with
the gap placed at the K and K ′ points of the hexagonal BZ. Ab
initio calculations show that there are two additional secondary
extrema: a local maximum of the valence band at the � point,
and a local minimum of the conduction band at approximately
at the Q point, midway between � and K point [39]. These
features, which are not relevant to the main optical properties
of the system, might play an important role in transport
properties [40,41]. The low-energy physics of monolayer
MoS2 around the K and K ′ points was first described by
a simple massive Dirac Hamiltonian [35]. More accurate
approximations have been developed later, as tight-binding
methods [33,42–44] and k · p approximations [42,45], which
goes beyond the massive Dirac model, and account for the
presence of trigonal warping and diagonal quadratic terms in
momentum. In this section, we describe the TB theory that
will be used as starting point to consider strain effects on the
electronic band structure of MoS2.

The main features of the band structure of monolayer MoS2

in the whole BZ are well captured by the Slater-Koster TB

 
 

 

 

 

 

FIG. 1. (Color online) A top view schematic of monolayer MoS2

lattice structure. Blue (orange) circles indicate Mo (S) atoms. The
nearest-neighbor (δi) and the next-nearest neighbor (ai) vector have
been shown in the figure.

model of Ref. [33], which includes 11 bands corresponding
to the d orbitals of the metal atom and to the p orbitals
of the chalcogen atoms. Remarkably, the relevant physics
of monolayer MoS2 around the gap is covered by a smaller
subspace, which can be obtained by performing an appropriate
unitary transformation that transform the p orbitals of the top
and bottom S layers into their symmetric and antisymmetric
combinations with respect to the z axis. For the single-layer
case, the resulting 11-band model can be decoupled in six
bands with even symmetry with respect to z → −z inversion,
and five bands with odd symmetry. Low-energy excitations
belong exclusively to the first block, so that we will disregard
the other states with different symmetry. Local spin-orbit
interaction can be as well included in a suitable way [10].
Diagonal terms ∝LzSz appear here to be dominant, so that
in good approximation each spin sector can be dealt with
separately [10]. Using the compact notation of Ref. [33], we
can consider the reduced Hilbert space:

�ψ = (
d3z2−r2 ,dx2−y2 ,dxy,p

S
x ,pS

y ,pA
z

)
, (1)

where the S and A superscripts of the p-orbitals refer to
symmetric and antisymmetric combinations pS

i = 1/
√

2(pt
i +

pb
i ) and pA

i = 1/
√

2(pt
i − pb

i ), the index i runs over the spatial
directions i = x,y,z, and the labels t and b refer to the top and
bottom sulfur planes, respectively. A top view of the crystal
lattice of MoS2 is sketched in Fig. 1. The TB Hamiltonian
defined by the base (1), including the local spin-orbit coupling
can be expressed in the real space as

H =
∑
i,μν

εμ,νc
†
i,μci,ν +

∑
ij,μν

[tij,μνc
†
i,μcj,ν + H.c.], (2)

where c
†
i,μ creates an electron in the unit cell i in the atomic

orbital labeled by μ = 1, . . . ,6 belonging to the Hilbert space
defined in Eq. (1). The Hamiltonian acquires a more compact
form once written in the k space:

H =
(

HMM HMX

HMX
† HXX

)
,

HMM = εM + 2
∑

i=1,2,3

tMM
i cos (k · ai),
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TABLE I. Slater-Koster tight-binding parameters for single-layer
MoS2. All terms are in units of eV.

Crystal fields ε0 −1.094
ε2 −1.512
εp −3.560
εz −6.886

Intralayer Mo-S Vpdσ 3.689
Vpdπ −1.241

Intralayer Mo-Mo Vddσ −0.895
Vddπ 0.252
Vddδ 0.228

Intralayer S-S Vppσ 1.225
Vppπ −0.467

HXX = εX + 2
∑

i=1,2,3

tXX
i cos (k · ai),

HMX =
∑

i=1,2,3

tMX
i e−ik·δi , (3)

where the nearest- (δi) and the next-nearest-(ai) neighbor
vectors are shown in Fig. 1. All the hopping terms tij,μν have
been evaluated within a Slater-Koster scheme [10,25,33,46].
For the sake of simplicity, we provide with the different
contributions in Appendix A. An appropriate set of Slater-
Koster parameters for MoS2 is given in Table I.

A. Hamiltonian in strained lattice

The use of a Slater-Koster tight-binding approach is par-
ticularly convenient when lattice deformations, like strain, are
considered. Neglecting as a first approximation the corrections
to the local atomic potentials due to lattice deformation [47,48]
the effect of strain is here driven by the dependence of the
tight-binding parameters of the two-center energy integral
elements that depend on the interatomic distance. The effect
of strain is thus considered in the simplest way by varying the
interatomic bond lengths as a result of the applied strain. At
the linear order, the modified hopping terms in the presence of
strain can be written as

tij,μν(rij ) = tij,μν

(
r0
ij

)(
1 − 	ij,μν

∣∣rij − r0
ij

∣∣∣∣r0
ij

∣∣
)

, (4)

where |r0
ij | is the distance in the equilibrium positions between

two atoms labeled by (i,μ) and (j,ν), |rij | the distance in the
presence of strain, and 	ij,μν = −d ln tij,μν(r)/d ln(r)|r=|r0

ij |
is the dimensionless bond-resolved local electron-phonon
coupling. For practical purposes, we have |r0

ij | = √
7/12a for

the M-X bond, and |r0
ij | = a for the in-plane M-M and X-X

bonds.
A microscopic evaluation of the electron-lattice coupling

parameters 	ij,μν = −d ln tij,μν(r)/d ln(r)|r=|r0
ij | is in princi-

ple possible by means of an accurate analysis based on the di-
rect comparison between DFT and tight-binding calculations.
Along this line, for instance, the electron-phonon coupling
associated with the different interlayer hopping in multilayer
graphene were estimated in Ref. [49]. This task turns however
to be formidable in transition metal dichalcogenides because of

the large number of orbitals/bands and because of the lack of a
Fermi surface that can be used as a reference. In the absence of
any theoretical and experimental estimation for the electron-
phonon coupling, we use the Wills-Harrison argument [50],
namely, tij,μν(r) ∝ |r|−(lμ+lν+1), where lμ is the absolute value
of the angular momentum of the orbital μ, and lν is the absolute
value of the angular momentum of the orbital ν. Following
this approach, we assume that 	ij,X−X = 3, 	ij,X−M = 4,
and 	ij,M−M = 5, for the X-X pp, for X-M pd, and for
the M-M dd hybridizations, respectively. The application of
strain transforms the vector r0, which separates two lattice
sites connected with electron hopping, into r ≈ r0 + r0 · ∇u.
Note that, in the above transformation, we are considering only
the acoustic part of the displacement vector, which has been
shown to be a good approximation in the long wavelength
region of interest here [16].

In general, we can write ∇u = ε + ω, where ε and ω are
the strain and rotation tensors, respectively [48]. The strain
tensor of a two-dimensional system is given by the symmetric
tensor

ε =
(

εxx εxy

εxy εyy

)
, (5)

with components that include both in-plane and out-of-plane
displacements:

εij = 1

2

(
∂ui

∂rj

+ ∂uj

∂ri

)
+ 1

2

∂uz

∂ri

∂uz

∂rj

, (6)

where r = (x,y) and u = (ux,uy,uz) are the position and
displacement vectors, respectively. The rotation tensor ω

accounts for local rotations in the system. It is an antisymmetric
tensor defined by 2ωxy = −2ωyx = (∂uy/∂x − ∂ux/∂y). For
a homogeneous strain, the rotation tensor is zero and we
can assume that r = r0 · (1 + ε). On the other hand, for an
inhomogeneous strain with the local rotation we must use
r = r0 · (1 + ∇u) [48]. Explicit expressions for the atomic
separation as modified by nonuniform strain are given in
Appendix B.

III. LOW-ENERGY MODEL OF STRAINED TMDS

Hamiltonian (2), which includes explicitly the hybridiza-
tion between the metal and the chalcogen atoms, represents
the appropriate starting point for a compelling derivation of an
effective low-energy model in the presence of strain. For this
purpose, we perform a Taylor expansion in momentum and
in the strain fields, followed by a canonical projection onto
the two (conduction and valence) low-energy bands. From the
technical point of view, in order to obtain an effective 2 × 2
(4 × 4 including spin) model Hamiltonian, we use the Löwdin
partitioning method [34]. Details about the derivation are
provided in Appendix B. Similar to the carbon nanotube and
to the graphene cases [16,51–53], we first set the momentum
coordinates on the relative valley (K point of the Brillouin
zone), and we derive hence a strain-dependent Hamiltonian
that includes the effect of hopping integrals modification
caused by the deformation. The strain-dependent Hamiltonian
around K point, up to second order in strain and momentum,

195402-3
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TABLE II. Microscopical parameters of the spinful two-band
low-energy model. The upper table describes strain-independent
Hamiltonian parameters where t0 = 2.34 eV, α = −0.01, and β =
−1.54; the middle table the Hamiltonian parameters related to
the strain through a scalar potential [Eq. (8)]; the lower table the
Hamiltonian parameters ηi related to the strain-induced coupling to
the pseudovector potentials Ai .

�0 = −0.11 eV λ0 = 69 meV
� = 1.82 eV λ = −81 meV
λ′

0 = −17 meV λ′ = −2 meV

eV eV meV meV

α+
1 15.99 α−

1 15.92 αs+
1 −61 αs−

1 −5.7

α+
2 −3.07 α−

2 −1.36 αs+
2 3.2 αs−

2 0.02

α+
3 −0.17 α−

3 0.0 αs+
3 3.4 αs−

3 0.01

η1 η2 η3 η4 η5

0.002 −56.551 1.635 1.362 8.180

can be written as H = H0 + Hso, where

H0 = �0 + �σz

2
+ D + t0a0

(
q + e

�
τA1

)
· σ τ

+ �
2

4m0

(∣∣∣∣q + e

�
τA2

∣∣∣∣
2

α +
∣∣∣∣q + e

�
τA3

∣∣∣∣
2

βσz

)
,

Hso =
[
λ0 + λσz

2
+ δλ + a2

0

(∣∣∣∣q + e

�
τA4

∣∣∣∣
2

λ′
0

+
∣∣∣∣q + e

�
τA5

∣∣∣∣
2

λ′σz

)]
τs. (7)

Here, e is the elementary charge, m0 is the free electron mass,
σ τ = (τσx,σy) are Pauli matrices in the 2 × 2 “band” space,
and s = ± and τ = ± are spin and valley indexes, respectively.
Finally, a0 = a/

√
3 and q = (qx,qy) is the relative momentum

with respect to the K point. The parameters �0, �, λ0, λ,
λ′

0, λ′, t0, α, and β are strain-independent and they can be
obtained directly from the Slater-Koster parameters of the
original Hamiltonian (2), and they are given in Table II for
the case of MoS2. A detailed derivation of the numerical
values of all the parameters of the low-energy model in
terms of the original tight-binding parameters can be found
in Appendix B. It is useful to notice that the mass asymmetry
parameter, α, and topological term, β, are related to general
physical properties of the band structure, like effective mass
and energy gap, through the relations α = m0/m+ and
β = m0/m− − 4m0v

2/(� − λ−), where v = t0a0/�, m± =
mcmv/(mv ± mc), 2λ± = λ0 ± λ. In addition, mc and mv are
the effective masses of the conduction and valence band, and
λ+ and λ− are the spin-orbit coupling of the conduction and
valence bands, respectively [42].

The presence of a finite strain induces in the Hamiltonian (7)
many different terms. The most straightforward are the
diagonal ones, i.e., a scalar potential, which contains a spin
independent part, D = diag[D+,D−], and a spin-dependent
contribution, δλ = diag[δλ+,δλ−]. The explicit expressions

of D± and δλ± read

D± = α±
1 |A|2 + α±

2

(
V + ω2

xy

) + α±
3 V 2,

(8)
δλ± = αs±

1 |A|2 + αs±
2

(
V + ω2

xy

) + αs±
3 V 2.

Note that the strain fields appear in Eqs. (7) and (8) only
through the representative variables A = εxx − εyy − i2εxy ,
V = εxx + εyy , and ωxy = (∂uy/∂x − ∂ux/∂y)/2. The nu-
merical values of all αi are also reported in Table II. It should
be noticed that the quantitative use of the second order terms
in the scalar potential (D and δλ) should be done with some
cares. Because, here, we considered the linear approximation
to include deformation in the bond lengths. However, these
terms would be negligible for small deformation.

In addition to the above discussed diagonal terms, it
is interesting to underline the appearance in (7) of five
different fictitious gauge fields defined as Ai = ηiA, where
Ax = (�/ea0)Re[A] and Ay = (�/ea0)Im[A]. The coupling
constants ηi are evaluated from the values of the initial
Slater-Koster parameters, and their specific value for the case
of single-layer MoS2 are reported in Table II. Note that,
due to the small value of η1, the off-diagonal pseudovector
potential (A1) results to be very weak as compared to the
diagonal ones. The opposite happens for the well known cases
of mono- and bilayer graphene, for which the off-diagonal
terms are the dominant components of the strain dependent
Hamiltonian [16,37]. The weakness of A1 in MoS2 might stem
from the large energy gap as compared with graphene, which
is a semimetal with no gap.

IV. STRAINED TMDS AS A MULTIPSEUDOVECTOR
FIELD SYSTEM

The dependence of the electronic/transport/optical proper-
ties of TMDs triggers the biggest interest towards realistic
applications for strain-engineering in these materials and
hence many theoretical and experimental setups have been
proposed. Most of them employ the dependence of the
magnitude of the optical or transport gap. On the conceptual
basis, such proposals are thus related to the strain modulation
of the scalar potentials D±, δλ±. Interesting enough, there is,
on the other hand, off-diagonal terms that can be described in
terms of the pseudovector potential. The concept of pseudo
gauge fields, for instance, has been widely discussed in the
context of strained graphene [16,37,51,52] and it provides the
possibility to induce extremely large effective pseudomagnetic
fields [19]. Such pseudomagnetic fields are thus reflected in
the onset of flat bands (Landau levels) in the energy spectrum
of deformed systems, as observed experimentally in strained
graphene samples [19,20,22]. A similar framework has been
discussed in TMDs by Cazalilla et al. [36]. However, the
Hamiltonian in Eq. (7), appropriate for realistic modelling
of monolayer TMDs, shows profound differences in regards
to this simplistic picture since at least three pseudovector
potentials (A1, A2, and A3) are induced by strain, even in
the simplest spinless case. It should be stressed that, due to
this multipseudovector field structure, these fields cannot be
referred as gauge fields, since the contemporary presence of
three fields cannot be described by a simple phase shift in the
wave function after doing a transformation like A → A + ∇	.
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In other words, the effect of these pseudovector fields can not
be eliminated by the counter-acting presence of a real magnetic
field.

The complexity of these multi pseudovector field structures
gives rise to qualitatively new physics, which is not present in
graphenelike systems and in the previous analyses for TMDs
based on only one vector potential. The rich phenomenology
of this structure will be thus the object of investigation of the
present section.

An interesting feature in graphene under strain is the
possibility of tailoring the pseudovector potential in such
a way to mimic the effects of an effective magnetic field.
Under these conditions, (pseudo)Landau levels are expected
to appear, reflected in flat bands in the electronic band
structure. This scenario has been theoretically predicted [18]
and experimentally verified in graphene [19] and similar
predictions have been prompted out in TMDs [36]. Things
are actually more complex in a realistic modelization of the
TMDs, due to the presence of many pseudovector potentials
as we will discuss later.

In order to focus on the possible occurrence of pseudo-
Landau levels (PLLs), we neglect in the following the role of
the scalar potentials, and we consider only the leading term
of the spin-orbit coupling in the absence of strain. Only three
pseudovector potentials will appear, Aj with j = 1,2,3. The
first standard step to address this issue is to introduce the
total canonical momentum fields π j = (�q + eAj ) = (�q +
eηj A), where π j = πx

j + iπ
y

j . The fundamental thing to be
underlined here is that the fields π j are not orthogonal, but
fulfill the following relations:

[πi,πj ] = −ie�(ηj − ηi)(∂x + i∂y)(Ax + iAy),
(9)

[πi,π
†
j ] = −ie�(ηj − ηi)∇ · A − e�(ηj + ηi)(∇ × A)z.

It is interesting to notice that when all vector potentials
have the same couplings ηi = η, then there is just one gauge
field, which leads to the standard algebra for the canonical
momentum associated with a real magnetic field. Therefore
this kind of solution corresponds to the real Landau levels of
the system in the presence of a true magnetic field.

However, the commutation relations in (9) for the more
general case of strained TMDs, imply that such operators do
not commute and obey a more complex algebra. Finding an
analytical solution for the PLLs results thus a formidable task
due to the nonorthogonality of the theory [54], which is one of
the main consequences of the presence of multipseudovector
fields. Nevertheless, it is instructive to consider the symmetric
gauge, A = B

2 (−y,x), which is the one associated with the
experimentally relevant case of trigonal deformation of the
lattice [18,19]. In this case, one can show that

[âi ,â
†
j ] = Sij , [âi ,âj ] = 0 , [â†

i ,â
†
j ] = 0, (10)

where Sij = (ηi + ηj )/2
√|ηiηj | and we have introduced the

creation operators â
†
i = lB√

2|ηi |�πi , where lB = √
�/e|B| is the

magnetic length in terms of the pseudomagnetic field B =
|∇ × A|. The overlap matrix of this case, Sij 
= δij , implies
that the bosonic operators ai are in general nonorthogonal,
and [n̂i ,n̂j ] 
= 0 for i 
= j . In order to give a solution for this
problem, one needs to redefine Fock space in a nonorthogonal

FIG. 2. (Color online) Top view of an arc-shaped MX2 with R =
4Ly in which blue and red lattice points indicates M and X atoms,
respectively.

basis [54]. In Sec. V, we will provide with a perturbative
analytical solution using a single band model.

A. Energy spectrum in the Landau gauge: arc-shape
deformation

Besides this specific case, however, the complex multi-
vector potential structure of the Hamiltonian does not allow
for an analytical determination of the energy bands and
of the pseudo Landau levels. We have thus solved the
problem numerically. In order to reveal the relevant physics
associated with the pseudovector potentials and with possible
pseudo-Landau levels, we choose an inhomogeneous strain
profile corresponding to a constant pseudo magnetic field for
each vector potential. An arc-shape deformation (sketched in
Fig. 2), which corresponds to a displacement profile (ux,uy) =
(xy/R, − x2/2R) (R being here the arc radius), is known to
be one of the simplest and efficient candidates [55,56]. Within
this context the resulting gauge field in the Landau gauge
reads A = �

ea0
(y/R,0), corresponding to a three different

constant pseudo magnetic field Bi = ηi�/ea0R, associated to
the pseudovector potentials Ai = ηiA. Neglecting the weak
contribution of the rotation tensor, Hamiltonian (7) can be
written in first quantization as

H =
(

V+(y)− �
2

4m0
(α+β)∂2

y t0a0
(
qx +η1

y

a0R

)−t0a0∂y

t0a0
(
qx +η1

y

a0R

)+t0a0∂y V−(y)− �
2

4m0
(α−β)∂2

y

)
,

(11)

where

V±(y) = (�0 + λ0s) ± (� + λs)

2
+ D±(y) + δλ±(y)s

+ �
2

4m0
α

(
qx + η2

y

a0R

)2

± �
2

4m0
β

(
qx + η3

y

a0R

)2

.

(12)

The solution of the above Hamiltonian leads to a set of coupled
differential equations that we solve numerically for hard-wall
boundary conditions. Details can be found in Appendix D.

The resulting dispersion relations under different strain
conditions are shown in Figs. 3 and 4 where, in order to
analyze the possible presence of pseudo-Landau levels, the
scalar potentials (D± and δλ±) have been neglected. In
comparison, we show the band dispersion of the unstrained
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FIG. 3. (Color online) (a) Energy dispersion of unstrained
nanoribbon case with Ly = 50a0. (b) Energy dispersion a strained
nanoribbon for Ly = 50a0,ηi = η = 1, and R = 0.5Ly . Noticeably,
the first Landau level in the valence band evolves in an electronlike
edge mode.

case in Fig. 3(a). Apart from the parabolicity of the valence
and conduction bands, one can observe a crossing of the edge
modes. This is expected due to the nonzero Chern number
associated to each flavor (spin or valley) in our model [i.e.,
2C = sign(�) − sign(β)] [57]. In other words, as long as
the valley index is a good quantum number (for instance in
zigzag termination and hard-well boundary cases), and the
valley-Chern number is integer valued, then metallic edge
modes are expected to exist in the gap. Although this problem
is beyond the scope of the present paper, the nature of these
edge states will be discussed in Sec. V C using the numerical
results of TB model. Here we mention that the existence of
metallic edge modes in this kind of systems depend on the
edge potential and atomic termination [58,59].

Figure 3(b) shows the band dispersions in the previously
discussed toy model where the coupling of all the three
strain-induced fields is the same (ηi = η), which correspond
to the case of a real magnetic field applied to the sample.
Remarkably, the first Landau level in the valence band evolves
in an electronlike edge mode. This feature is consistent with
the results of the full six-band tight-binding model [46].
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FIG. 4. (Color online) Energy dispersion of arc-shaped case with
scalar potential and rotation tensors neglected. The dispersion relation
show equidistant parabolic valence subbands, and a set of conduction
subbands that present band crossing for the low-energy states and
parabolic dispersion above some specific energy. The size of the
energy gap and level spacing between the subbands is strongly
dependent on the strain strength. We set (a)Ly = 50a0,R = 2.5Ly

and (b) Ly = 50a0,R = 1.8Ly .

The presence of flat bands (pseudo-Landau levels) can be
speculated from these results. However, as we are going to
show, the actual relevance of pseudo-Landau levels appear
doubtful in the more realistic case of arc-shaped tension. In
Fig. 4, we set the parameters ηi with the numerical values listed
in Table II, which correspond to the realistic full tight-binding
dispersion. Panels (a) and (b) show the band dispersion of
a given spin flavour for two different magnitudes of strain,
parametrized in terms of two values of the arc radius R. The
resulting dispersion show almost equidistant parabolic valence
subbands, and a set of conduction subbands that present band
crossing for the low-energy states and parabolic dispersion
above some specific energy. It should be noticed also that the
size of the energy gap and level spacing between the subbands
(in both valence and conduction sectors) is strongly dependent
on the strain strength. In the following section, we will show
how these peculiar features, for both valence and conduction
bands, can be understood in terms of a harmonic oscillator and
inverted harmonic oscillator physics, respectively.
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In summary, comparing these results in strained MoS2

(as a representative case of single layer TMD), with those
of strained graphene [37] reveals three main differences
between these two systems. (i) No obvious similarity between
pseudovector potentials and real magnetic field, as it happens
in strained graphene. (ii) Strong particle-hole asymmetry in
the strained MoS2 energy dispersion, as compared to the
symmetric spectrum in strained graphene. (iii) Absence of flat
PLL in MoS2 for Landau’s gauge (i.e., arc-shape) deformation
in contrast with the appearance of flat bands in the arc-shaped
graphene [55,56].

V. SINGLE-BAND (EFFECTIVE MASS) MODEL FOR
STRAINED TMDS

The two-band Hamiltonian (7) can be perturbatively de-
composed into two individual one-band Hamiltonians for the
conduction and the valence bands at small q and strain. Those
single-band Hamiltonian which is valid around the K point
of the BZ, have the following analytical expressions (see
Appendix C for a detailed derivation):

H± = E± + D± + �
2

4m0

[
α

∣∣∣∣q + e

�
A2

∣∣∣∣
2

± β

∣∣∣∣q + e

�
A3

∣∣∣∣
2

± γ

∣∣∣∣q + e

�
A1

∣∣∣∣
2]

, (13)

where E± = 1∓1
2 sλ− + �0±�

2 ± η1
(t0a0)2

(�−sλ−)l2
B

, γ = 4m0v
2/

(� − sλ−), s is the spin index and +(−) indicates conduction
(valence) band, respectively. Having neglected α and β terms,
we could get the model Hamiltonian used in Ref. [36] to study
a pseudomagnetic field in a monolayer MoS2, which reveals
(in the absence of SOC) symmetric PLL in the conduction
and valence bands. Notice that the single-band model (13),
considers the effective mass asymmetry (α) and momentum
dependent mass term (β), leading to different model solutions
for the two cases.

The Hamiltonian from (13) can be easily deduced for the
Landau’s gauge (arc-shape) deformation and by neglecting
scalar potential contribution D±, we have

H± = E± + �
2

4m0

[
(α ± β ± γ )q2

y

+w±
1 (y − w±

2 qx)2 + w±
3 q2

x

]
, (14)

where

w±
1 = 1

a2
0R

2

[
αη2

2 ± βη2
3 ± γ η2

1

]
,

w±
2 = −a0R

αη2 ± βη3 ± γ η1

αη2
2 ± βη2

3 ± γ η2
1

, (15)

w±
3 = α ± β ± γ − (αη2 ± βη3 ± γ η1)2

αη2
2 ± βη2

3 ± γ η2
1

.

In principle, the low-energy Hamiltonian reveals two
possible scenarios, for the case of inhomogeneous arc-shaped
strain which provides a Landau’s gauge for the pseudovector
potentials, depending on the sign of (α ± β ± γ )w±

1 in
the single-band models. One is a harmonic oscillator (HO)

physics where (α ± β ± γ )w±
1 > 0 and the other is a double

quantum well (DQW) physics where (α ± β ± γ )w±
1 < 0. In

the case of MoS2, which is addressing here, after plugging
the numerical value of the model parameters in (14), we
obtain (w+

1 ,w−
1 ) � (−32.2, − 24.0) × (a0R)−2, (w+

2 ,w−
2 ) �

(0.06,0.12) × (a0R), (w+
3 ,w−

3 ) � (4.05, − 3.57), α + β +
γ = 3.92, and α − β − γ = −3.94 for the up component of
spin index. Therefore the model for MoS2 leads to a DQW and
HO for the conduction and valence bands, respectively.

We would like to emphasize that the single band Hamilto-
nian (14) provides with a general model that can be applied
to other families of strained semiconductor 2D crystals. For
the sake of completeness, we describe the generalities of the
model. First of all, we point out that α + β + γ > 0 and
α − β − γ < 0, since these signs originate from the positive
and negative masses of electrons and holes, respectively. These
relations imply that 0 < |α| < β + γ which imposes some
restriction over the two-band model parameters just based on
the sign of effective masses.

The sign of w±
1 , however, might change depending on the

microscopic properties of the considered system. Furthermore,
if the effective masses are the same for both bands (i.e., α = 0)
then w−

1 = −w+
1 . In this case, there are two possibilities,

namely w+
1 > 0 (w+

1 < 0) which leads to HO (DQW) solutions
for both the valence and conduction bands. Therefore an
asymmetry in the effective masses is necessary to have two
different physics (understood as HO or DQW energy spectra)
in the electron and hole bands.

Finally, we briefly discuss the case of trigonal deformation
(ux,uy) = u0

2 (xy,
x2−y2

2 ), where u0 have the units of inverse
length and quantifies the strength of the applied strain. This
strain profile has been widely discussed in the context of
graphene [18,19] and recently it has been considered in
TMDs [36]. Such a deformation is properly described by the
symmetric gauge, i.e., A = �u0

ea0
(y, − x), which leads to the

single-band Hamiltonian

H± = E± + �
2

4m0

[
(α ± β ± γ )

(
q2

x + q2
y

)
+ z±

1 (x2 + y2) − 2z±
2 (xqy − yqx)

]
, (16)

where z±
1 = u2

0

a2
0
[αη2

2 ± βη2
3 ± γ η2

1] and z±
2 = u0(αη2 ± βη3 ±

γ η1). Notice that since z±
1 < 0 in the case of MoS2, the energy

spectrum obtained from (16) corresponds to the HO in the
valence band and DQW in the conduction band, in a similar
manner than in the case of the Landau gauge discussed before.
It is, however, important to notice that the lack of the quadratic
modulation, i.e. w±

3 q2
x , of the HO band in Eq. (16) results in the

appearance of the flat PLL in the valence band, as it has been
discussed by Cazalilla et al. [36]. This has to be compared
to the case of the arc-shaped deformation, for which such a
quadratic term appears in (14) through w±

3 , and leads to a set
of equidistant parabolic bands in the spectrum.

A. Harmonic oscillator solution in the valence band

Using the single-band model for an arc-shaped deformation
given by Eq. (14), it is possible to find an approximated
analytical expression for the energy dispersion shown in
Fig. 4. By using the basic physics of harmonic oscillator,

195402-7
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it is straightforward to obtain the characteristic equidistant
parabolic bands of this system, as given by

Ev(n,qx) =E− − �
2

2m0

√
|w−

1 (α − β − γ )|
(

n + 1

2

)

+ �
2

4m0
w−

3 q2
x , (17)

where n = 0,1,2, . . . . Such a spectrum is consistent with the
numerical result shown in Fig. 4. A simple estimation based on
Eq. (17) suggests a separation between subbands of the order
of �Ev ≈ 11.125 a0

R
eV. Since the maximum strain in the arc-

shaped system is about εmax ≈ Ly/2R, therefore �Ev

kBT
≈ 860 ×

300
T

× a0εmax
Ly

. For a low temperature, T = 5 K and given system
size Ly ≈ 50 nm and strain strength about εmax = 0.1, we have
�Ev ≈ 20kBT , which implies sufficiently spaced levels as to
be observed via STM spectroscopy.

B. Double quantum well solution in the conduction band

In order to understand the energy dispersion of the con-
duction band, we first include two hard walls at y = ±Ly/2,
which lead to the following Hamiltonian:

H+ = �
2

4m0
(α + β + γ )q2

y + V (y,qx), (18)

where

V (y,qx) =E+ + �
2

4m0
w+

3 q2
x + �

2

4m0
w+

1 (y − w+
2 qx)2

+ V0

[
1 + �

(
y − Ly

2

)
− �

(
y + Ly

2

)]
,

(19)

where �(x) is the step function, and V0 
 1 stands for the
hard wall potential. Such hard-well boundary condition can
be realized by using external gates. Moreover, we expect
that this boundary condition is justified for ribbons whose
termination does not mix the valley degree of freedom, like
the zigzag ribbon case. However, as it has been recently shown
in Ref. [60], the boundary condition in the continuum model
of TMDs is not as simple as graphene case. This is so because
the basis spinors in graphene are associated to the sublattice
degree of freedom, while in monolayer TMDs they account for
the conduction and valence band basis. The potential profile
is shown in Fig. 5(a) for different values of qx . Notice that
the potential is a symmetric (an asymmetric) double quantum
well potential for qx = 0(qx 
= 0) with a barrier in the middle
of the sample and two wells located at the edges. Therefore the
appearance of two wells close to the boundaries indicates the
formation of a double quantum well (DQW) in the conduction
band. According to Fig. 4, the energy dispersion becomes
parabolic for energies higher than a certain critical value at
qx = 0. This feature obviously depends on the height of the
parabolic barrier V (y,qx). In fact, for energies higher than the
barrier height, which is ∼18.4 eV × (Ly/2R)2, carrier motion
does not be much affected by the existence of the barrier.
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FIG. 5. (Color online) (a) Potential profile in the conduction
band. (b) Five low-energy bands around the K point in the
conduction band, as calculated from the single-band model (18) for
the parameters Ly = 50a0 and R = 1.8Ly .

At finite momentum qx , the energy difference between two
minima at y = ±Ly/2 is given by

δE = V

(
Ly

2
,qx

)
− V

(
−Ly

2
,qx

)
= −�

2w+
1 w+

2 Ly

2m0
× qx,

(20)

which mimics an asymmetric DQW at any finite qx for which
the two wells are no longer identical.

If we neglect the hard-wall boundary condition, the Hamil-
tonian will be exactly solvable for the conduction band (18)
which corresponds to the inverted harmonic oscillator equa-
tion [61,62]. By performing elementary quantum mechanical
approaches, we find the following eigenvalue relation for the
wave function and corresponding energy eigenvalues in the
conduction band:

[
d2

dz2
+ 1

4
z2

]
φ(z,ε̃) = ε̃φ(z,ε̃), (21)
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where

z = √
ω(y − w+

2 qx),

ε̃ = −1

ω(α + β + γ )

[
4m0(E − E+)

�2
− w+

3 q2
x

]
, (22)

and ω = 2
√

−w+
1 /(α + β + γ ). This differential equation is

one of the standard differential equations for the parabolic
cylindrical functions [63] whose two independent solutions
can be written in terms of the confluent hypergeometric
function, M(a,b,c),

φeven(z,ε̃) = e−i z2

4 M

(
−i

ε̃

2
+ 1

4
,
1

2
,i

z2

2

)
,

(23)

φodd(z,ε̃) = ze−i z2−π
4 M

(
−i

ε̃

2
+ 3

4
,
3

2
,i

z2

2

)
,

which are even and odd functions with respect to the parity
operator. The general solution of this problem is a superpo-
sition of even and odd eigenfunctions, φ = c1φeven + c2φodd,
where c1,2 are unknown constants. To find the corresponding
eigenvalues, we must apply the hard-wall boundary condition,
which implies that the wave function must be zero at y =
±Ly/2. In this regard, it is easy to find the following relation
for the eigenvalue problem:

φeven
(√

ω
(Ly

2 − w+
2 qx

)
,ε̃

)

φodd
(√

ω
(Ly

2 − w+
2 qx

)
,ε̃

) = −φeven
(√

ω
(Ly

2 + w+
2 qx

)
,ε̃

)

φodd
(√

ω
(Ly

2 + w+
2 qx

)
,ε̃

) .

(24)

At qx = 0, this eigenvalue problem reduces to searching
for zeros of the confluent hypergeometric function. These
solutions can be labeled as ε̃ = ε̃n. If the even wave function
satisfies the boundary condition φeven(

√
ωLy/2,ε̃n) = 0, then

we will get

M

(
−i

ε̃n

2
+ 1

4
,
1

2
,i

ωL2
y

8

)
= 0. (25)

Otherwise, if the odd wave function becomes zero at the
boundary, φodd(

√
ωLy/2,ε̃n) = 0, we will thus have

M

(
−i

ε̃n

2
+ 3

4
,
3

2
,i

ωL2
y

8

)
= 0. (26)

Notice that the solutions of the above eigenvalue problem
depend on both the microscopic details of the electronic band
structure, which enter in the definition of the parameter ω,
and the ribbon width Ly in the form ε̃n(ωL2

y). Once the set of
solutions ε̃n are obtained, the corresponding energy levels at
qx = 0 in the conduction band can be evaluated using Eq. (22).
The energy levels are given by

Ec(n,qx = 0) = E+ − �
2

2m0

√
|w+

1 (α + β + γ )|ε̃n

(
ωL2

y

)
.

(27)

We numerically check that the lowest band has even symmetry,
as expected for a symmetric DQW potential. If we take qx 
= 0,
then the conduction band Hamiltonian will not commute with
parity symmetry, since the potential is asymmetric for finite qx .

For any finite qx , we solve Eq. (24) numerically for the lowest
five energy bands and result is shown in Fig. 5(b), which is
consistent with the full numerical calculation of the coupled
differential equation (see Fig. 4). This agreement proves that
our single-band picture, which predicts the HO and DQW
physics in the valence and conduction bands, respectively,
are appropriate models for the low-energy physics of strained
TMDs. Furthermore, we emphasize that the theory presented
here is general and can be straightforwardly adapted to other
families of semiconducting 2D crystals.

C. Effect of the scalar potential

In this section, we consider the effect of the scalar potentials
on the conduction and valence bands. We start by performing
full TB calculations in a zigzag ribbon of monolayer MoS2

and the results are shown in Figs. 6(a) and 6(b) for the
unstrained and strained cases, respectively. These results are
compared with those results obtained from the low-energy
models given by Eq. (7). First, one notices the existence
of three edge modes in the spectrum, in agreement with
previous results [46,57]. In Fig. 6(b), we show the results
for the band dispersion in the arc-shaped strained case, which
contains a set of roughly parabolic valence and conduction
bands. Interestingly, the energy gap around K point is no
longer direct, which is one of the interesting consequences
originating from the scalar potential associated with this profile
of the strain. Moreover, the crossing edge modes survive to the
application of strain, whereas the flat high energy edge mode
eventually enters into the bulk spectrum for a higher strength
of the strain. Intriguingly, one can see that the interlevel
spacing in the conduction and valence bands for the strained
system [Fig. 6(b)] increases dramatically as compared to the
unstrained case [Fig. 6(a)], indicating that the origin of these
levels does not depend on the finite size effects but instead
of the bulk potential induced by strain. In fact, they are the
eigenvalues of the inverted and ordinary harmonic oscillator
Hamiltonian of the electrons in the conduction and valence
bands, respectively. Finally, Fig. 6(c) shows the results from
the two-band low-energy model (7) for the same system, which
are in good agreement with the corresponding results from the
full tight-binding model [Fig. 6(b)].

In order to have some analytical insights of the effect of the
scalar potential in the band structure of Fig. 6, we notice that
such scalar potential for this strain profile can be written as

D±(y) = �
2

4m0

(
2κ±

1 y + κ±
2 y2

)
,

κ±
1 =4m0

�2

α±
2

a2
0R

, (28)

κ±
2 =8m0

�2

α±
1 + α±

3

a2
0R

2
.

To include these potentials in the analytical calculation
based on Eq. (14), we do need to replace w±

i with v±
i , where

v±
1 =w±

1 + κ±
2 , v±

2 = w±
1 w±

2 − κ±
1 q−1

x

v±
1

,

(29)
v±

3 =w±
3 + w±

1 w±2
2 − v±

1 v±2
2 .
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FIG. 6. (Color online) Energy dispersion in the presence of gauge
fields and deformation potentials. (a) Full tight binding calculation
in an unstrained zigzag ribbon with (Ly = 299a0). (b) Full tight-
binding calculation in a deformed zigzag ribbon with (Ly = 299a0,
R = 7Ly). Dashed red line indicates a small shift of conduction band
minimum with respect to the maximum of the valence band at the K

point. The energy gap around K point is no longer direct originating
from the scalar potential associated with this profile of the strain. The
interlevel spacing in the conduction and valence bands for the strained
system (b) dramatically increases as compared to the unstrained case
(a), indicating that the origin of these levels does not depend on the
finite-size effects. (c) Band structure calculated from the low-energy
model (7) on a ribbon with hard wall boundary condition with (Ly =
299a0, R = 7Ly). Notice spin-orbit coupling has not been considered
in this figure.

Using the above relations, the energy dispersion in the valence
band can be easily calculated. According to the negative sign
of α±

2 , one can see that v±
1 are negative for any value of

strain, which means that the DQW and HO physics in the
conduction and valence bands, as discussed above, are still
valid for TMDs with arc-shaped deformation in the presence
of the scalar potential.

Intriguingly, the shift of the conduction band minimum
from the K point should originate from the κ+

1 /qx term in
v+

2 according to the boundary condition equation given by
Eq. (24). In particular, the band edge energy under arc-shaped
strain can be expressed as

EVBM = �0 − �

2
+ λ− − η1

t2
0

� − λ−

a2
0

l2
B

− �
2

4m0

[√
v−

1 (α − β − γ ) − (κ−
1 )2

v−
1

]
. (30)

The last term proportional to κ−
1 is independent of strain

strength. The strain-independent term should originate from
our approximations.

VI. STRAIN-INDUCED VALLEY SHIFT IN
HOMOGENEOUS DEFORMATIONS

Using the strain-induced modification of the hoppings given
by Eq. (4), one can calculate the band dispersion in the
presence of different kinds of strain profiles. An instructive
example is the case of a uniform uniaxial strain. It is commonly
known, from DFT calculations [64], that uniaxial and shear
strain induces a shift of the band edges from the K points,
similar to the strained graphene. We can address this issue
in our tight-binding approach. The energy dispersion of the
monolayer MoS2, uniaxially deformed along x, is shown
in Fig. 7 close to the K point [65]. Here, solid (dashed)
bands indicate spin-up (down) components. Both (conduction
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FIG. 7. (Color online) Energy dispersion of a uniaxially de-
formed monolayer MoS2 calculated by using the full TB model.
Solid (dashed) lines indicate spin up (down) components. The vertical
dashed lines mark in addition the position of the conduction band
minimum and valence band maximum according to the low-energy
model (32) and(33)].
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and valence) band edges shift in phase towards the � point
for compressive (ε0 < 0) strain, whereas they move in the
opposite direction for tensile strain, in agreement with DFT
simulations [64]. A useful quantification of these valley shifts
with the strain can be obtained by means of an effective
low-energy model. In the case of uniaxial strain applied along
x direction, we have a0e/�A1 = η1Ax̂,a0e/�A2 = η2Ax̂,
and a0e/�A3 = η3Ax̂ where A = (1 − ν)ε0, where ν is the
Poisson ratio. This uniaxial strain shifts the valleys along
the x direction, hence we safely set qy = 0. In this case, the
approximated Hamiltonian for spin up around the K point is

H =�

2
σz + λ−

2
(1 − σz) + D + t0k1σx

+ �
2

4m0a
2
0

(
αk2

2 + βσzk
2
3

)
, (31)

where ki = q + ηiA and q = a0qx . Notice that just the leading
term of the spin-orbit coupling is taken into account. The
Hamiltonian can be easily diagonalized to obtain its band
dispersion. Thus it is straightforward to find the position of
the conduction band minimum (qCBM) and the valence band
maximum (qVBM), which are given by

qCBM = −Aαη2 + βη3 + γ η1

α + β + γ
, (32)

qVBM = −Aαη2 − βη3 − γ η1

α − β − γ
, (33)

where the scalar potentials have no contribution to the leading
term of the valley-shift. Importantly, in the particle and hole
bands, which they have the same effective mass (α = 0),
qVBM = qCBM = −A and the position of the valence and
conduction band extreme are equally modified by strain. A
similar behavior is obtained when η1 = η2 = η3 = η, in which
qVBM = qCBM = −ηA. Since none of the previous special
conditions apply to the case of strained MoS2, we expect
different shifts for the electron and hole band edges. Indeed,
based on the numerical value of the parameters in the low-
energy model, we find qVBM = 0.76A and qCBM = 0.51A.
Such a different strain induced a shift of the band edges leads
to a direct-to-indirect gap transition in MoS2 under uniaxial
strain.

It is interesting to compare the above results from the low-
energy model with those results obtained from the TB. We do
so in Fig. 7, where the vertical dashed lines indicate the position
of the conduction band minimum and valence band maximum
as obtained from the low-energy model (32) and (33)]. In
the case of compressive strain, there is a good quantitative
agreement between the two methods. In the case of tensile
strain, although the qualitative behavior is well captured by the
low-energy model, the position of the valence band edge differs
in the two cases. The reason is that, according to TB results,
tensile strain enhances trigonal warping of the valence band,
which is not considered within the simple low-energy model.
A similar analysis can be done to understand valley shifting
induced by shear strain. In this case, the result is similar to the
one for uniaxial strain, with the difference that A = −2ε0 and
the deformation is along the y direction. Finally, we remember
that for biaxial strain, sinceA = 0, thus there is no valley shift.

VII. SPIN-STRAIN COUPLING

Another interesting effect which is worth to be addressed
is the direct coupling between the spin and strain. Due to the
spin-orbit coupling, we can manipulate spin degree of freedom
of carriers just by controlling their orbital motion. Using the
direct spin-strain coupling, one can locally control the spin
of carriers via the mechanical probe. In the absence of the
spin-orbit coupling, there is no way to touch spin degree of
freedom by deformation of the lattice via mechanical probe
such as AFM tip.

Our effective low-energy model (7) shows that the spin-
orbit coupling terms are affected by external strain. At q = 0,
the spin-orbit coupling in the conduction and valence bands
are modified as follows:

�λ± =[
αs±

1 + λ′
0|η4|2 ± λ′|η5|2

]|A|2 + αs±
2

(
V + ω2

xy

)
+ αs±

3 V 2. (34)

These terms give rise a direct coupling between the spin
and strain at the K point. This coupling can allow for
spin relaxation when translational symmetry in the system
is broken because of, e.g., the existence of ripples which
act as a long-range disorder potential. In fact, for the most
studied case of graphene, such disorders lead to a spatially
random spin-orbit coupling that might have implications
for the spin relaxation [66]. The effect of out-of-plane and
in-plane deformation on the spin relaxation in the systems
with similar symmetry have been studied [67,68]. Although
this effective spin-strain coupling seems to be weak, it is
still comparable with some other energy scales like Zeeman
energy or weak spin-splitting of the conduction band in
semiconducting TMDs. This effect is expected to be especially
relevant for the W families of TMDs (like WS2 or WSe2), for
which the spin-orbit splitting of the valence band is more than
twice the value for MoS2. From the experimental point of view,
this tunable spin-orbit coupling via strain can be detected,
in principle, using a photoluminescence measurement [69]
because in the strained sample, we expect a change in the
relative position of A and B exciton peaks as compared with
their position in the undeformed case.

Finally, we notice that for finite value of q, another spin-
dependent term 2a0e/�{λ′

0q.A4 + λ′q.A5σz} ⊗ s appears in
the presence of strain. This term is important when A is finite
and q is small enough (|A| > |a0q|), because in this regime
we have |a0q||A| > |a0q|2. Therefore this new momentum
dependent term in (7) originating from strain (which is ∝q)
is dominant as compared to the q-dependent term in the
unstrained case, which is ∝q2.

VIII. SUMMARY

In summary, we have studied the strain dependence of
monolayer TMDs band structure, starting from a Slater-Koster
tight-binding method which contains the necessary orbital
contribution to describe the valence and conduction bands
in the whole BZ. For a general inhomogeneous strain profile,
we further calculate a low-energy Hamiltonian up to second
order in momentum, strain and rotation tensors. Our numerical
and analytical calculations, based on TB and continuum
models, show a strong particle-hole asymmetry in the energy
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spectrum of the system. We have shown that the momentum
dependent terms in the low-energy model of monolayer TMDs
acquire different strain-induced vector potentials. According
to our calculations using the low-energy model, the electronic
spectrum of deformed single layer TMDs reveals a gauge
dependance, which implies that these strain-induced vector
fields cannot be referred as gauge fields. Consequently, the
simple pseudomagnetic field picture like, which is well known
in the case of strained graphene [37] is no longer valid in
deformed monolayer TMDs.

We have applied our theory to calculate the band structure in
the illustrative case of arc-shaped deformation. We show that
this profile of strain induces three main fictitious gauge fields in
Landau’s gauge. The dispersion relation of the system within
this gauge shows several band crossings in the electron sector
of the spectrum, and equidistant parabolic subbands in the hole
spectrum. Our analytical calculations show that the energy
spectrum in the conduction and valence bands originate,
respectively, from the solutions for a double quantum well and
a harmonic oscillator Hamiltonian. This DQW and HO physics
in two bands is also expected for a triangular strain profile.

Finally, we study the shift of the conduction and valence
band edges of MX2 in the presence of homogeneous strain,
finding a transition from direct to indirect gap. Moreover, the
coupling between spin degrees of freedom and strain has been
analyzed. We show that this effect can be considered as a
correction on the spin-orbit coupling that can useful for strain
engineered spintronic applications.
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APPENDIX A: ON-SITE AND HOPPING MATRICES

In this appendix, we provide the analytical expressions for
the different contributions to the tight-binding Hamiltonian (3).
The on-site terms of the Hamiltonian can be written in a
compact form [10]:

ε =
(

εM 0

0 εX

)
, (A1)

where

εM =

⎛
⎜⎝

ε0 0 0

0 ε2 −iλMŝz

0 iλMŝz ε2

⎞
⎟⎠,

(A2)

εX =

⎛
⎜⎝

εp + t⊥xx −i λX

2 ŝz 0

i λX

2 ŝz εp + t⊥yy 0

0 0 εz − t⊥zz

⎞
⎟⎠.

Here, λM and λX stand for the spin-orbit coupling of M (metal)
and X (chalcogen) atoms, respectively, [10] and ŝz = ±
indicates z component of spin degree of freedom. The terms
t⊥xx = t⊥yy = Vppπ , t⊥zz = Vppσ take into account the effects of
the vertical hopping Vpp between the top and bottom chalcogen
atoms.

Below we list the hopping terms of the model. For the
nearest-neighbor hopping between M and X atoms, we
have [25]

tMX
1 =

√
2

7
√

7

⎛
⎜⎝

−9Vpdπ + √
3Vpdσ 3

√
3Vpdπ − Vpdσ 12Vpdπ + √

3Vpdσ

5
√

3Vpdπ + 3Vpdσ 9Vpdπ − √
3Vpdσ −2

√
3Vpdπ + 3Vpdσ

−Vpdπ − 3
√

3Vpdσ 5
√

3Vpdπ + 3Vpdσ 6Vpdπ − 3
√

3Vpdσ

⎞
⎟⎠, (A3)

tMX
2 =

√
2

7
√

7

⎛
⎜⎝

0 −6
√

3Vpdπ + 2Vpdσ 12Vpdπ + √
3Vpdσ

0 −6Vpdπ − 4
√

3Vpdσ 4
√

3Vpdπ − 6Vpdσ

14Vpdπ 0 0

⎞
⎟⎠, (A4)

tMX
3 =

√
2

7
√

7

⎛
⎜⎝

9Vpdπ − √
3Vpdσ 3

√
3Vpdπ − Vpdσ 12Vpdπ + √

3Vpdσ

−5
√

3Vpdπ − 3Vpdσ 9Vpdπ − √
3Vpdσ −2

√
3Vpdπ + 3Vpdσ

−Vpdπ − 3
√

3Vpdσ −5
√

3Vpdπ − 3Vpdσ −6Vpdπ + 3
√

3Vpdσ

⎞
⎟⎠. (A5)

Next nearest-neighbor hoppings correspond to processes between the same kind of atoms, M-M or X-X (see Fig. 1), and they
are given by

tMM
1 = 1

4

⎛
⎜⎜⎝

3Vddδ + Vddσ

√
3

2 (−Vddδ + Vddσ ) − 3
2 (Vddδ − Vddσ )

√
3

2 (−Vddδ + Vddσ ) 1
4 (Vddδ + 12Vddπ + 3Vddσ )

√
3

4 (Vddδ − 4Vddπ + 3Vddσ )

− 3
2 (Vddδ − Vddσ )

√
3

4 (Vddδ − 4Vddπ + 3Vddσ ) 1
4 (3Vddδ + 4Vddπ + 9Vddσ )

⎞
⎟⎟⎠, (A6)
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tMM
2 = 1

4

⎛
⎜⎝

3Vddδ + Vddσ

√
3(Vddδ − Vddσ ) 0√

3(Vddδ − Vddσ ) Vddδ + 3Vddσ 0

0 0 4Vddπ

⎞
⎟⎠, (A7)

tMM
3 = 1

4

⎛
⎜⎜⎝

3Vddδ + Vddσ

√
3

2 (−Vddδ + Vddσ ) 3
2 (Vddδ − Vddσ )

√
3

2 (−Vddδ + Vddσ ) 1
4 (Vddδ + 12Vddπ + 3Vddσ ) −

√
3

4 (Vddδ − 4Vddπ + 3Vddσ )
3
2 (Vddδ − Vddσ ) −

√
3

4 (Vddδ − 4Vddπ + 3Vddσ ) 1
4 (3Vddδ + 4Vddπ + 9Vddσ )

⎞
⎟⎟⎠, (A8)

tXX
1 = 1

4

⎛
⎜⎝

3Vppπ + Vppσ

√
3(Vppπ − Vppσ ) 0√

3(Vppπ − Vppσ ) Vppπ + 3Vppσ 0

0 0 4Vppπ

⎞
⎟⎠, (A9)

tXX
2 =

⎛
⎜⎝

Vppσ 0 0

0 Vppπ 0

0 0 Vppπ

⎞
⎟⎠, (A10)

tXX
3 = 1

4

⎛
⎜⎝

3Vppπ + Vppσ −√
3(Vppπ − Vppσ ) 0

−√
3(Vppπ − Vppσ ) Vppπ + 3Vppσ 0

0 0 4Vppπ

⎞
⎟⎠. (A11)

The direction of the hopping indicated by subindexes 1, 2, and 3 can be seen in Fig. 1.

APPENDIX B: DERIVATION OF THE LOW-ENERGY HAMILTONIAN

In this appendix, we calculate the low-energy Hamiltonian around the high symmetry K points using Löwding partitioning
method [34]. The approach is similar to the one used in Ref. [42]. Here, the local strain is introduced by means of a local change
of the two-center Slater-Koster matrix elements as a consequence of the local modulation of the interatomic bond lengths. We
assume a general form of the inhomogeneous deformation with a large wavelength. To consider such deformation, we use the
following relations for the bond lengths:

rMX
1 = a

√(
1

2
+ ũxx

2
− ũyx

2
√

3

)2

+
(

1

2
√

3
+ ũyy

2
√

3
− ũxy

2

)2

+ 1

4
,

rMX
2 = a

√(
ũyx√

3

)2

+
(

1√
3

+ ũyy√
3

)2

+ 1

4
,

rMX
3 = a

√(
1

2
+ ũxx

2
+ ũyx

2
√

3

)2

+
(

1

2
√

3
+ ũyy

2
√

3
+ ũxy

2

)2

+ 1

4
,

(B1)

r
MM(XX)
1 = a

√√√√(
1

2
+ ũxx

2
−

√
3ũyx

2

)2

+
(√

3

2
+

√
3ũyy

2
− ũxy

2

)2

,

r
MM(XX)
2 = a

√
(1 + ũxx)2 + ũ2

xy,

r
MM(XX)
3 = a

√√√√(
1

2
+ ũxx

2
+

√
3ũyx

2

)2

+
(√

3

2
+

√
3ũyy

2
+ ũxy

2

)2

,

in which ũij = ∂uj/∂xi .
To obtain the low-energy model given in Eq. (7), we follow

the next eight steps. (1) We take the six-band tight-binding
Hamiltonian (3) for a given spin subspace in the deformed

system as follows:

H (k,ũ) = HTB[6 × 6] (B2)

in which ũ is a tensor with matrix elements ũij .
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(2) We expand the Hamiltonian (B2) around the K point of
the BZ, K = 4π/3a(1,0), obtaining

H (k,ũ) ≈ H0 + H1(ξ ), (B3)

where H0 = H (K,0) and ξ = {qx,qy,ũxx,ũyy,ũxy,ũyx}, where
q = k − K and |q|a � 1. H1(ξ ) is obtained as

H1(ξ ) =
∑

i

ξi

∂H (K + q,ũ)

∂ξi

∣∣∣
ξ=0

+ 1

2

∑
i

ξ 2
i

∂2H (K + q,ũ)

∂ξ 2
i

∣∣∣
ξ=0

+
∑
i 
=j

ξiξj

∂2H (K + q,ũ)

∂ξi∂ξj

∣∣∣
ξ=0

. (B4)

In this expansion, we assume that ξi and ξj commute, which is
the case of the homogenous deformation. The generalization
for the inhomogeneous strain case can be done, for long
wavelength strain profiles, by replacing εij , ωxy , and qiεjk with
εij (r), ωxy(r), and −i(∂ri

εjk(r) + εjk(r)∂ri
)/2, respectively.

(3) To find the low-energy Hamiltonian in the subspace
of the conduction-band minimum (CBM) and valence-band
maximum (VBM), we do a transformation in orbital space
using the unitary operator U0, which diagonalizes H0. After
solving the eigenvalue problem

H0

∣∣ψi
0

〉 = Ei
0

∣∣ψi
0

〉
, (B5)

we obtain

U0 = (∣∣ψ1
0

〉
,
∣∣ψ2

0

〉
,
∣∣ψ3

0

〉
,
∣∣ψ4

0

〉
,
∣∣ψ5

0

〉
,
∣∣ψ6

0

〉)
, (B6)

where we have ordered the eigenstates such that |ψ5
0 〉 and |ψ6

0 〉
correspond to the lowest conduction and highest valence band
for the given spin, respectively. Then, we apply this unitary
transformation to move from orbital basis (H ) to the band
basis (H ′) as

H ′ = U
†
0 [H0 + H1(ξ )]U0. (B7)

(4) We do the following replacement in H ′:

ũxx = εxx, ũyy = εyy,
(B8)

ũxy = εxy + ωxy, ũyx = εxy − ωxy.

Now, the Hamiltonian H ′ is a function of wave vector, q, sym-
metric strain tensor, ε, and antisymmetric rotation tensor, ω.

(5) We decompose H ′ into two parts H ′ = Hd + V :

Hd =
(

h11[4 × 4] 0

0 h22[2 × 2]

)
,

(B9)

V =
(

0 h12[4 × 2]

h
†
12[2 × 4] 0

)
,

where h11 is defined in the subspace {|ψ1
0 〉,|ψ2

0 〉,|ψ3
0 〉,|ψ4

0 〉},
whereas h22 is defined in the subspace {|ψ5

0 〉,|ψ6
0 〉}. Notice

that the high energy h11 and low-energy h22 blocks in (B9)
is coupled with the off-diagonal element V . The analytical
expression of the block components, i.e., hij , are too lengthy
to be included here.

(6) An additional unitary rotation is performed to
project V into each of these subspaces. We employ the

quasidegenerate perturbation theory by using e−O as ro-
tation operator. This allows to drop the first-order V in
the transformed Hamiltonian, H ′′ = e−OH ′eO = Hd + V +
[Hd,O] + [V,O] + 1

2 [[Hd,O],O] + · · · , leading to the con-
straint V + [Hd,O] = 0. The generator of the transformation
takes the form

O =
(

0 η[4 × 2]

−η†[2 × 4] 0

)
, (B10)

where ηh22 − h11η = h12 is solved to find the η matrix as a
function of {qx,qy,εxx,εyy,εxy,ωxy} up to second order for the
given spin index.

(7) Then, H ′′ = Hd + 1
2 [V,O] + · · · is our final effective

Hamiltonian with two decoupled subspaces. Following a
straightforward calculation, the effective Hamiltonian of the
low-energy bands can be obtained for a given spin index as
follows:

H2b(qx,qy,εxx,εyy,εxy,ωxy) = h22 + 1
2 {η†h12 + h

†
12η}.

(B11)

(8) Finally, we consider the relations

Re[A] = εxx − εyy,

Im[A] = −2εxy, (B12)

V = εxx + εyy,

and factorize (B11) to reach the form of the Hamiltonian
Eq. (7). Then, we simply extract the numerical value
of all parameters in our low-energy model, i.e.,
{t0,t1,t2,α,β,λ0,λ,�0,�,α′,β ′,λ′

0,λ
′,η1,η2,η3,η4,η5,α

±
1 ,α±

2 ,

α±
3 ,αs±

1 ,αs±
2 ,αs±

3 } from the numerical values of the prefactors,
and the result is given in Table II.

We emphasize that the extension to the inhomogeneous
case is already done in (7) just by considering the local nature
of the spin-independent contribution to the scalar potential
(D), and its spin-dependent part (δλ), as well as nonzero
commutation of the momentum and the fictitious vector fields
(i.e., [q,Ai] 
= 0). This kind of extension from homogeneous to
inhomogeneous deformation is common in studying strained
conventional semiconductors and graphene [70,71].

Note that there is also a trigonal warping term which is
not included in Hamiltonian (7). For the unstrained case, it
has the form

Hw = t1a
2
0q · σ ∗

τ σxq · σ ∗
τ + t2a

3
0τ

(
q3

x − 3qxq
2
y

)
(α′ + β ′σz),

(B13)

where t1 = −0.14 eV, t2 = 1 eV, α′ = 0.44, and β ′ = −0.53.
Here, the trigonal warping term contains three parameters
(α′,β ′,t1). It is easy to show that all these terms combine
with each other to lead the characteristic contribution
z± cos 3φ to the low-energy dispersion at the K point, where
z± = t2(α′ ± β ′) ± 2t0t1/(� − λ−τs), and z+(z−) stands for
the conduction (valence) band.

It is interesting to notice that the direction of warping in both
bands is opposite if z+z− > 0, and it is the same otherwise.
If α′ = 0 the warping in both bands are in the same direction
and with same warping strength. Furthermore, α and α′ are
the sources of asymmetry in effective masses and trigonal
warping directions between the conduction and the valence
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band, respectively. In our case, z+z− < 0, which means same
warping direction in the two bands.

APPENDIX C: DERIVATION OF THE SINGLE-BAND
MODEL

Since A1 is weak as compared to the other vector potentials
entering in our theory, we can apply perturbation methods
to decouple the conduction and the valence bands, driving the
two-bands Hamiltonian (7) into two one-band Hamiltonians as
given in Eq. (14). To do this we use a canonical transformation
similar to what we have done to get (7) in Appendix B, in
which Hd = diag[hc,hv] and V12 = V

†
21 = hcv . By neglecting

the spin splitting in the conduction band and the momentum
dependence of the spin-splitting in the valence band, we obtain
an expression equivalent to (B9) by defining the following
relations:

hc = �0 + �

2
+ D+ + ba2

0

�2
απ2

2 + ba2
0

�2
βπ2

3 ,

hv = �0 − �

2
+ D− + λ− + ba2

0

�2
απ2

2 − ba2
0

�2
βπ2

3 , (C1)

hcv = t0a0

�
π

†
1 ,

where b = �
2

4m0a
2
0
, and hc = h11, hv = h22, and hcv = h12,

respectively. To calculate the generator of the transformation

O =
(

0 ϑ

−ϑ† 0

)
, (C2)

we must first find ϑ , which obeys the following relation:

ϑ = −hcv(hc − hv)−1 − [ϑ,hc](hc − hv)−1. (C3)

We solve Eq. (C3) in an iterative perturbative approach in the
low-momentum and low-strain limits. In this regard, it is easy
to show that

ϑ = ϑ (1)

� − λ−
+ ϑ (2)

(� − λ−)2
+ . . . , (C4)

where

ϑ (1) = − t0a0

�
π

†
1 ,

(C5)

ϑ (2) = 2
t0a0

�

{
[π †

1 ,hc] + ba2
0

�2
βπ

†
1π2

3

}
.

Therefore, performing the canonical transformation on the
two-band Hamiltonian (7), we obtain, to first order in hcv ,
two decoupled Hamiltonians for the conduction and valence
bands, Hc(v) = H

(1)
c(v) + H

(2)
c(v), where

H (1)
c = �0 + �

2
+ D+ + η1

t2
0

� − λ−

a2
0

l2
B

+ �
2

4m0

(
α

∣∣∣∣q+ e

�
A2

∣∣∣∣
2

+β

∣∣∣∣q+ e

�
A3

∣∣∣∣
2

+γ

∣∣∣∣q+ e

�
A1

∣∣∣∣
2)

, (C6)

H (1)
v = �0 − �

2
+ D− + λ− − η1

t2
0

� − λ−

a2
0

l2
B

+ �
2

4m0

(
α

∣∣∣∣q+ e

�
A2

∣∣∣∣
2

−β

∣∣∣∣q+ e

�
A3

∣∣∣∣
2

− γ

∣∣∣∣q+ e

�
A1

∣∣∣∣
2
)

, (C7)

where γ = 4m0v
2/(� − λ−). We can also consider higher second order terms originating from the expansion (C3), with the

result

H (2)
c = 1

(� − λ−)2

t2
0 a2

0

�2

ba2
0

�2

{
�

2

l2
B

[α(η1 + η2)(π †
1π2 + π

†
2π1) + β(η1 + η3)(π †

1π3 + π
†
3π1)] − 2βπ

†
1π2

3 π1

}
(C8)

for the conduction band, and

H (2)
v = 1

(� − λ−)2

t2
0 a2

0

�2

ba2
0

�2

{
�

2

l2
B

[α(η1 + η2)(π1π
†
2 + π2π

†
1 ) + β(η1+η3)(π1π

†
3 +π3π

†
1 )]+β

(
π1π

†
1π2

3 +π2
3 π1π

†
1

)}
(C9)

for the valence band, where we have neglected the contribution
from the scalar potential term D±.

APPENDIX D: NUMERICAL EIGENVALUE PROBLEM

To discretize and find the eigenvalues of the Hamiltonian
for an arc-shaped monolayer TMDs, we use the method
of moments [72] with a trigonal basis to satisfy the hard
wall boundary conditions, which require vanishing of the
wave function at the boundaries. We can expand the wave
function in a set based on trigonal basis Tn(y) = T (y − yn)
as φc = ∑

n κnTn(y) and φv = ∑
n χnTn(y), where φc and φv

refer to the conduction and valence band spinor components,
respectively, and

T (y) =
{
Ly − |y|(N + 1) |y| < Ly/(N + 1),

0 otherwise,
(D1)

and yn = Ly( n
N+1 − 1

2 ). Note that Ly and N are the width
of the system along the y-direction and the number of basis
functions, respectively. It should be mentioned that using this
trigonal basis guarantees the zero value of the wave function
at the boundaries. To do this numerical calculation, we need
to know the following matrix elements in this set of trigonal
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basis:

〈Tm|∂2
y |Tn〉 = −2(N + 1)δm,n + (N + 1)(δm,n+1 + δm,n−1),

〈Tm|∂y |Tn〉 = L2
y

2
(δm,n+1 − δm,n−1),

〈Tm|Tn〉 = L3
y

(1 + N )

[
2

3
δm,n + 1

6
(δm,n+1 + δm,n−1)

]
, (D2)

〈Tm|y|Tn〉 = L4
y

(1 + N )2

[
2n − 1 − N

3
δm,n + 2n − N

12
δm,n−1 + 2n − 2 − N

12
δm,n−1

]
,

〈Tm|y2|Tn〉 = L5
y

(1 + N )3

[
10

(
n − N+1

2

)2 + 1

15
δm,n + 20

(
n − N

2

)2 + 1

120
δm,n+1 + 20

(
n − N+2

2

)2 + 1

120
δm,n−1

]
.

Using these matrix elements, one can discretize the Hamiltonian (11). Since the trigonal basis has nonzero overlap, using this
method we obtain a generalized eigenvalue problem that we solve numerically. The results can be seen in Figs. 3 and 4.
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[66] R. Winkler and U. Zülicke, Phys. Rev. B 82, 245313 (2010).
[67] H. Ochoa, F. Guinea, and V. I. Fal’ko, Phys. Rev. B 88, 195417

(2013).
[68] J.-S. You, D.-W. Wang, and M. A. Cazalilla, Phys. Rev. B 92,

035421 (2015).
[69] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev.

Lett. 105, 136805 (2010).
[70] Y. Zhang, Phys. Rev. B 49, 14352 (1994).
[71] T. Linnik, J. Phys.: Condens. Matter 24, 205302 (2012).
[72] R. F. Harrington, Field Computation by Moment Methods

(Wiley-IEEE Press, New York, 1993).

195402-17

http://arxiv.org/abs/arXiv:1503.00747
http://dx.doi.org/10.1021/nl903868w
http://dx.doi.org/10.1021/nl903868w
http://dx.doi.org/10.1021/nl903868w
http://dx.doi.org/10.1021/nl903868w
http://dx.doi.org/10.1103/PhysRevLett.111.026601
http://dx.doi.org/10.1103/PhysRevLett.111.026601
http://dx.doi.org/10.1103/PhysRevLett.111.026601
http://dx.doi.org/10.1103/PhysRevLett.111.026601
http://dx.doi.org/10.1103/PhysRevB.88.045416
http://dx.doi.org/10.1103/PhysRevB.88.045416
http://dx.doi.org/10.1103/PhysRevB.88.045416
http://dx.doi.org/10.1103/PhysRevB.88.045416
http://dx.doi.org/10.1103/PhysRevB.88.085440
http://dx.doi.org/10.1103/PhysRevB.88.085440
http://dx.doi.org/10.1103/PhysRevB.88.085440
http://dx.doi.org/10.1103/PhysRevB.88.085440
http://dx.doi.org/10.1103/PhysRevB.88.085433
http://dx.doi.org/10.1103/PhysRevB.88.085433
http://dx.doi.org/10.1103/PhysRevB.88.085433
http://dx.doi.org/10.1103/PhysRevB.88.085433
http://dx.doi.org/10.1088/0953-8984/27/36/365501
http://dx.doi.org/10.1088/0953-8984/27/36/365501
http://dx.doi.org/10.1088/0953-8984/27/36/365501
http://dx.doi.org/10.1088/0953-8984/27/36/365501
http://dx.doi.org/10.1088/2053-1583/2/2/022001
http://dx.doi.org/10.1088/2053-1583/2/2/022001
http://dx.doi.org/10.1088/2053-1583/2/2/022001
http://dx.doi.org/10.1088/2053-1583/2/2/022001
http://dx.doi.org/10.1103/PhysRevB.91.075433
http://dx.doi.org/10.1103/PhysRevB.91.075433
http://dx.doi.org/10.1103/PhysRevB.91.075433
http://dx.doi.org/10.1103/PhysRevB.91.075433
http://dx.doi.org/10.1103/PhysRevB.87.165131
http://dx.doi.org/10.1103/PhysRevB.87.165131
http://dx.doi.org/10.1103/PhysRevB.87.165131
http://dx.doi.org/10.1103/PhysRevB.87.165131
http://dx.doi.org/10.1103/PhysRevB.87.159909
http://dx.doi.org/10.1103/PhysRevB.87.159909
http://dx.doi.org/10.1103/PhysRevB.87.159909
http://dx.doi.org/10.1103/PhysRevB.87.159909
http://dx.doi.org/10.1103/PhysRevB.85.205436
http://dx.doi.org/10.1103/PhysRevB.85.205436
http://dx.doi.org/10.1103/PhysRevB.85.205436
http://dx.doi.org/10.1103/PhysRevB.85.205436
http://dx.doi.org/10.1143/PTP.113.463
http://dx.doi.org/10.1143/PTP.113.463
http://dx.doi.org/10.1143/PTP.113.463
http://dx.doi.org/10.1143/PTP.113.463
http://dx.doi.org/10.1016/j.ssc.2007.02.043
http://dx.doi.org/10.1016/j.ssc.2007.02.043
http://dx.doi.org/10.1016/j.ssc.2007.02.043
http://dx.doi.org/10.1016/j.ssc.2007.02.043
http://dx.doi.org/10.1103/PhysRevB.77.134505
http://dx.doi.org/10.1103/PhysRevB.77.134505
http://dx.doi.org/10.1103/PhysRevB.77.134505
http://dx.doi.org/10.1103/PhysRevB.77.134505
http://dx.doi.org/10.1103/PhysRevA.43.5770
http://dx.doi.org/10.1103/PhysRevA.43.5770
http://dx.doi.org/10.1103/PhysRevA.43.5770
http://dx.doi.org/10.1103/PhysRevA.43.5770
http://dx.doi.org/10.1021/nl1018063
http://dx.doi.org/10.1021/nl1018063
http://dx.doi.org/10.1021/nl1018063
http://dx.doi.org/10.1021/nl1018063
http://dx.doi.org/10.1103/PhysRevB.88.035404
http://dx.doi.org/10.1103/PhysRevB.88.035404
http://dx.doi.org/10.1103/PhysRevB.88.035404
http://dx.doi.org/10.1103/PhysRevB.88.035404
http://dx.doi.org/10.1103/PhysRevB.89.115413
http://dx.doi.org/10.1103/PhysRevB.89.115413
http://dx.doi.org/10.1103/PhysRevB.89.115413
http://dx.doi.org/10.1103/PhysRevB.89.115413
http://dx.doi.org/10.1088/0031-8949/2012/T146/014021
http://dx.doi.org/10.1088/0031-8949/2012/T146/014021
http://dx.doi.org/10.1088/0031-8949/2012/T146/014021
http://dx.doi.org/10.1088/0031-8949/2012/T146/014021
http://dx.doi.org/10.1103/PhysRevLett.102.096801
http://dx.doi.org/10.1103/PhysRevLett.102.096801
http://dx.doi.org/10.1103/PhysRevLett.102.096801
http://dx.doi.org/10.1103/PhysRevLett.102.096801
http://arxiv.org/abs/arXiv:1509.00184
http://dx.doi.org/10.1088/0031-8949/74/1/014
http://dx.doi.org/10.1088/0031-8949/74/1/014
http://dx.doi.org/10.1088/0031-8949/74/1/014
http://dx.doi.org/10.1088/0031-8949/74/1/014
http://dx.doi.org/10.1016/j.aop.2013.02.015
http://dx.doi.org/10.1016/j.aop.2013.02.015
http://dx.doi.org/10.1016/j.aop.2013.02.015
http://dx.doi.org/10.1016/j.aop.2013.02.015
http://dx.doi.org/10.1103/PhysRevB.88.245447
http://dx.doi.org/10.1103/PhysRevB.88.245447
http://dx.doi.org/10.1103/PhysRevB.88.245447
http://dx.doi.org/10.1103/PhysRevB.88.245447
http://dx.doi.org/10.1103/PhysRevB.82.245313
http://dx.doi.org/10.1103/PhysRevB.82.245313
http://dx.doi.org/10.1103/PhysRevB.82.245313
http://dx.doi.org/10.1103/PhysRevB.82.245313
http://dx.doi.org/10.1103/PhysRevB.88.195417
http://dx.doi.org/10.1103/PhysRevB.88.195417
http://dx.doi.org/10.1103/PhysRevB.88.195417
http://dx.doi.org/10.1103/PhysRevB.88.195417
http://dx.doi.org/10.1103/PhysRevB.92.035421
http://dx.doi.org/10.1103/PhysRevB.92.035421
http://dx.doi.org/10.1103/PhysRevB.92.035421
http://dx.doi.org/10.1103/PhysRevB.92.035421
http://dx.doi.org/10.1103/PhysRevLett.105.136805
http://dx.doi.org/10.1103/PhysRevLett.105.136805
http://dx.doi.org/10.1103/PhysRevLett.105.136805
http://dx.doi.org/10.1103/PhysRevLett.105.136805
http://dx.doi.org/10.1103/PhysRevB.49.14352
http://dx.doi.org/10.1103/PhysRevB.49.14352
http://dx.doi.org/10.1103/PhysRevB.49.14352
http://dx.doi.org/10.1103/PhysRevB.49.14352
http://dx.doi.org/10.1088/0953-8984/24/20/205302
http://dx.doi.org/10.1088/0953-8984/24/20/205302
http://dx.doi.org/10.1088/0953-8984/24/20/205302
http://dx.doi.org/10.1088/0953-8984/24/20/205302



