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Multivalley envelope function equations and effective potentials for phosphorus impurity in silicon
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We propose a system of real-space envelope function equations without fitting parameters for modeling the
electronic spectrum and wave functions of a phosphorus donor atom embedded in silicon. The approach relies on
the Burt-Foreman envelope function representation and leads to coupled effective-mass Schrödinger equations
containing smooth effective potentials. These potentials result from the spatial filtering imposed on the exact
potential energy matrix elements in the envelope function representation. The corresponding filter function is
determined from the definition of the envelope function. The resulting effective potentials and the system of
envelope functions jointly reproduce the valley-orbit coupling effect in doped silicon. It is found that including
the valley-orbit coupling not only of the 1s but also for 2s atomic orbitals, as well as static dielectric screening, is
crucial to accurately reproduce experimental data. The measured binding energies are recovered with a maximum
relative error of 1.53%. The computed wave functions are in good agreement with experimental measurements
of the electron density provided by scanning tunneling microscopy.
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I. INTRODUCTION

Recent technological advances in deterministic doping [1]
get closer to implementations of devices performing classical
or quantum computations on a single donor atom [2], as
has been suggested by Kane [3]. In parallel, significant
progress has been made in scanning tunneling microscopy
(STM) imaging of impurity atoms embedded in silicon several
nanometers below the surface, in their ground and excited
states [4,5]. Knowing the electronic structure of impurity
atoms is essential for understanding the physics of device
operation. Moreover, the interpretation of the measured STM
images requires the accurate modeling not only of the energy
spectra but also of the real-space wave functions of the
impurities. The same is true for analyzing the hyperfine
structure of the energy spectra of shallow donors where the
charge density at the impurity nucleus determines the energy
splitting [6,7].

Computational approaches for determining the electronic
structure of impurities in silicon can be divided into two
classes: supercell methods and effective-mass techniques. The
tight-binding method [8] and methods based on density-
functional theory with pseudopotentials and plane-wave ex-
pansions belong to the first class. Since the effective Bohr
radius [9] of a phosphorus donor atom in silicon is 3.1 nm, the
size of the supercell used in those methods varies from 105 to
107 atoms [8]. These approaches can be implemented to any
required numerical accuracy, but they remain very demanding
for computational resources.

In effective-mass theory, all relevant information about the
band structure of bulk silicon is contained in a small number
of so-called band-structure parameters. However, applying
successfully effective-mass theory for donor atoms in silicon
is challenging due to the strong central cell attractive potential
that leads to valley-orbit coupling [10].
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The pioneering work of Pantelides and Sah [11] led to
significant progress in modeling the spherically symmetric
central-cell part of the impurity potential by using ab initio
computations. In Ref. [11], Pantelides and Sah demonstrated
the important role of static dielectric screening in the central-
cell potential that has also been justified by recent tight-binding
computations [12]. Usually, the expected tetrahedral symme-
try, which is responsible for valley-orbit splitting, is imposed
not on the potential itself but on the wave function using group-
theoretical considerations as in the Friztsche-Twose equations
[13]. This approach works well for noninteracting impurities in
bulk silicon, but its extension to impurity clusters or any non-
spherically-symmetric confinement potentials is not trivial.
Moreover, while the energy spectrum is reproduced accurately,
the corresponding wave functions do not fit to the current
experimental data from the STM measurements [5]. Thus, the
central-cell part of the phosphorus donor potential remains the
subject of intense studies [14–17]. Recent ab initio calculations
evidence a tetrahedral symmetry of the central-cell potential
of the donor impurity [15–17] as well as a small displacement
of its silicon neighboring atoms [14]. It was also established in
Refs. [18] and [19] that computing accurately the valley-orbit
splitting requires detailed information on the periodic Bloch
functions, which has to be computed beyond the effective-mass
approximation. In modern effective-mass methods, the energy
spectrum is modeled using a set of fitting parameters and ad
hoc corrections aimed to reproduce valley-orbit splitting of the
ground-state energy level and/or electron charge density at the
impurity nucleus [7,17,18]. The number of fitting parameters
varies from a single one in [18] to five in [17] (most often three
fitting parameters are used [20,21]). In the paper of Gamble
et al. [17], the proper tetrahedral symmetry has been imposed
directly on the central-cell potential. Although effective-mass
approaches with fitting parameters can reproduce energy
spectra and electron densities at the impurity nuclei accurately,
the overall shape of the wave functions is not guaranteed to
be correct. The shape and localization of the wave function
are crucial to compute accurate electron-electron correlation
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effects in systems consisting of several interacting donors
[18,19,22].

The goal of this paper is to develop a real-space effective-
mass approach without fitting parameters using a small number
of systematically controllable approximations. In the frame-
work of these approximations, the approach should guarantee
the correct overall shape of the wave function and reproduce
the energy spectrum. To avoid using fitting parameters, instead
of the conventional envelope function approximation [23,24],
we derive the system of envelope-function equations starting
from the exact Burt-Foreman envelope-function representa-
tion. We show that this representation is equivalent to a
linear combination of bulk bands or plane-wave expansions.
Using an exact envelope function representation enables us to
implement systematic series truncation and to associate each
envelope function with a defined region in k space.

The resulting envelope function equations are formally
equivalent to the Shindo-Nara equations [25] and contain a
smooth effective potential that is derived ab initio and depends
on periodic Bloch functions and on the attractive potential of
the impurity. The effective potential results from a low-pass
filtering procedure imposed by the periodic boundary condi-
tions of the crystal lattice and from a systematic truncation of
approximating series (e.g., the single-band approximation).
We compute the effective potential using the point-charge
potential with a static screening as a model for the central-cell
potential of the impurity atom [11]. This model is valid for
P. For nonisocoric impurities, such as As, the point charge
must be replaced by a distance-dependent potential that can
be computed using density functional theory or the ab initio
technique described in [11].

The crystal symmetry is introduced in the basis set by
using the periodic Bloch functions computed at the level of the
density functional theory with the local density approximation
(DFT-LDA). Models combining the effective-mass method
and ab initio computations have been used before by several
authors [18,19,26]. Our model also relies on that approach,
however it is implemented so that all atomistic details of the
wave function within the unit cell are mapped to smooth
real-space potentials without any fitting with experimental
data. These potentials can be viewed as local pseudopotentials
and further used in effective-mass calculations.

The computational method should take into account com-
plicated configurations of external electrostatic fields and
confinement potential. In the effective-mass approach, this
can be implemented variationally either by using predefined
basis sets with several variational parameters that can be
adjusted to electrostatic fields [27], or by using a grid method
in real or momentum space. Here, we compute the wave
function using a combined method: the Schrödinger equation
is first solved neglecting the valley-orbit coupling for an
arbitrary confinement potential and external electrostatic fields
by a real-space grid method, and then the computed wave
functions are used as a basis set in a variational procedure
that diagonalizes the Schrödinger equation that includes the
valley-orbit coupling. This makes our approach flexible and
well adapted for any silicon nanostructures.

The paper is organized as follows: In Sec. II, we define the
multivalley envelope function and show its relations with the
plane-wave expansion and the linear combination of bulk band

representation. We then derive the envelope function equation.
In Sec. III, we derive the expressions for the potential energy
terms and compute them using a screened Coulomb potential
with a static screening and periodic Bloch functions from
DFT-LDA calculations. In Sec. IV, we present our numerical
approach for solving the system of envelope function equations
and show results of energy spectrum computations for a P
donor atom in silicon. We then provide an analysis of the donor
wave functions. Concluding remarks are given in Sec. V.

II. MULTIVALLEY ENVELOPE FUNCTION

A. Multivalley envelope function representation: Definition

The wave function for structures with a periodic potential
may be expanded in plane waves (PWs) as follows:

ψ(r) =
∑
G,k0

∑
k∈SBZk0

ψ̃G,k0+ke
i(G+k0+k)r, (1)

where ψ̃G,k0+k are Fourier coefficients, G are the reciprocal-
lattice vectors, and k0 + k is a wave vector within the first
Brillouin zone.

In the expansion (1), each wave vector within the first
Brillouin zone (BZ) is determined as the unique sum of two
vectors, k0 + k, where k0 specifies a region inside the BZ,
and the wave vector, k, is bound inside that region. Such a
partitioning of the BZ may be done in different ways depending
on the specific problem considered. For silicon, it is convenient
to consider six regions: each represents a sector of the BZ
(SBZ) such that it contains a single conduction-band valley
(see Fig. 1). In this case, the vector k0 points to one of six
conduction-band minima [21].

The plane waves, eiG·r, in Eq. (1), have the periodicity of the
crystal lattice. Following the methodology proposed by Burt
[28,29], each of them can be expanded in terms of periodic
Bloch functions, which form a complete basis set of periodic
functions for each point of the BZ. The usual practice in k · p

theory [30] is to use the basis set, un,k(r), taken from a single
point in the BZ (the most common case is to use the center of
the BZ). We are free to choose any reference point for different
regions. Specifically, in each region, we expand eiG·r in terms
of the periodic Bloch functions, un,k0 (r), taken at the wave
vector corresponding to the conduction-band minimum. As a

FIG. 1. (Color online) Partitioning of the Brillouin zone (BZ)
into six sectors (SBZ), each of which is related to a multivalley
envelope function defined for a specific valley of the conduction
band.
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result, Eq. (1) reads

ψ(r) =
∑

n,G,k0

∑
k∈SBZk0

ψ̃G,k0,kũn,G(k0)un,k0 (r)ei(k0+k)r, (2)

where ũn,G(k0) is the PW expansion coefficients for periodic
Bloch functions.

Defining the multivalley envelope function as

fn,k0 (r) =
∑

G

∑
k∈SBZk0

ψ̃G,k0,kũn,G(k0)eik·r, (3)

the multivalley envelope function representation of the wave
function given in Eq. (1) becomes

ψ(r) =
∑
n,k0

fn,k0 (r)un,k0 (r)eik0·r. (4)

The envelope function in Eq. (4) is an exact and unique
representation [28,31] of the wave function developed by Burt
and Foreman. Formally, the Burt-Foreman and Luttinger-Kohn
envelope functions are equivalent at the level of definitions.
Both of them obey the important feature that their Fourier
components lie strictly inside the first BZ by definition (in
our case inside the SBZ). Unlike in the envelope function
approximation proposed by Luttinger and Kohn [23], in the
Burt-Foreman envelope function representation this feature is
preserved in all derivations of the envelope function equations
and defines the smoothness and nonlocal properties of the
effective potential entering into those equations. The Burt-
Foreman envelope function always includes explicitly a band
index allowing for the band-mixing effect. We have modified
the original definition of the envelope function by adding the
valley index k0 allowing for the valley-orbit mixing.

For an infinite number of regions, the expansion (4) tends
to the full Brillouin zone approach [32,33]. A larger number
of regions enhances the accuracy of the numerical solution, at
the expense, however, of the number of equations to solve.

B. Relationships between different representations

The electronic structure of a single impurity atom in the
crystal lattice can be computed in several representations. The
most commonly used are plane-wave (PW) expansion, enve-
lope function (EF) representation [29], and linear combination
of bulk bands (LCBB) [32]. They are summarized in Eq. (5):

ψ(r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
n,k0

fn,k0 (r)un,k0 (r)eik0·r, EF,

∑
G,k0,k

ψ̃G,k0+ke
i(G+k0+k)r, PW,

∑
n,k0,k

cn,k0+kun,k0+k(r)ei(k0+k)r, LCBB.

(5)

Each representation leads to correct results. Their compu-
tational efficiency depends on the problem to which they are
applied. For example, the EF method is most efficient when
the confinement potential varies slowly in real space. LCBB
is most convenient when a specific mixing of electronic states,
such as �-X valley mixing in GaAs/AlAs quantum dots [34],
is known a priori that allows us to reduce the size of the basis
set formed from bulk states taken over the whole BZ. The PW
expansion works obviously very well for periodic structures
such as semiconductor superlattices [24].

The representations mentioned above are related via uni-
tary transformations. We derive explicitly the corresponding
unitary matrices since they are important for the developments
below. The unitary matrices are obtained by Fourier transforms
of all coordinate-dependent factors in Eqs. (5):

ψ(G,k0,k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
n

uG,n(k0)f̃n(k0,k), EF;

ψ̃G,k0+k, PW;∑
n

uG,n(k)cn,k0+k, LCBB.

(6)

In Eqs. (6) the sums over band indices n can be considered
as a matrix multiplication by treating uG,n(k0) as an element
of a square matrix U (k0) parametrically dependent on k0 with
indices G and n. Correspondingly, f̃n(k0,k), ψ̃G,k0+k, and
cn,k0+k may be considered as elements of vectors F (k0,k),
�(k0,k), and C(k0,k). Taking into account the fact that the
matrices U (k) are unitary [30] for all wave vectors k, we
readily recover the relations between the three representations
of Eq. (5) in matrix form:

�(k0,k) = U (k)C(k0,k),

�(k0,k) = U (k0)F (k0,k),

C(k0,k) = U †(k)U (k0)F (k0,k).

(7)

C. Envelope function equations and k · p method

Our goal is to derive real-space differential equations, the
solutions of which define the multivalley envelope functions
in periodic media with known band structure, E(k), in the
presence of an additional nonperiodic potential V (r). We start
with the equation for LCBB [32] in matrix form in momentum
space:

E(k0 + k)C(k) +
∑
k′

0,k
′
VLCBB(k0 + k,k′

0 + k′)C(k′) = εC(k),

(8)

where E(k0 + k) is the diagonal matrix containing the set of
band energies for the wave vector k0 + k, and an element of
the matrix representation of the nonperiodic potential reads
[VLCBB(k0 + k,k′

0 + k′)]
nm

= 〈n,k0 + k|V (r)|m,k′
0 + k′〉.

Using the canonical transformation (7), Eq. (8) can be
rewritten in the envelope function representation:

U †(k0)H (k0 + k)U (k0)F (k0,k)

+
∑
k′

0,k
′
U †(k0)VPW(k0 + k,k′

0 + k′)U (k′
0)F (k′

0,k
′)

= εF (k0,k), (9)

where [VPW(k0 + k,k′
0 + k′)]G,G′ = 〈G + k0 + k|V (r)|G′ +

k′
0 + k′〉 is an element of the plane-wave matrix representation

of the nonperiodic potential. The potentials in Eqs. (8) and
(9) are related to each other by VLCBB(k0 + k,k′

0 + k′) =
U †(k)VPW(k0 + k,k′

0 + k′)U (k′). The matrix H (k0 + k) =
U (k)E(k0 + k)U †(k) is the PW representation of the periodic
part of the Hamiltonian. Its matrix elements read

[H (k0 + k)]G,G′ = TG(k0,k)δG,G′ + VG,G′ , (10)
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where

TG(k0,k) =
[ |G|2

2
+ i[(k0 + k) · G] + (k0 + k)2

2

]
,

and VG,G′ is the plane-wave representation of the periodic
crystal potential.

Equation (9) is general and it is exact since no approxima-
tion has been made up to now. In Eq. (9), both terms on the left-
hand side (the periodic and nonperiodic ones) are nondiagonal
matrices responsible for band mixing. The problem can be
partially simplified by the diagonalizing periodic part of the
Hamiltonian with the k · p method. This technique is based
on canonical transformations and second-order perturbation
theory. It allows for certain bands belonging to a set A to take
into account the interband mixing with all others bands of a
set B. It leads to the effective-mass Hamiltonian for the set A:
[U †(k0)H (k0 + k)U (k0)]nm → [Hkp(k0,k)]

nm
δn∈Aδm∈A. The

energy states of donor atoms in silicon lie close to conduction
bands in the band gap. Therefore, we restrict the set A to
the lowest conduction band. A very common approximation
made at this stage is that the nonperiodic potential does not
lead to band mixing between sets A and B, so the canonical
transformations do not affect the nonperiodic potential (see
Ref. [23]). Since we do not intend to use fitting parameters
in this work, we take this approximation as an ansatz and
will check its validity by comparing our computed results
with experimental values. After applying the k · p method, the
envelope function equations read

Hkp(k0,k)F (k0,k)

+
∑
k′

0,k
′
U †(k0)VPW(k0 + k,k′

0 + k′)U (k′
0)F (k′

0,k
′)

= εF (k0,k), (11)

where Hkp(k0,k) is the single-band k · p Hamiltonian for bulk
silicon. The Hamiltonian Hkp(k0,k) for silicon is known [23],
so we will pay attention to the potential-energy term.

III. POTENTIAL ENERGY TERM

A. General real-space expression

In element form, the potential energy term in Eq. (11) reads

Vf =
∑
m,k′

∑
G,G′

u∗
n,G(k0)ṽ(|G′ − G + k′

0 + k′ − k0

− k|)uG′,m(k′
0)f̃m(k′

0,k
′), (12)

where ṽ(|G′ − G + k′
0 + k′ − k0 − k|) are the PW expansion

coefficients for the impurity potential.
Acting with the linear operator 1

L3

∑
k eikr× from the left-

hand side, each term of Eq. (11) can be transformed into real
space. Particularly, the potential term becomes

Vf =
∑
m,k′

0

∫
dr′fm(k′

0,r
′)

∫
dr′′u∗

n(k0,r′′)V (r′′)um(k′
0,r

′′)

×�k0 (r − r′′)�k′
0
(r′′ − r′)ei(k′

0−k0)r′′
(13)

with

�k0 (r − r′′) = 1

L3

∑
k∈SBZ(k0)

eik(r−r′′), (14)

where L3 is the crystal volume.
The functions �k0 (r − r′′) and �k′

0
(r′′ − r′) are related to

the geometrical properties of SBZ shown in Fig. 1. They have
compact support in momentum space and are well-localized
in position space acting like a low-pass filter function leading
to a smoothing of the potential V (r′′).

The envelope function is smoothly varying over the region
spanned by the functions �k0 (r − r′′) and �k′

0
(r′′ − r′). Here

we make the approximation that the envelope function is
almost constant within that region. When this is verified,
the region in k-space occupied by the PW expansion of the
envelope function is much smaller than the volume of SBZ.
Consequently, the envelope function in (13) can be moved out
of the integrals. The integration of �k′

0
(r′′ − r′) over r′ gives

unity. The resulting equation reads

Vf =
∑
m,k′

0

V
n,m

k0,k′
0
(r)fm(k′

0,r), (15)

where

V
n,m

k0,k′
0
(r) =

∫
dr′′u∗

n(k0,r′′)V (r′′)um(k′
0,r

′′)

×�k0 (r − r′′)ei(k′
0−k0)r′′

. (16)

Equation (16) has been derived assuming that the position
of the impurity is fixed at the origin of the coordinate system.
When this is not the case, it is easy to show that Eq. (16)
has to be multiplied by a phase factor e−i(k′

0−k0)r0 , where r0 is
the position of the impurity atom. The phase factor becomes
important for systems with more than one impurity atom [21].

The low-pass filtering of the product of the impurity
potential and periodic Bloch functions in Eq. (16) is crucial,
since this procedure eliminates nonphysical solutions that
break the symmetry imposed by the crystal lattice. Such
nonphysical envelope functions contain Fourier components
with wave vectors k lying outside the SBZ or outside the BZ
(see Fig. 1). The envelope functions with Fourier components
lying outside the corresponding SBZ, but inside the BZ,
lead to nonorthonormal wave functions ψ(r). The envelope
functions with Fourier components lying outside the BZ are
not consistent with periodic boundary conditions imposed by
the crystal lattice. According to the Burt-Foreman definition
of the envelope function, a fast-varying potential leads to band
mixing keeping the envelope function smooth. Band mixing
does not break the periodic boundary conditions of the crystal
lattice. Here, we apply the single-band approximation and
drop the band indices n and m in the potential (16) in the
developments below.

The potential V (r′′) in Eq. (16) may contain poles (e.g.,
the point-charge potential), however singular points do not
appear in the effective potentials V

n,m

k0,k′
0
(r). When k0 �= k′

0, the
singular point of the point-charge potential always lies outside
the compact support of the filter function, thus the integrand is
not singular. The singularity may be found inside the compact
support only when k0 = k′

0. In this case, the principal value of
the integral is computed.
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B. Effective potentials for P donors in silicon

The effective potential defined by Eq. (16) can be treated as
a nonlocal norm-conserving pseudopotential since it appears
in the effective-mass equation. The nonlocality is caused by the
dependence of the potential on the wave vectors k0. Computed
once for an impurity atom in bulk silicon, it can be used
further, for example for silicon nanostructures with different
confinement potentials.

For the phosphorus impurity, the bare potential V (r′′) in
Eq. (16) is modeled by the point-charge Coulomb poten-
tial with the static dielectric screening [11,12]. This is in
accordance with the Pantelides-Sah model [11], where the
attractive potential is represented as a sum of two terms:
V = Ub + Us . The sum, V , is the residual between the silicon
and silicon+impurity exact potentials. The term Ub is the
difference between silicon and phosphorus ionic potentials,
and the term Us is the difference in contributions coming
from valence electrons. In the general case, the potential Ub

differs from the point-charge potential by an effective charge
that is not a constant and has a position dependence. For
isocoric impurities, this potential is very close to the constant
1.0, as proved by computations (see Fig. 4 in Ref. [11]).
Thus the point-charge Coulomb potential is a good model
in the case of phosphorus impurities. The contribution from
Us is responsible for the static screening and cannot be
neglected. For the static screening, we use the dielectric
function computed by Nara [35] from first principles using
linear-response theory. However, the bare potential V (r′′) of
the nonisocoric impurities such as As cannot be modeled by
the point-charge potential. In this case, the bare potential can
be computed using DFT or the simple ab initio technique
described in [11] and inserted in Eq. (16).

The integral in Eq. (16) has been computed using the
convolution theorem and the fast-Fourier transform algorithm
implemented in MATLAB [36]. The periodic Bloch functions in
Eq. (16) have been computed in the framework of the density
functional theory using the local density approximation and the
projector-augmented-wave method [37] (PAW) implemented
in the ABINIT software [38]. We use the PAW method for silicon
since it is able to reproduce all-electron wave functions with an
accurate charge density at nuclei [6]. The computations have
been done in two steps: First, a self-consistent computation
with sparse grids in k space is carried out to achieve
fast convergence of the total energy. In the second step,

accurate non-self-consistent computations on the basis of the
previous step are run for specific points in reciprocal space.
Convergence has been reached when the difference in total
energy between cycles was less than 8.5 × 10−5 meV. As
a numerical accuracy test, we have also used the periodic
Bloch functions computed by the pseudopotential method.
The comparison of the effective potentials for two sets of
the periodic Bloch functions does not show any difference.
This is a result of the filtering procedure, which eliminates
components with large wave vectors and gives the same results
when the norm of basis functions is conserved within the
unit cell. For the same reason, using pseudopotentials beyond
the LDA may improve the accuracy in the periodic Bloch
function computations, but it does not affect much the effective
potentials in the single-band approximation. Nevertheless,
the accuracy of the periodic Bloch functions computation is
crucial when one is interested in a local value of the wave
function.

The computed effective potentials for a P donor atom in
silicon are shown in Fig. 2 for several combinations of valley
indices k0 and k′

0. The potential for the case when k0 = k′
0 (we

call them the single-valley potentials) tends asymptotically
to the Coulomb potential when |r| → ∞. In Fig. 3, we
compare the single-valley potentials with and without the static
screening before and after applying the spatial filtering [see
Eq. (16)]. Unlike in the bare Coulomb potential, the central-cell
region of the effective-mass potential is smooth and does not
contain singularity. When the static screening is neglected,
the single-valley effective-mass potential reaches its minimum
at 11.62 scaled Hartrees (464.8 meV). Taking the screening
into account decreases the potential energy minimum down
to 16.46 scaled Hartrees (658.4 meV). The scaled units are
defined in Appendix. Also, the results of Fig. 3 show that
the static screening affects the shape of the effective potential
around the nucleus.

For the single-valley effective potential [Fig. 2(a)], we
observe Gibbs oscillations in the direction determined by
the orientation of the constant energy ellipsoid associated
with the conduction-band valley. The oscillations are caused
by boundaries of the SBZ. They do not affect low-energy
states localized around the core, however they have an effect
on higher excited states. This effect is a consequence of
the single-band approximation and it can be eliminated by
including more bands.

(a) (b) (c)

FIG. 2. (Color online) The effective potential Vk0,k′
0

for (a) k0 = k′
0 = X, (b) k0 = −k′

0 = X, and (c) k0 = X, k′
0 = Y .
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FIG. 3. (Color online) Absolute value of the single-valley effec-
tive potential (k0 = X) plotted on a log scale, computed along the
crystallographic axis [010]. The bare Coulomb potential and the
screened Coulomb potential are designated by the shaded area and the
black dashed line, respectively. The corresponding effective potentials
are represented by the blue dotted line (without screening) and the
black solid line (with screening).

The potentials for different wave vectors (we call them
the coupling potentials) are more localized in real space and
they are weaker. While the imaginary part of the single-valley
potential is negligibly small, the real and imaginary parts of
the coupling potentials are of the same order of magnitude.
Therefore, in Figs. 2(b) and 2(c), we plot the absolute value.
The coupling potentials possess a strong anisotropy. The
coupling potential for which k0 ⊥ k′

0 is approximately twice
as deep compared to that for which the condition k0 = −k′

0
holds.

Each effective potential separately does not exhibit tetra-
hedral symmetry, but their proper combination does. In this
sense, the effective potential is nonlocal, since in order to repro-
duce proper symmetry the effective potential mixes envelope
functions belonging to different valleys. Thus, the effective
potential possesses a nonlocality due to the dependence on
the wave vectors k0 and k′

0. The set of effective potentials
for all possible combinations of the wave vectors can be

arranged in a matrix that forms a reducible representation of
the tetrahedral group. Therefore, the resulting wave function
possesses tetrahedral symmetry, whose significant importance
has been discussed in Ref. [17].

IV. SOLVING ENVELOPE FUNCTION EQUATIONS FOR A
SINGLE P DONOR IN SILICON

A. Numerical technique

The resulting system of the envelope function equations
consists in six coupled eigenvalue problems:

[Hkp(k0,k → i∇) + Vk0,k0 (r)]f (k0,r)

+
∑

k′
0 �=k0

Vk′
0,k0 (r)f (k′

0,r) = Ef (k0,r). (17)

The envelope function equations (17), written in the single-
band approximation, are formally identical to the Shindo-Nara
equations [17,25]. The difference with other approaches based
on the Shindo-Nara equations lies in the definition of the
potential Vk′

0,k0 (r).
First we solve the problem neglecting valley-orbit cou-

pling. Each single-valley equation with a kinetic energy term
Hkp(k0,k → i∇) written explicitly reads

−1

2

(
γx

∂2

∂x2
+ γy

∂2

∂y2
+ γz

∂2

∂z2

)
f s(k0,r)

+Vk0,k0 (r)f s(k0,r) = Es
k0

f s(k0,r), (18)

where f s(k0,r) and Es
k0

are eigenfunctions and eigenvalues
of the single-valley envelope function equations and γ =
{γx,γy,γz} = {mxx/m||,myy/m||,mzz/m||}. In bulk silicon, the
components of the effective-mass tensor mxx , myy , and mzz

determine the orientation of the isoenergetic ellipsoids of each
conduction-band valley relative to the crystallographic axes.
Thus, for different valleys the factors γ take different values:
γ = {0.19,1,1} for valleys k0 = {−X,X}, γ = {1,0.19,1} for
valleys k0 = {−Y,Y }, and γ = {1,1,0.19} for valleys k0 =
{−Z,Z}. The eigenfunctions and eigenvalues of Eq. (18) are
computed numerically using the finite-element method with
an unstructured grid adapted to the Coulomb potential of the
impurity [39].

Next, to get the corrections caused by the central cell
potential, we apply the variational method [40,41]. First, we

(a) (b) (c)

FIG. 4. (Color online) Wave functions of the P donor atom in silicon belonging to the 1s manifold of states: (a) nondegenerate A1 state,
(b) triple-degenerate T2 states, and (c) double-degenerate E states.
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expand the unknown envelope functions f (k0,r) in terms
of eigenfunctions f s(k0,r) defined in Eq. (18): f (k0,r) =∑

j,k′
0
cj,k′

0
f s

j (k′
0,r), where cj,k′

0
is an expansion coefficient,

and we substitute this expansion in the system of equations
(17). The eigenfunctions f s

j (k′
0,r) taken from all valleys form

a nonorthogonal basis set. Substituting the expansion in each
equation of the system (17), multiplying by one of the basis
functions and integrating over real space, one gets a system of
linear algebraic equations:

BC = ESC, (19)

where C is the vector of unknown expansion coefficients, S is
the overlap matrix, and B is a matrix with elements:

B
i,j

k0,k′
0
=

⎧⎨
⎩

Es
j,k0

δi,j if k0 = k′
0,

M
i,j

k0,k′
0

if k0 �= k′
0,

(20)

where

M
i,j

k0,k′
0
=

√
6

∫
dr f s

i (k0,r)Vk′
0,k0 (r)f s

j (k′
0,r). (21)

Equation (21) can be further simplified taking into account
the strong localization of the potential Vk′

0,k0 (r) (see the
discussion in the previous section) using proper asymptotic for
atomic orbitals. The highest electron density at the nucleus is
for s-type orbitals. Since the first term in their Tailor expansion
is a constant, the matrix element can be rewritten as

M
i,j

k0,k′
0
=

√
6f s

i (k0,r0)f s
j (k′

0,r0)
∫

dr Vk′
0,k0 (r). (22)

This approximation is identical to the contact potential
approach [20,42–44].

B. Binding energies

The computed values of the three lowest energy levels of a P
donor atom in silicon are collected in Table I. The energies have
been computed for two cases: for the bare Coulomb potential,
Vbare, and for the potential with the static screening, Vscr [11].

The static screening leads to a small correction of 1.3
meV in the single-valley problem, however it affects more
significantly the valley-orbit coupling potentials and leads to
larger splitting energies. The best agreement with experimental
data [45] (within 0.5 meV) is obtained for the screened
potential.

The method inherently takes into account the valley-orbit
mixing between different single-valley orbitals. This kind of
mixing was first analyzed by Friesen [44] for quantum dots.

TABLE I. Electron binding energies for P impurity in silicon
(meV).

Symmetry A1 T2 E

Vbare (j = 1s) −33.70 −32.65 −32.58
Vbare (j = 1s,2s) −35.11 −34.22 −34.16

Vscr (j = 1s) −43.23 −32.40 −30.64
Vscr (j = 1s,2s) −45.40 −33.86 −32.08

Experiment [45] −45.59 −33.89 −32.58

TABLE II. Valley-orbit coupling matrix elements (meV).

Matrix element E0 �0 = E0 − EH �1 �2

Friesen [20] EH = −31.28 −4.13a −1.51 −2.17
This work (Vbare) −32.81 −1.53 −0.12 −0.17
This work (Vscr) −33.70 −2.42 −0.99 −1.72

aThis number is computed as the difference between EH and
experimental results.

Only orbitals of s symmetry contribute to the VO mixing
because they have a large probability density at the nucleus,
where the coupling potentials are localized [see Figs. 2(a)
and 2(b)]. From Table I, one can see that most significant
contributions to the ground-state energy come from the 1s

orbital, while a non-negligible contribution of 0.5 meV is
caused by the 2s orbital.

We also compare in Table II the values of the matrix
elements that are responsible for the valley-orbit coupling with
those obtained in Ref. [20] from fitting to experimental data.
We compare matrix elements computed for j = 1s only, since
the fitting in Ref. [20] has been done for 1s orbitals only.

The matrix element �0 is the contribution from the
central cell potential to the single-valley energy spectrum.
This contribution is defined as the energy difference between
EH = −31.28 meV, that is, the ground-state energy from
the hydrogenic model [20], and the computed single-valley
ground-state energy, E0. The matrix elements �1 and �2 are
the values of the valley-orbit couplings defined by the integral
in Eq. (22): �j = ∫

dr Vk′
0,k0 (r), where j = 1 for k0 = −k′

0
and j = 2 for k0 ⊥ k′

0.
The difference between the present results and those of

Friesen [20] is due to the fact that the fitting in Ref. [20] is
carried out for 1s orbitals only. For the effective potentials
obtained in this work, using only 1s orbitals leads to an
inaccuracy of several meV. So, a good agreement with
experimental results is achieved by adding a contribution from
2s orbitals. The overall shape of the wave function including
2s orbitals is slightly different from the shape of the wave
function composed of 1s orbitals only.

C. Wave functions and comparisons with STM images

In Fig. 4, we report wave functions for the 1s manifold of
states of the phosphorus donor atom. All wave functions have
different symmetry within the unit cell, while their global
shapes are similar and correspond to the contours of a 1s

atomic orbital. The shape of the wave function shown in
Fig. 4 is in good agreement with the results of Refs. [18]
and [19].

The computed value of |ψ(r)|2 at the P nucleus for the
ground state is 2.40 × 1023 cm−3, while the experimental value
is 4.30 × 1023 cm−3 (see [46] and [7] and references therein).
Recent results obtained using the supercell DFT computations
with a small supercell [14] show a little displacement of
silicon atoms around the phosphorus impurity. Such short-
range variations of the central-cell wave function cannot be
reproduced by adjustments made in the envelope function,
but they can be accounted for by including the band-mixing
effect.
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(a) (b)

FIG. 5. (Color online) (a) Fourier amplitudes of the surface elec-
tron probability density |ψ(r)|2 for the ground state computed by the
envelope function approach for the P donor atom 6.25a0 below the
silicon surface, and (b) the reciprocal space profile of |ψ(r)|2 along
the [110] direction.

The wave function provides insights for interpreting the
results of STM experiments. We compute here the wave
function of the donor atom embedded below the silicon surface
at 6.25 a0, where a0 is the lattice constant (see Appendix). The
surface electron density shown in Fig. 5 is computed using
the envelope function approach to surface states described in
Ref. [47] for 1 × 1 surface reconstruction. Also, we neglect
valley-orbit splitting caused by the contact coupling at the
surface [44] since we consider the case when the donor atom
is deep enough, so that the overlap of the wave function with
the surface is negligibly small.

The results shown in Fig. 5 are in semiquantitative agree-
ment with STM measurements [4]. The Fourier amplitudes
recover the valley ellipsoids for the −X, X, −Y , and Y

valleys positioned along the directions [100] and [010] in
momentum space near the borders of the Brillouin zone.
The figure also shows valley interference at the center of
the Brillouin zone, which has been discussed in Ref. [4] in
detail. In Fig. 5(b), we plot the reciprocal space profile of
the Fourier transform of the surface electron density in the
direction [110]. The plot has three peaks: the central one
defines the norm of the wave function (overall contribution
from all valleys), while the side peaks indicate the population
either from the X or from the Y valley. Therefore, by analyzing
these data, it is possible to estimate valley population [4].
Using the analysis from Ref. [4], the population of the Z

valley is estimated to be 43.9%, while the valley population
in bulk silicon is the same for all valleys and equal to
33.33%. Therefore, due to the effective-mass anisotropy, the
surface breaks valley degeneracy and leads to a redistribution
of the valley population enhancing the population of Z

valleys.

V. DISCUSSION AND CONCLUSIONS

We derived envelope function equations based on the
Burt-Foreman envelope function representation. The equa-
tions are free of fitting parameters and contain effective
potentials describing electron confinement in the single-valley
approximation, valley-orbit coupling, and possibly interband
coupling. The effective potentials are defined from the periodic

Bloch functions and the exact confinement potential of a
dopant through a low-pass filtering procedure that eliminates
nonphysical Fourier components that are not consistent with
the definition of the envelope functions, i.e., with the periodic
boundary conditions imposed by the crystal lattice.

The potentials have been computed using ab initio methods.
The system of six envelope function equations has been solved
in the single-band approximation using the finite-element
method together with an eigenfunction expansion. The method
proposed here takes into account valley-orbit coupling for
different atomic orbitals. We have shown that the most
significant contributions come from 1s and 2s atomic orbitals:
taking into account valley-orbit coupling for 2s orbitals
decreases the ground-state energy by ∼1 meV. The static
screening in silicon is essential: it results in 1 meV correction
for the single-valley ground-state energy and enhances the
matrix elements describing valley-orbit coupling almost by
one order of magnitude (see Table II).

The results show very good agreement (within 0.5 meV)
with experimentally measured binding energies for all elec-
tronic states of the impurity atom (the maximal relative error
is 1.53%). Such a good agreement confirms the validity of
the single-band approximation for computing the binding
energies. The computed electron density at the phosphorus
nucleus, which is more sensitive to atomistic details of the
central cell, is smaller than the experimental value by the factor
1.79. For comparison, the value computed by the tight-binding
method in Ref. [12] is smaller than the experimental one by the
factor 1.5. In the tight-binding computations, a single fitting
parameter has been used to adjust the energy spectrum. The
reasons for the inaccuracy in the computed value result from
the single-band approximation and from small displacements
of silicon atoms relative to their positions in the periodic lattice.
Small displacements lead to inaccuracies when periodic Bloch
functions are used as a basis set for approximating the wave
function in the central cell.

The computed results have been obtained using the
following approximations: the single-band approximation,
the approximation in which the phosphorus atom does not
change the positions of the surrounding silicon atoms (by
using periodic basis functions), and neglecting the intrinsic
nonlocality of the potential energy term, which is equivalent
to the contact potential approximation [20,42] [see Eq. (22)].
The agreement can be further improved going beyond the
single-band approximation by using, for example, the 2 × 2
k · p Hamiltonian proposed in Ref. [48].

In addition, we also modeled the electron density of the
phosphorus donor atom embedded below the silicon surface
and probed by the STM measurements [4]. This observable is
a sensitive test to the quality of the computed wave function
at large distances from the impurity nucleus. The comparison
shows good semiquantitative agreement: the valley population
of the surface electron density is in good agreement with the
experimental data, while the features caused by the silicon
surface reconstruction are not reproduced by the proposed
method. The ability to reproduce the overall shape of the
wave function of the impurity atom in silicon with good
agreement with experimental data paves the way to accurately
modeling electron-electron correlation effects in many-dopant
many-electron systems.
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APPENDIX: SILICON MATERIAL PARAMETERS AND
SCALED ATOMIC UNITS

All material parameters used in computations are collected
in Table III. The lattice constant, relative permittivity, and
effective masses have been taken from Refs. [18] and [20].

To study the electronic structure of donor atoms in silicon,
it is convenient to use the system of scaled atomic units in
order to simplify the formalism. The units are defined by the
following formulas:

TABLE III. Si material parameters.

Parameters Notation and units Values

Lattice constant a0 (Å) 5.43
Relative permittivity ε 11.4
Effective masses m⊥ 0.191

m|| 0.916
Conduction-band minima
Wave number |k0| (nm−1) 9.72

(i) The unit of length is the scaled Bohr radius defined by

ab = 4π�
2εε0

m⊥q2
= 3.15 nm. (A1)

(ii) The energy is measured in scaled Hartrees:

EH = q2

4πεε0ab

= 40 meV. (A2)
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