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Fate of classical solitons in one-dimensional quantum systems
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We study one-dimensional quantum systems near the classical limit described by the Korteweg–de Vries (KdV)
equation. The excitations near this limit are the well-known solitons and phonons. The classical description breaks
down at long wavelengths, where quantum effects become dominant. Focusing on the spectra of the elementary
excitations, we describe analytically the entire classical-to-quantum crossover. We show that the ultimate quantum
fate of the classical KdV excitations is to become fermionic particles and holes. We discuss in detail two exactly
solvable models exhibiting such crossover, namely the Lieb-Liniger model of bosons with weak contact repulsion
and the quantum Toda model. We argue that the results obtained for these models are universally applicable to
all quantum one-dimensional systems with a well-defined classical limit described by the KdV equation.
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I. INTRODUCTION

The Korteweg–de Vries (KdV) equation [1] describes
propagation of waves in a medium with competing dispersion
and nonlinearity and is ubiquitous in the physics of classical
nonlinear systems [2]. In addition to the usual periodic waves,
the KdV equation supports solitons, i.e., localized disturbances
with particlelike properties. Protected by the integrability of
the KdV equation, the solitons move and scatter off each other
without distortion.

Real systems are never integrable. Nevertheless, the KdV
equation often provides an adequate effective description of the
excitations in the long-wavelength limit, whereas deviations
from the integrability have a significant impact on the lifetime
and stability of solitons at shorter wavelengths [3]. Another
limitation on the applicability of the KdV equation, which
is the primary focus of this paper, arises in one-dimensional
quantum systems with a well-defined classical limit. In these
systems, quantum effects inevitably become dominant at
sufficiently long wavelengths, leading to the breakdown [4–10]
of the classical description.

Because the emergence of quantum behavior is not as-
sociated with broken integrability, it is natural to approach
the problem of describing the classical-to-quantum crossover
from the perspective of exactly solvable models [11,12]. Fortu-
nately, solvable models exhibiting such crossover are available.
In this paper, we consider two well-known examples. The first
one is the Lieb-Liniger model of bosons with weak contact
repulsion [11–14]. In the classical limit, its dynamics can be
described by the mean-field Gross-Pitaevskii equation [15,16],
which has the form of the nonlinear Schrödinger equation [2].
The equation is integrable [2] and reduces to the KdV equation
in the long-wavelength limit [17]. The second model we
consider is the quantum Toda model [12,18–20]. Its classical
counterpart, the Toda model [21], is also integrable and the
corresponding equation of motion in the continuum limit
coincides [21] with the KdV equation.

It is well known that at high momenta the exact spectra
of elementary excitations of the Lieb-Liniger and the quan-
tum Toda models match those deduced from their classical
analogs [12,18,22]. In this paper we focus on low momenta,
and we evaluate the spectra near the classical-to-quantum

crossover. Some of the results presented below have been
reported in Refs. [8,9].

The rest of the paper is organized as follows: In Sec. II we
summarize some well-known facts about the KdV equation
and discuss its applicability for the description of quantum
interacting systems near the classical limit. In Sec. III we
introduce the Lieb-Liniger and the quantum Toda models and
discuss their relation to the KdV equation. Spectra of the
elementary excitations are evaluated in Sec. IV. The results
are discussed in Sec. V. Technical details are relegated to the
Appendixes.

II. KdV EQUATION IN QUANTUM SYSTEMS

The KdV equation in the standard form reads [2]

∂τf + 6f ∂ξf + ∂3
ξ f = 0, (2.1)

where τ and ξ are the dimensionless time and coordinate,
respectively. The equation can be viewed [2] as a canonical
equation of motion ∂τf = {f,H} generated by the Hamilto-
nian

H =
ˆ

dξ

[
f 3 − 1

2
(∂ξf )2

]
(2.2)

and the Poisson bracket

{f (ξ ),f (ξ ′)} = − ∂ξ δ(ξ − ξ ′). (2.3)

The KdV equation supports an infinite number of poly-
nomial integrals of motion [2], all in involution with each
other with respect to the Poisson bracket (2.3). Among these
integrals of motion are the dimensionless momentum

P =
ˆ

dξ f 2 (2.4)

and the Hamiltonian (2.2) itself; the latter defines the dimen-
sionless energy. Substituting the single-soliton solution [2] of
Eq. (2.1),

f0(ξ,τ ) = 2A2

cosh2[A(ξ − 4A2τ )]
, (2.5)
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into Eqs. (2.2) and (2.4) and excluding the parameter A, we
obtain the relation

H0 = 1

5

(
3P0

2

)5/3

(2.6)

between the corresponding values of the dimensionless energy
and momentum.

In this paper, we study one-dimensional interacting quan-
tum systems with a well-defined classical limit described by
the KdV equation. As we will demonstrate in Sec. III, in these
systems the low-energy right- and left-moving excitations
decouple from each other. Focusing on this regime and on,
say, the right-moving excitations, we introduce a bosonic field
� obeying the commutation relation

[�(x),�(y)] = iπ sgn(x − y) (2.7)

and write the Hamiltonian of the right-movers as a sum of two
contributions,

H = vP + HKdV, (2.8)

where

P = �

4π

ˆ L

0
dx : (∂x�)2 : (2.9)

is the momentum operator and

HKdV = �
2

12πm∗

ˆ L

0
dx :

[
(∂x�)3 − a∗

(
∂2
x�

)2]
: (2.10)

represents the leading perturbation. In Eqs. (2.9) and (2.10),
L is the size of the system, and the colons denote the
normal ordering with respect to the bosonic vacuum. The
parameters v, m∗, and a∗ have the units of velocity, mass, and
length, respectively; their origin and physical meaning will
be elucidated below. We are interested in the excitations of
the Hamiltonian (2.8) with wavelengths of order a∗. Provided
that the length scale a∗ is small compared with L, spectra
of such excitations are not sensitive to the precise form of the
boundary conditions imposed on the field �(x), which we take
to be periodic,

�(x) = �(x + L). (2.11)

Comparison of Eqs. (2.7), (2.9), and (2.10) with
Eqs. (2.3), (2.4), and (2.2), respectively, shows that, apart
from rescaling, ∂x� is merely the quantized version of f . The
classical model defined by Eqs. (2.2) and (2.3) and its quantum
version [23,24] defined by Eqs. (2.7) and (2.10) represent the
so-called first Hamiltonian structure of the KdV equation [2].
The quantum KdV model is believed to be integrable, with
the first few integrals of motion having the same form [23] as
the corresponding classical expressions. These models should
be distinguished from those corresponding to the second
Hamiltonian structure, in which both the Hamiltonian and
the Poisson bracket have forms different from Eqs. (2.2)
and (2.3) [2,24]. Whereas quantum KdV models of the
latter type have received much attention [24–27] due to their
relevance to conformal field theory [28], the former arise
naturally as the low-energy description of one-dimensional
interacting quantum systems; see, e.g., Refs. [5,9,10,29,30].

Because the operators P and HKdV commute, the excitation
spectrum of the Hamiltonian (2.8) has the form

ε(p) = vp + εKdV(p), (2.12)

where ε, p, and εKdV are eigenvalues of the operators H , P ,
and HKdV, respectively. To find the nonlinear-in-p contribution
εKdV(p) in Eq. (2.12), we consider the Heisenberg equation
of motion ∂t� = i�−1[HKdV,�], which after a change of
variables

x = a∗ξ, t = t∗τ, t∗ = 3m∗a2
∗

�
(2.13)

takes the form

∂τ� + 3
2 : (∂ξ�)2 : +∂3

ξ � = 0. (2.14)

We now differentiate Eq. (2.14) with respect to ξ and treat the
field

F = 1
2 ∂ξ� (2.15)

as a classical variable. Neglecting quantum fluctuations of F

amounts to replacing 〈: F 2 :〉 with 〈F 〉2 and leads to the KdV
equation (2.1) for the expectation value f = 〈F 〉. Solution
of this equation satisfying the condition

´ L/a∗
0 dξ f (ξ,τ ) = 0

[see Eqs. (2.11) and (2.15)] can be written as

f (ξ,τ ) = −N0
a∗
L

+ f0(ξ,τ ), (2.16)

where N0 = ´
dξ f0(ξ,τ ) = 2(3P0/2)1/3 is the dimensionless

mass of the soliton [2] and f0 is given by Eq. (2.5). We now
take the expectation values of P and HKdV [see Eqs. (2.9)
and (2.10)], neglect quantum fluctuations, and compare the
resulting expressions with Eqs. (2.2) and (2.4). In the limit
a∗/L → 0, this yields

p = �

πa∗
P0, εKdV = 2�

πt∗
H0. (2.17)

Upon introducing the momentum and energy scales

p∗ = 3�

2a∗
, ε∗ = 27

8

�∗
t∗

= p2
∗

2m∗
, (2.18)

we write the KdV contribution to the spectrum as

εKdV(p) = ε∗e(p/p∗). (2.19)

For the soliton excitation, the dimensionless function e(s) in
Eq. (2.19) is given by

esoliton(s) = 3

5

(
2π

3

)2/3

s5/3, (2.20)

see Eqs. (2.6) and (2.17).
In addition to the solitons, the KdV equation (2.1) has

delocalized solutions describing periodic waves, the cnoidal
waves [1]. The energy (2.2) and momentum (2.4) associated
with such solutions diverge in the limit of infinite system size
unless the waves have vanishingly small amplitude. Accord-
ingly, periodic wave solutions of interest here correspond to
the harmonic regime when the nonlinear term in Eq. (2.1) can
be neglected. This leads to the relation 	 = −Q3 between
the dimensionless frequency 	 and the wave number Q. In
classical mechanics, the energy and momentum of such a wave
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are proportional to the square of its amplitude. In quantum
mechanics, however, the periodic wave solution corresponds to
a phonon with well-defined energy and momentum. Restoring
the units, we obtain εKdV = �	/t∗ and p = �Q/a∗. The
wave dispersion relation can now be converted to the phonon
spectrum. It has the form of Eq. (2.19) with e(s) given by

ephonon(s) = − s3. (2.21)

Use of the classical equation of motion for the evaluation
of the excitation spectrum relies on the assumption that the
quantum uncertainty of the field F is negligible. With the help
of Eqs. (2.7) and (2.15), the magnitude of quantum fluctuations
of F with the length scale 
ξ ∼ 1/A relevant for a classical
soliton [see Eq. (2.5)] can be estimated as δF ∼ 1/
ξ ∼ A.
The condition of applicability of the classical description
δF � 〈F 〉 ∼ A2 then leads to A 	 1, which translates to
P0 	 1 for the dimensionless classical momentum (2.4) and
to p 	 p∗ in Eq. (2.19) or s 	 1 in Eqs. (2.20) and (2.21).

For excitations with small momenta p � p∗, the quantum
fluctuations can no longer be neglected, and Eqs. (2.20)
and (2.21) are inapplicable. Fortunately, at p → 0, i.e., deep
in the quantum regime, the KdV Hamiltonian (2.10) allows
further simplification. Indeed, the second term on the right-
hand side of (2.10) has a higher scaling dimension than the first
one, hence its effect on long-wavelength excitations reduces to
being merely a small perturbation [31]. Neglecting this term
and employing the well-known mapping [24,32,33] between
bosons and fermions,

�(x) = 1√
L

: ei�(x) : , (2.22)

we arrive at the fixed-point Hamiltonian [31]

Hfermion = �
2

2m∗

ˆ L

0
dx..

.(∂x�)†(∂x�)..., (2.23)

where the symbols ..
. denote the normal ordering with respect

to the fermionic vacuum in which all single-particle states
with positive (negative) wave numbers are empty (occu-
pied) [24,32,33]. Application of the identity (2.22) also yields
the fermionic representation [24,32,33] of the momentum
operator (2.9),

P = −i�

ˆ L

0
dx ..

. �†(x)∂x�(x) ..
. , (2.24)

and the relation [32,33]

∂x� = 2π ..
. �†(x)�(x) ..

. , (2.25)

which shows that the field F introduced in Eq. (2.15) above is
proportional to the density of the effective fermions.

The boundary condition (2.11) and the relation (2.25) imply
that δN = ´ L

0 dx ..
. �†(x)�(x) ..

. = 0. Any eigenstate of δN

with δN = 0 can be viewed as a superposition of the particle-
and hole-type elementary excitations. The particle excitation is
obtained by promoting a fermion from the Fermi level (which
corresponds to the single-particle state with wave number zero)
to one of the unoccupied single-particle states, whereas in the
hole excitation a fermion is removed from one of the occupied
single-particle states and placed at the Fermi level. It is easy
to see that such particle and hole excitations are eigenstates of

Hfermion and P . The corresponding eigenvalues εfermion and p

obviously satisfy

εfermion(p) = ± p2

2m∗
, (2.26)

where the + (−) sign corresponds to the particle (hole)
excitation. This expression can be cast in the form (2.19) with

efermion(s) = ± s2. (2.27)

Note that Eqs. (2.20), (2.21), and (2.27) yield |e(s)| ∼ 1 at
s ∼ 1. This observation indicates that the classical-to-quantum
crossover at p ∼ p∗ is the only crossover that takes place in
the system.

In view of Eqs. (2.15), (2.16), and (2.25), the classical
soliton excitation corresponds to a hump in the fermionic
density made up of N ∼ N0 ∼ s1/3 fermions drawn from
a uniform background. According to the discussion above,
the classical description is applicable as long as N 	 1.
On the contrary, the quantum counterpart of the classical
soliton, the particle excitation, has exactly one excited fermion,
which can be interpreted as N = 1. Quite naturally, the
classical-to-quantum crossover occurs at N ∼ 1, i.e., when
the discreteness of N can no longer be ignored.

In the above consideration, we treated a∗ in Eq. (2.10) as
a positive parameter. In fact, it can have either sign. However,
it is easy to see that the operators HKdV(a∗) and HKdV(− a∗)
are related by the transformation � → −�, which amounts
to the particle-hole transformation � → �† for fermions;
see Eq. (2.22). Under such particle-hole transformation,
HKdV(−a∗) → −HKdV(a∗) and P → P . Accordingly, the
spectra of the elementary excitations of HKdV(−a∗) are related
to those of HKdV(a∗) and can be written in the form similar to
Eq. (2.19) as

εKdV(p) = − ε∗e(p/p∗). (2.28)

Note that the particle-hole transformation changes the sign of
the fermionic density (2.25). Thus, whereas the solitonic exci-
tation of HKdV(a∗) carries N > 0 fermions and corresponds to
a hump in the fermionic density, its particle-hole-transformed
twin has N < 0, which amounts to a depression. In the
nonlinear optics literature, these two kinds of solitons are often
referred to as bright and dark solitons, respectively [34].

III. MODELS

Instead of attempting to evaluate the excitation spectrum
of the quantum KdV model (2.10) directly, we rely on well-
known solvable models, viz. the Lieb-Liniger model and the
quantum Toda model. In this section, we demonstrate that
in judiciously chosen scaling limits, the low-energy theories
describing these models reduce to that defined by Eqs. (2.7)–
(2.10). The reduction hinges on the smallness of the parameter

ζ = ε∗
vp∗

= p∗
2m∗v

, (3.1)

which characterizes the relative magnitude of the KdV con-
tribution to the excitation spectra [see Eq. (2.12)] evaluated
near the classical-to-quantum crossover at p ∼ p∗. Although
the low-energy Hamiltonians for both the Lieb-Liniger and
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the quantum Toda models contain nonuniversal contributions
absent in Eq. (2.8), below we show that these contributions
affect the spectra only in the second order in ζ , and

ε(p) = vp∗[s ± ζe(s) + O(ζ 2)], s = p/p∗. (3.2)

Here the + (−) sign corresponds to the quantum Toda (Lieb-
Liniger) model, and e(s) [see Eq. (2.19)] are the dimensionless
crossover functions describing the spectra of the quantum KdV
model (2.10).

A. Lieb-Liniger model

The Lieb-Liniger model [11,13,14]

H = �
2

2m

⎧⎨⎩−
∑

l

∂2

∂x2
l

+
∑
l �= l′

c δ(xl − xl′ )

⎫⎬⎭ (3.3)

describes bosons with contact interaction. We are interested in
the thermodynamic limit when both the number of particles N

and the system size L are taken to infinity with their ratio, the
mean density n0 = N/L, kept fixed. The interaction strength is
characterized by the dimensionless parameter [13] γ = c/n0.
In the weak repulsion regime considered here, 0 < γ � 1. The
Hamiltonian (3.3) can also be written in the second-quantized
form

H = �
2

2m

ˆ
dx [(∂xψ)†(∂xψ) + cn2(x)], (3.4)

where n(x) = ψ†(x)ψ(x) is the density operator. Hereafter,
products of quantum fields at the same spatial point, such
as n2(x) in Eq. (3.4), are to be understood as being normal-
ordered with respect to the appropriate vacuum states; cf.
Sec. II.

We are interested in excitations with wavelengths much
longer than the mean interparticle distance 1/n0. Following
the standard prescription [35,36], we write

ψ(x) =
√

n(x) e−iϑ(x). (3.5)

Here n(x) is the coarse-grained (averaged over a region much
larger than 1/n0) particle density, which can be regarded as a
continuous function of x, and the field ϑ satisfies [35,36]

[n(x),ϑ(y)] = − iδ(x − y). (3.6)

We will assume that ϑ obeys the periodic boundary condition
ϑ(x + L) = ϑ(x). This assumption amounts [36] to restricting
one’s attention to excitations near the zero-momentum ground
state.

Substitution of ψ(x) in the form (3.5) into Eq. (3.4) yields

H = �
2

2m

ˆ
dx

[
n(∂xϑ)2 + 1

4n
(∂xn)2 + cn2

]
. (3.7)

For low-energy excitations, deviations of the density n(x) from
its mean value n0 are small. It is therefore convenient to write
n(x) as

n(x) = n0 + 1

π
∂xϕ, (3.8)

where the new bosonic field ϕ satisfies

[∂xϕ,ϑ(y)] = − iπδ(x − y) (3.9)

and obeys the periodic boundary condition. Successive ap-
proximations for the low-energy Hamiltonian are obtained by
substituting Eq. (3.8) into Eq. (3.7) and expanding in powers
of ∂xϕ.

The leading contribution to the low-energy Hamiltonian
contains operators of scaling dimension 2, and it has the
standard Luttinger liquid form [33,35–37]

H0 = �v

2π

ˆ
dx[K(∂xϑ)2 + K−1(∂xϕ)2]. (3.10)

Here

v = �n0

m

√
γ , K = π�n0

mv
= π√

γ
(3.11)

are the sound velocity and the Luttinger-liquid parameter
evaluated in the leading order in γ � 1. Instead of ϕ and ϑ , it
is convenient to introduce the right- and left-moving fields

ϕ±(x) = 1√
K

ϕ(x) ∓
√

K ϑ(x), (3.12)

which satisfy [∂xϕ+,ϕ−(y)] = [ϕ+(x),∂yϕ−] = 0 and

[ϕ±(x),ϕ±(y)] = ± iπ sgn(x − y). (3.13)

Writing the Luttinger-liquid Hamiltonian (3.10) in terms of ϕ±
reveals its chiral (i.e., diagonal in the basis of the right- and
left-movers) structure,

H0 = �v

4π

ˆ
dx

∑
ν=±

(∂xϕν)2. (3.14)

In addition to the Hamiltonian, we need the momentum
operator P = −i�

´
dx ψ†∂xψ . Substituting Eq. (3.5) here

and taking into account Eq. (3.8), we obtain

P = − �

ˆ
dx n∂xϑ = − �

π

ˆ
dx (∂xϕ)(∂xϑ). (3.15)

Written in terms of the right- and left-movers ϕ±, see
Eq. (3.12), the momentum (3.15) takes the form

P = P+ + P−, P± = ± �

4π

ˆ
dx (∂xϕ±)2. (3.16)

Comparison of Eqs. (3.14) and (3.16) shows that the Luttinger-
liquid Hamiltonian (3.14) can be written as

H0 = v(P+ − P−). (3.17)

The nonlinear corrections to the excitation spectra arise due
to higher-order terms in the gradient expansion of the Hamilto-
nian (3.7). Collecting the chiral terms with scaling dimensions
3 and 4 in this expansion, we write the resulting contribution
in the form of the quantum KdV Hamiltonian (2.10),

H1 = �
2

12πm∗

ˆ
dx

∑
ν

[
(∂xϕν)3 + a∗

(
∂2
xϕν

)2]
, (3.18)

where the effective mass m∗ and the emergent length scale a∗
are defined by

m

m∗
= 3

4
√

K
, a∗n0 = K3/2

2π2
(3.19)
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and satisfy m/m∗ � 1, a∗n0 	 1. Note that the result for the
effective mass agrees with the general expression [5,38]

m

m∗
= 1

2v
√

K

d(vn0)

dn0
, (3.20)

valid for any Galilean-invariant system.
Although the second term in Eq. (3.18) has a higher scaling

dimension than the first one, its effect on the excitations with
wavelengths of order a∗ [or, equivalently, with momenta of
order p∗ ∼ �/a∗; see Eq. (2.18)] is comparable with that of
the first term in Eq. (3.18). The key observation is that for
weakly interacting bosons

p∗
�n0

= 3π

K3/2
� 1, (3.21)

i.e., such excitations belong to the realm of the long-
wavelength description based on the gradient expansion.
Changing the integration variable in Eqs. (3.14) and (3.18)
to ξ = x/a∗, we write the expansion H = H0 + H1 + · · · as

H = vp∗(h0 + ζh1 + ζh′
1 + ζ 2h2 + · · · ), (3.22)

with the parameter ζ introduced in Eq. (3.1). Using Eqs. (3.11),
(3.19), and (3.21), we find

ζ = 9

8K
� 1. (3.23)

The operators h0 and h1 in Eq. (3.22) are given by

h0 = 1

6π

ˆ
dξ

∑
ν

(∂ξϕν)2, (3.24a)

h1 = 2

27π

ˆ
dξ

∑
ν

[
(∂ξϕν)3 + (

∂2
ξ ϕν

)2]
, (3.24b)

cf. Eqs. (3.14) and (3.18). The third term in Eq. (3.22)
includes nonchiral contributions with scaling dimensions 3
and 4 omitted in Eq. (3.24b), (∂ξϕ±)2(∂ξϕ∓) and (∂2

ξ ϕ+)(∂2
ξ ϕ−).

Contributions in Eq. (3.22) that are higher order in ζ originate
in the expansion of the second term in Eq. (3.7), the so-called
quantum pressure [16], in ∂xϕ. The first term in this series
yields h2 in Eq. (3.22), which contains operators of scaling
dimension 5, (∂2

ξ ϕν)2(∂ξϕν).
The expansion (3.22) allows us to classify various terms

in the low-energy Hamiltonian according to the order of
magnitude of their contributions to the energy of chiral
excitations. It should be emphasized that this classification is
different from the usual notion of scaling dimension. Indeed,
the latter is relevant for the description of excitations in the
limit of infinitely long wavelengths, whereas we are interested
in excitations characterized by long but finite wavelengths of
order a∗.

We proceed by singling out the first two terms in the
expansion (3.22), H̃ = vp∗(h0 + ζh1), treating the remainder
of the expansion as a perturbation. Taking into account that H̃

commutes with P±, we consider a simultaneous eigenstate of
the operators P+, P−, and H̃ with eigenvalues p+ = p ∼ p∗,
p− = 0, and ε̃, respectively. In the right-moving sector (i.e.,
when acting on states with p− = 0, such as the one we discuss),
the unperturbed Hamiltonian H̃ coincides with that defined by
Eqs. (2.7)–(2.10), with a∗ in HKdV [see Eq. (2.10)] replaced

with − a∗. Using Eqs. (2.12), (2.28), and (3.1), we obtain
ε̃(p) = vp∗[s − ζe(s)] with s = p/p∗.

Perturbation theory in H − H̃ = vp∗(ζh′
1 + ζ 2h2 + · · · )

establishes the correspondence between the eigenstate of H̃

we consider and the eigenstate of the full Hamiltonian H with
the energy ε = ε̃ + δε. The latter state is also an eigenstate of
the total momentum P [see Eq. (3.16)] with the eigenvalue
p. The leading corrections to the energy arise in the second
order in h′

1 (note that h′
1 has zero expectation value in the

right-moving eigenstate of H̃ ), and in the first order in h2. Both
contributions can be estimated as δε ∼ vp∗ζ 2. Accordingly,
ε(p) = ε̃(p) + O(vp∗ζ 2), leading to Eq. (3.2).

B. Quantum Toda model

The classical Toda model [21] describes a chain of N

particles with exponential nearest-neighbor interaction,

H =
∑

l

[
p2

l

2m
+ V0e

− 2Dl/a0

]
, Dl = xl+1 − xl. (3.25)

We consider a system of size L in the thermodynamic limit
taken at a fixed particle density n0 = N/L. The potential
energy in Eq. (3.25) is minimized in the ordered configu-
ration x1 < x2 < · · · < xN , in which the distance between
neighboring particles Dl equals its mean value 1/n0. At
finite but sufficiently low energies, the deviations from the
mean δDl = Dl − 1/n0 remain small compared with the
interaction range a0. In such a weakly anharmonic regime,
the interaction potential in Eq. (3.25) can be expanded in
series in δDl/a0. After taking a continuum limit and making
an appropriate change of variables, the leading terms of
such an expansion can be cast [21] in the form of the
KdV Hamiltonian (2.2). The model (3.25) is integrable and
supports solitonic excitations with arbitrarily high energies,
well beyond the weakly anharmonic regime [21]. However,
these excitations, the Toda solitons, can no longer be described
in the KdV framework.

In the quantum Toda model [12,18–20], coordinates of
the particles xl and their momenta pl are replaced with the
operators satisfying [xl,pl′ ] = i�δl,l′ . Unlike the classical Toda
model, the very existence of the weakly anharmonic regime is
not a priori guaranteed even at low energies but hinges on the
smallness of quantum fluctuations of δDl . The lower bound
δD on the magnitude of these fluctuations can be estimated as
the amplitude of zero-point oscillations of the positions of the
particles near the respective potential minima. It is convenient
to characterize the range and the strength of the interaction
potential in Eq. (3.25) by the dimensionless parameters

α = 1

a0n0
, β = 1

2αeα

√
mV0

�n0
. (3.26)

In terms of these parameters, δD ∼ a0β
−1/2 and the necessary

condition for the existence of the weakly anharmonic regime
δD � a0 translates to

β 	 1, (3.27)

irrespective of the value of α.
The quantum Toda model is integrable [19,20], and its

properties can be studied analytically [20] at arbitrary values
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of the parameters α and β. However, our goal is to describe
excitations in the universal KdV regime rather than to explore
various regimes of the quantum Toda model. Therefore, we
make a simplifying assumption

α 	 1. (3.28)

The advantage of working in the dilute limit (3.28) is twofold.
First, as shown below, in this limit ζ ∼ 1/β, hence Eq. (3.27)
guarantees the existence of the KdV regime. Second, excita-
tions of the Toda model in the dilute limit can be studied [12,18]
by considering instead the hyperbolic Calogero-Sutherland
model [12,18,39]

H = �
2

2m

⎧⎨⎩−
∑

l

∂2

∂x2
l

+
∑
l �= l′

λ(λ − 1)

a2
0 sinh2[(xl − xl′ )/a0]

⎫⎬⎭.

(3.29)

For large λ the distance between neighboring particles is close
to 1/n0 	 a0; see Eq. (3.28). Therefore, the sinh function
in Eq. (3.29) can be approximated by exponential, and the
interaction can be restricted to nearest neighbors. Thus, the
model (3.29) is equivalent [12,18] to the Toda model (3.25)
with

V0 = 4�
2λ(λ − 1)

ma2
0

. (3.30)

Substitution into Eq. (3.26) gives

β =
√

λ(λ − 1) e−α ≈ λe−α, (3.31)

and the condition Eq. (3.27) yields

λ 	 eα. (3.32)

The inequalities (3.28) and (3.32) define the Toda limit of
the hyperbolic Calogero-Sutherland model (3.29). Unlike
the quantum Toda model (3.25), the hyperbolic Calogero-
Sutherland model (3.29) is solvable by the asymptotic Bethe
ansatz [12,18], which allows it to be handled on equal footing
with the Lieb-Liniger model.

For long-wavelength excitations, pl and Dl in Eq. (3.25)
vary with l on the scale much larger than unity, and l can be
treated as a continuous variable. Replacing the summation over
l in Eq. (3.25) with the integration, we write the low-energy
Hamiltonian as

H =
ˆ

dl

[
p2(l)

2m
+ V0e

−2D(l)/a0

]
, (3.33)

where D(l) = x(l + 1) − x(l), and the fields x(l) and p(l)
satisfy [x(l),p(l′)] = i�δ(l − l′).

The Hamiltonian (3.33) describes the strongly interacting
quantum fluid in terms of the so-called Lagrangian vari-
ables [9,40,41], in which the position of the fluid element
is specified by l rather than by its physical coordinate x(l).
The consideration in Secs. II and III A, however, follows
the conventional bosonization scheme [35–37] based on the
Eulerian [40,41] description of the quantum fluid. A switch to
the Eulerian formulation is accomplished using

dl = n(x)dx, (3.34)

where n(x) is the coarse-grained density operator, and writing
the momentum per particle p(l) as [41]

p(l) = −�∂xϑ, (3.35)

where the field ϑ has essentially the same meaning as that in
Eq. (3.5) and satisfies the same commutation relation (3.6).
Indeed, substituting Eqs. (3.34) and (3.35) into the expression
P = ´

dl p(l), we recover Eq. (3.15) for the momentum
operator, P = −�

´
dx n(x)∂xϑ .

The Eulerian form of the interparticle distance D(l) in
Eq. (3.33) follows from the identity D(l) = [e∂l − 1]x(l).
Replacing ∂l with n−1∂x here [see Eq. (3.34)], we find

D = (
en−1∂x − 1

)
x

= 1

n
+ 1

2!

1

n
∂x

1

n
+ 1

3!

1

n
∂x

1

n
∂x

1

n
+ · · · , (3.36)

i.e., D depends on the density n(x) and its derivatives.
Predictably, D reduces to 1/n in the long-wavelength limit.

Using Eqs. (3.34) and (3.35), we rewrite the Hamilto-
nian (3.33) as

H = �
2

2m

ˆ
dx n(∂xϑ)2 + U [n], (3.37)

where the interaction energy U [n] is a functional of density,

U [n] = V0

ˆ
dx ne−2D/a0 (3.38)

with D given by Eq. (3.36). Note that the field ϑ enters the
Hamiltonian (3.37) only via the kinetic energy term, which has
the same form as that in Eq. (3.7). This is a direct consequence
of the Galilean invariance of the models (3.3) and (3.25).

The remaining consideration parallels that in Sec. III A:
we write the density n(x) in the form (3.8) and expand the
Hamiltonian (3.37) in ∂xϕ. The leading contribution in this
expansion is the Luttinger-liquid Hamiltonian (3.10) with

K = π

4α2β
� 1. (3.39)

In the next step, we pick terms containing integrals of
(∂xϕ)(∂xϑ)2, (∂2

xϕ)2, and (∂xϕ)3. Expressing ϕ and ϑ via the
right-/left-moving fields ϕ± [see Eq. (3.12)] and omitting all
nonchiral terms, we obtain the KdV contribution

H1 = �
2

12πm∗

ˆ
dx

∑
ν

[
(∂xϕν)3 − a∗

(
∂2
xϕν

)2]
. (3.40)

Except for the sign of the second term on the right-hand side,
Eq. (3.40) has the same form as Eq. (3.18). The effective mass
m∗ and the emergent length scale a∗ in Eq. (3.40) are defined
by

m

m∗
= α2

√
β/π = α

2
√

K
, (3.41a)

a∗n0 = 1

2

√
πβ = π

4α
√

K
, (3.41b)

again in agreement with Eq. (3.20). Taking into account
Eqs. (3.27) and (3.28), we find m/m∗ 	 1,a∗n0 	 1.
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Substitution of Eq. (3.41b) into Eq. (2.18) yields

p∗
�n0

= 3√
πβ

= 6α

π

√
K � 1 (3.42)

for the crossover momentum. The expansion parameter ζ [see
Eq. (3.1)] is then given by

ζ = 3

8πβ
= 3

2π2
α2K � 1. (3.43)

Focusing on excitations with wavelengths of order a∗,
we change the integration variable to ξ = x/a∗ and write
the gradient expansion of the low-energy Hamiltonian in
the form (3.22). The Luttinger-liquid contribution in this
expansion, h0, is given by Eq. (3.24a), and the KdV contri-
bution h1 differs from Eq. (3.24b) only in the sign of the
second term on the right-hand side. The remaining terms
in the expansion (3.22) are nonuniversal. The third term,
h′

1, contains nonchiral contributions with scaling dimensions
3 and 4, whereas the fourth term, h2, is composed of the
chiral contributions (∂ξϕν)4, (∂ξϕν)2(∂3

ξ ϕν), and (∂3
ξ ϕν)2, which

originate in the expansion of the interaction energy Eq. (3.38).
Importantly, various operators enter h′

1 and h2 with numerical
coefficients that have finite limits of order unity at α → ∞.

Repeating the analysis of Sec. III A, we conclude that h′
1 and

h2 contribute to the energy of chiral excitations with momenta
p ∼ p∗ only in the second order in ζ . Therefore, to first order
in ζ the excitation spectrum is given by Eqs. (2.12) and (2.19),
leading to Eq. (3.2) with a positive sign of the second term on
the right-hand side.

IV. ELEMENTARY EXCITATIONS

As shown in Secs. II and III, excitation spectra of the
chiral model defined by Eqs. (2.7)–(2.10), the Lieb-Liniger
model (3.3), and the quantum Toda model (3.25) are given
by Eq. (3.2). The nontrivial parts of the spectra are described
by the universal dimensionless crossover functions e(s), with
asymptotes given by Eqs. (2.20) and (2.21) in the classical
limit s 	 1, and by Eq. (2.27) in the quantum limit s � 1.
In this section, we take advantage of the integrability of the
Lieb-Liniger and the hyperbolic Calogero-Sutherland models.
We evaluate their spectra to first order in ζ and extract the
crossover functions e(s).

A. Excitation spectra from the Bethe ansatz

The Lieb-Liniger model (3.3) and the hyperbolic Calogero-
Sutherland model (3.29) are integrable by the Bethe ansatz
[[11–14]]: their many-body eigenstates are parametrized by
sets of N rapidities q1,q2, . . . ,qN , which are similar to the
wave numbers of free fermions. Lieb’s type I and type II
excitations [13] can be viewed as, respectively, particle- and
hole-type excitations of the corresponding Fermi sea [11–14].
Their momenta and energies are given parametrically by

p(q) = 2π�

∣∣∣∣ˆ q

q0

dq ′ρ(q ′)
∣∣∣∣, ε(q) =

∣∣∣∣ ˆ q

q0

dq ′σ (q ′)
∣∣∣∣, (4.1)

where q > q0 (q < q0) for the type I (type II) excitations, and
q0 is the Fermi rapidity. The function ρ(q) = L−1 ∑N

i=1 δ(q −
qi) is the density of rapidities in the ground state. In the

thermodynamic limit, ρ(q) can be viewed as a continuous
function of q, normalized as [11–13]ˆ q0

−q0

dq ρ(q) = n0, (4.2)

and satisfying the Lieb equation [11–13]

ρ(q) + 1

2π

ˆ q0

−q0

dq ′�′(q − q ′)ρ(q ′) = 1

2π
, (4.3)

where �(q) is the two-particle scattering phase shift (see
below). The function σ (k) in the second equation in (4.1)
is the derivative of the energy function introduced in Ref. [14].
It obeys the Yang-Yang equation [11,12,14]

σ (q) + 1

2π

ˆ q0

−q0

dq ′�′(q − q ′)σ (q ′) = �
2q

m
. (4.4)

The functions ρ(q) and σ (q) are, respectively, even and odd
functions of their argument [11,12]. Their values at the Fermi
rapidity ρ0 = ρ(q0) and σ0 = σ (q0) satisfy [11,12]

σ0

ρ0
= 2π�v, σ0ρ0 = �

2n0

2m
. (4.5)

Taking into account the relation between the sound velocity
v and the Luttinger-liquid parameter K [see Eq. (3.11)], we
obtain

ρ0 =
√

K

2π
, σ0 = �v

√
K. (4.6)

The two-particle scattering phase shift �(q) in Eqs. (4.3)
and (4.4) is given by [11–13]

�(q) = − 2 arctan(q/c) (4.7)

for the Lieb-Liniger model (3.3), and by [12,18]

�(q) = 2 Im

[
ln �

(
λ + ia0q

2

)
− ln �

(
1 + ia0q

2

)]
(4.8)

for the hyperbolic Calogero-Sutherland model (3.29). At
|q| � λ/a0 [for α and λ satisfying Eqs. (3.28) and (3.32),
this range includes |q| ∼ q0], Eq. (4.8) simplifies to

�(q) = a0q ln λ − 2 Im ln �

(
1 + ia0q

2

)
. (4.9)

The approximation (4.9) is adequate for excitations with
not too high energies, such as ε ∼ vp∗, and it is equiv-
alent [12,18,20] to neglecting the difference between the
hyperbolic Calogero-Sutherland model and the quantum Toda
model. For brevity, we shall refer to the results obtained in
the framework of the approximation (4.9) as pertaining to the
quantum Toda model.

The dependence on q in both Eqs. (4.7) and (4.9) is
characterized by a single scale q∗, with q∗ = c for the Lieb-
Liniger model and q∗ = 2/a0 for the hyperbolic Calogero-
Sutherland model. In the regimes we consider, these scales
are small compared with the respective values of the Fermi
rapidities,

q∗
q0

∼ ζ � 1, (4.10)
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where ζ is the small parameter introduced in Sec. III; see
Eqs. (3.1), (3.23), and (3.43). Moreover, it follows from
Eqs. (3.11), (3.21), (3.39), (3.42), and (4.6) that

p∗ = 6�ρ0q∗ (4.11)

for both models considered. Equations (4.1) then show that
|q − q0| ∼ q∗ corresponds to p(q) ∼ p∗ and ε(q) ∼ vp∗.
Thus, in order to study the excitation spectra at the classical-to-
quantum crossover, it is sufficient to find ρ and σ in the vicinity
of one of the Fermi rapidities, say, at q ≈ q0. Accordingly, it is
convenient to work with the “shifted” dimensionless rapidities

t = q − q0

q∗
(4.12)

instead of q.
In terms of t , the classical-to-quantum crossover at p ∼ p∗

corresponds to |t | ∼ 1, which is well within the range |t | �
q0/q∗ ∼ 1/ζ . At such t , the difference between the normalized
functions

�(t) = ρ(t)

ρ0
, ς (t) = σ (t)

σ0
(4.13)

is very small, of order ζ � 1. However, this difference cannot
be neglected as it is responsible for the nonlinear corrections
to the excitation spectra. Indeed, with the help of Eqs. (4.11)–
(4.13), Eqs. (4.1) can be cast in the form

p

p∗
= ±π

3

ˆ ±τ

0
dt �(t), (4.14a)

ε± − vp

vp∗
= ±π

3

ˆ ±τ

0
dt[ς (t) − �(t)], (4.14b)

where 0 < τ � 1/ζ and the + (−) signs correspond to the
type I (type II) excitation.

B. Crossover functions and their properties

According to the discussion in Secs. II and III, the excitation
spectra at ζ → 0 are given by Eq. (3.2), which we write here
as

ε±(p) = vp∗[s + ζe±(s) + O(ζ 2)], s = p/p∗. (4.15)

Comparison of Eq. (4.15) with Eqs. (4.14) then yields the
dimensionless crossover functions e±(s) in the form

e±(s) = ±E(± s), (4.16)

where s > 0 and the function E(S) is defined parametrically
by

S(τ ) = π

3

ˆ τ

0
dt �0(t), E(τ ) = π

3

ˆ τ

0
dt η0(t). (4.17)

Here τ may have either sign, and the functions �0(t) and η0(t)
are given by

�0(t) = lim
ζ→ 0

�(t) = lim
ζ→ 0

ς (t), (4.18a)

η0(t) = lim
ζ→ 0

1

ζ
[ς (t) − �(t)], (4.18b)

with the limits ζ → 0 evaluated at fixed t .

Further insight is provided by the asymptotic solutions of
the Bethe ansatz equations (4.3) and (4.4) at q satisfying q∗ �
|q − q0| � q0, or, equivalently, at t in the range 1 � |t | �
1/ζ ; see Eqs. (4.10) and (4.12). As discussed above, this range
corresponds to the classical regime in the excitations spectra.
Such classical solutions have been found in Refs. [13,22] for
the Lieb-Liniger model and in Ref. [18] (see also Ref. [12]
for a review) for the quantum Toda model. These solutions
and the approximations involved are reviewed in Appendix A.
Substituting the classical solutions into Eqs. (4.18), we obtain

�0(t) =
{

(πt)−1/2, t 	 1,

|4t/π |1/2, − t 	 1
(4.19)

for the Lieb-Liniger model and

�0(t) =
{

(4t/π )1/2, t 	 1,

|πt |−1/2, − t 	 1
(4.20)

for the quantum Toda model, and the relation

η0(t) = 2π

3

ˆ t

0
dt ′�0(t ′) = 2S(t), (4.21)

valid for both models. The relation (4.21) turns out to be
applicable at all t , not only at |t | 	 1. This can be shown
rigorously; see Appendix B.

With Eq. (4.21) at hand, the task of evaluating the crossover
functions reduces to finding the function �0(t) introduced in
Eq. (4.18a). We therefore turn to the Lieb equation (4.3),
divide it by ρ0 [see Eqs. (4.6) and (4.13)], change the variable
according to Eq. (4.12), and write the resulting equation as

�(t) + 1

2π

ˆ 0

−2k0

dt ′�′(t − t ′)�(t ′) = 1

2πρ0
, (4.22)

where k0 = q0/q∗ ∼ 1/ζ ; see Eq. (4.10).
For the Lieb-Liniger model, the kernel �′(t) in Eq. (4.22)

is given by

�′(t) = − 2

1 + t2
, (4.23)

whereas 1/ρ0 ∝ ζ 1/2. Accordingly, in the limit ζ → 0,
Eq. (4.22) turns into a homogeneous equation,

�0(t) + 1

2π

ˆ 0

−∞
dt ′�′(t − t ′)�0(t ′) = 0. (4.24)

Augmented with the condition �0(0) = 1, Eq. (4.24) has a
unique solution for the normalized density �0(t). This solution
is derived in Appendix C. At large |t | it agrees with Eq. (4.19),
as expected. Note that �′(t − t ′)�0(t ′)|t ′→−∞ ∝ |t ′|−3/2, hence
the integral on the left-hand side of Eq. (4.24) converges.

For the quantum Toda model,

�′(t) = 2 ln λ − 2 Re ψ(1 + it), (4.25)

where ψ(z) = d ln �(z)/dz is the digamma function.
With Eq. (4.20) taken into account, this gives �′(t −
t ′)�0(t ′)|t ′→−∞ ∝ |t ′|−1/2 ln |λ/t ′|, and the integral in the
analog of Eq. (4.24) would be divergent. This difficulty is
circumvented by first differentiating Eq. (4.22) with respect
to t , and only then taking the limit ζ → 0. The resulting
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integrodifferential equation

� ′
0(t) + 1

2π

ˆ 0

−∞
dt ′�′′(t − t ′)�0(t ′) = 0 (4.26)

and the condition �0(0) = 1 define �0(t) uniquely.
Although the kernels (4.23) and (4.25) have quite a different

appearance, their Fourier transforms turn out to be closely
related, as are the functions �0(t) defined by Eqs. (4.24)
and (4.26). Indeed, as shown in Appendix D,

�0(t)|Lieb-Liniger = �0(−t)|quantum Toda. (4.27)

In view of Eqs. (4.17) and (4.21), Eq. (4.27) translates to the
relation

E(S)|Lieb-Liniger = E(− S)|quantum Toda, (4.28)

and Eq. (4.16) yields

e±(s)|Lieb-Liniger = − e∓(s)|quantum Toda, (4.29)

in agreement with the results of Secs. II and III.

C. Evaluation of the crossover functions

Equation (4.24) is of Wiener-Hopf type and can be
solved analytically; see Appendix C. The solution satisfying
�0(0) = 1 can be written as

�0(t) = 1

π
√

2π

ˆ ∞

0

dz

z1/2
sin(2πz)�(z) e−z(ln z−1+2πt)

(4.30a)
at t > 0 and

�0(t) = 1

π
√

2π

 ∞

0

dz

z3/2

[
1 − πez(ln z−1+2πt)

tan(πz)�(z)

]
(4.30b)

at t < 0. Simple poles at integer z in the integrand of
Eq. (4.30b) are understood in the Cauchy principal value sense.
The function �0(t) is plotted in Fig. 1.

As expected for a solution of an integral equation with
a nonsingular kernel [see Eqs. (4.23) and (4.24)], �0(t) is
an analytic function. It is easy to check that �0(t) > 0 and
d�0(t)/dt < 0. The first of these inequalities implies that the

2

0(t)

1−1−2 2 3−3 0

2

FIG. 1. The function �0(t) for the Lieb-Liniger model. The solid
line is a plot of the exact result given by Eqs. (4.30). The dotted
lines represent Eq. (4.19), applicable at |t | 	 1, i.e., in the classical
regime. The dashed lines correspond to Eqs. (4.31), which include
the leading quantum corrections.

1−1−2 2 3−3

10

20

30

40

E(S)

0

FIG. 2. The function E(S) for the Lieb-Liniger model. The solid
line is a plot of the exact result obtained by substituting Eqs. (4.30)
into Eqs. (4.17) and (4.21). The dashed line is a plot of E(S) = S2,
applicable in the quantum regime |S| � 1 [see Eq. (4.36)].

function E(S) defined by Eqs. (4.17) and (4.21) is analytic.
This function is plotted in Fig. 2. It satisfies E′′(S) > 0 at all S

and E(0) = E′(0) = 0. Accordingly, the crossover functions
e±(s) [see Eq. (4.16)] and their derivatives e′

±(s) vanish at
s = 0, whereas e′

+(s) > 0 and e′
−(s) < 0 at finite s.

The asymptotes of the crossover functions in the classical
(s 	 1) and quantum (s � 1) regimes can be found analyti-
cally. At large |t |, Eqs. (4.30) yield

�0(t)|t	1 = (πt)−1/2

[
1 + ln(8πt) − 1

4πt
+ · · ·

]
, (4.31a)

�0(t)|−t	1 =
∣∣∣∣4t

π

∣∣∣∣1/2[
1 + ln |8πt | + 1

|4πt | + · · ·
]
, (4.31b)

in agreement with Eq. (4.19). Substitution into Eqs. (4.17)
and (4.21) then gives

E(S)|S	1 = S3 + 2

3
S + · · · , (4.32a)

E(S)|− S	1 = 3

5

(
2π

3

)2/3

|S|5/3 − 2

9
|S| + · · · . (4.32b)

Interestingly, the logarithmic terms, dominating the cor-
rections to �0(t) in Eqs. (4.31), do not contribute to the
expansions (4.32).

Taking into account Eqs. (4.16) and (4.29), we obtain the
asymptotes of the crossover functions in the classical regime
s 	 1,

e+(s) = s3 + 2

3
s + · · · , (4.33a)

e−(s) = − 3

5

(
2π

3

)2/3

s5/3 + 2

9
s + · · · (4.33b)

for the Lieb-Liniger model, and

e+(s) = 3

5

(
2π

3

)2/3

s5/3 − 2

9
s + · · · , (4.34a)

e−(s) = −s3 − 2

3
s + · · · (4.34b)
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for the quantum Toda model. The first terms on the right-hand
sides of Eqs. (4.33) and (4.34) can be deduced from the
solutions of the classical equation of motion; see Eqs. (2.20)
and (2.21). The second terms in Eqs. (4.33) and (4.34)
represent the leading quantum corrections.

At small |t |, the function �0(t) can be expanded in Taylor
series. The first two terms of the expansion read

�0(t)||t |�1 = 1 − πt/6 + · · · (4.35)

(see Appendix C), and Eqs. (4.17) and (4.21) result in

E(S)||S| � 1 = S2 + 1
3S3 + · · · , (4.36)

which yields

e±(s) = ± s2 + 1
3 s3 + · · · (4.37)

for the Lieb-Liniger model and

e±(s) = ± s2 − 1
3 s3 + · · · (4.38)

for the quantum Toda model in the quantum regime s � 1. The
leading contributions in Eqs. (4.37) and (4.38) correspond to
the particle and hole excitations of a gas of free fermions with
a quadratic dispersion relation; see Eq. (2.26).

V. DISCUSSION

The regime in which the interaction between particles
dominates the energy of a quantum system is often referred to
as classical. Indeed, many properties of a quantum system in
this regime can be understood by solving the corresponding
classical equations of motion. Paradigmatic examples of one-
dimensional systems exhibiting such semiclassical behavior
are identical bosons with a weak short-range repulsion and
identical particles, either bosons or fermions, with a strong
long-range repulsion. Despite the obvious difference between
these two families of systems, it can be shown that their
low-energy excitations admit a universal description in terms
of the quantized version of the so-called first Hamiltonian
structure [2] of the KdV equation. This observation implies,
in particular, that the spectra of elementary excitations for the
members of the two families are related to that of the quantum
KdV model (2.10), and, therefore, to each other; see Eq. (3.2).

The relevant classical equation of motion is the celebrated
KdV equation (2.1). This equation has two physically and
mathematically distinct types of solutions: the delocalized pe-
riodic waves, corresponding to phonons in quantum systems,
and the solitons. The classical solutions translate to power-law
excitation spectra characterized by different exponents for
phonons and solitons; see Eqs. (2.19)–(2.21). Importantly,
in quantum systems these two excitation branches are not
independent, and their spectra can be viewed as analytical
continuations of one another [see Eqs. (4.15) and (4.16)],
with the classical expressions (2.20) and (2.21) serving as
high-energy asymptotes.

At the lowest energies, the classical treatment inevitably
breaks down. Instead, the system is best described in terms of
weakly interacting fermions with a quadratic spectrum [5,31].
These effective fermions can be used to characterize the
elementary excitations in the classical regime as well. Indeed,
as discussed in Sec. II, the bright (dark) solitons carry a
macroscopic number of fermionic particles (holes). With

the decrease of the soliton’s energy, this number decreases,
becoming unity when the bright (dark) soliton reaches its
ultimate quantum fate of being demoted to a single-particle
(hole) excitation of the effective Fermi gas.

In this paper, we considered in detail the integrable
members of the two families of systems mentioned above,
namely the Lieb-Liniger model (3.3) and the quantum Toda
model (3.25). The key advantage of working with integrable
models is that their excitation spectra can be found analytically,
yielding explicit expressions valid throughout the classical-to-
quantum crossover; see Sec. IV. The spectra we found satisfy
Eqs. (4.15) and (4.29), as expected for models with quantum
KdV-type low-energy behavior (see Sec. III).

Our results can be reformulated in terms of the exact spectra
of the elementary excitations of the quantum KdV model
defined by Eqs. (2.7), (2.9), and (2.10),

ε±(p) = ± ε∗E(∓p/p∗). (5.1)

Here ε± and p are eigenvalues of the operators HKdV [see
Eq. (2.10)] and P [see Eq. (2.9)], and ε∗ and p∗ are the
energy and momentum scales expressed via the parameters
m∗ and a∗ of HKdV according to Eq. (2.18). The dimensionless
function E(S) in Eq. (5.1) is defined parametrically by
Eqs. (4.17), (4.21), and (4.30). This function is plotted in
Fig. 2, and its asymptotes are given in Eqs. (4.32) and (4.36).
Because the quantum KdV Hamiltonian (2.10) is chiral, the
two excitation branches ε±(p) coincide with the bounds on
the excitation energy ε at a given momentum p: ε−(p) � ε �
ε+(p).

Finally, we note that the derivation of the low-energy
quantum KdV theories for the Lieb-Liniger and the quantum
Toda models in Sec. III does not rely on their integrability
and can be readily adapted for generic (i.e., nonintegrable)
systems [9]. In such systems, ε+(p) excitation mode no longer
represents the exact eigenstate and, therefore, has a finite
lifetime even at zero temperature [5,9,42–45]. However, the
resulting inelastic broadening is parametrically small near
the classical limit [9,45]. Therefore, we expect our results
for the excitation spectra to be applicable to all quantum
one-dimensional systems with a classical limit described by
the KdV equation.
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APPENDIX A: CLASSICAL REGIME FROM
THE BETHE ANSATZ

In this Appendix, we review asymptotic solu-
tions [12,13,18,22] of the Bethe ansatz equations (4.3)
and (4.4) at q∗/q0 ∼ ζ approaching zero. Here q∗ = c for
the Lieb-Liniger model and q∗ = 2/a0 for the hyperbolic
Calogero-Sutherland model in the Toda limit.
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It is convenient to work with dimensionless rapidities k =
q/q∗. After such rescaling, the Lieb equation (4.3) and the
Yang-Yang equation (4.4) become

ρ(k) + 1

2π

ˆ k0

−k0

dk′�′(k − k′)ρ(k′) = 1

2π
, (A1a)

σ (k) + 1

2π

ˆ k0

−k0

dk′�′(k − k′)σ (k′) = �
2q∗
m

k. (A1b)

The dimensionless Fermi rapidity k0 = q0/q∗ is to be
determined self-consistently from the normalization conditionˆ k0

−k0

dk ρ(k) = n0

q∗
, (A2)

see Eq. (4.2). In the regimes we consider, k0 ∼ 1/ζ 	 1.
We are interested in the behavior of the functions ρ(k)

and σ (k) at k in the range ||k| − k0| 	 1. The momenta p(k)
corresponding to such k satisfy p(k) 	 p∗, i.e., they belong
to the classical regime in the excitation spectra.

1. Lieb-Liniger model

For k0 	 1, the integrals on the left-hand sides of Eqs. (A1)
are dominated by k′ satisfying k0 − |k′| 	 1. Moreover, it is
natural to assume that both at k0 − |k| 	 1 and at |k| − k0 	 1
the functions ρ(k) and σ (k) vary with k on the scale of order
k0 as no other scale is available. Therefore, in order to find
ρ(k) and σ (k) at ||k| − k0| 	 1, it is sufficient to replace the
two-particle scattering phase shift �(k) = − 2 arctan k [see
Eq. (4.7)] in Eqs. (A1) by its asymptote

�̃(k) = �(k)||k|	1 = −π sgn(k) + 2

k
. (A3)

With this approximation, Eq. (A1a) simplifies to

θ (|k| − k0)ρ(k) + 1

π

d

dk

 k0

−k0

dk′ ρ(k′)
k − k′ = 1

2π
, (A4)

with the pole in the integrand treated as the Cauchy principal
value.

Unlike the exact phase shift �(k), the approximate phase
shift �̃(k) has a singularity at k = 0. This singularity translates
to nonanalyticities at k → ± k0 in the solutions of the
approximate Lieb equation (A4). In fact, the interior of the
interval |k| < k0 does not enter Eq. (A4) on an equal footing
with its exterior: Eq. (A4) can be viewed both as an equation
for ρ(k) in the interior and as a prescription for extending the
solution from the interior to the exterior.

Another difficulty that stems from the singular behavior
of �̃(k) is that Eq. (A4) does not determine ρ(k) at |k| < k0

uniquely: if ρ(k) is a solution, then ρ + δρ with δρ ∝ (k2
0 −

k2)−1/2 is a solution as well. The ambiguity can be removed by
imposing appropriate boundary conditions. For ζ → 0, such
conditions read [13]

ρ(k)|k = ±(k0−0) = 0. (A5)

The conditions (A5) are justified by the observation that the
exact density ρ(k) near the boundaries of the interval |k| < k0

is parametrically smaller than that in its interior. Indeed, with
the help of Eq. (A4), ρ(k) at k0 − |k| 	 1 is estimated as
ρ(k) ∼ ρ(0) ∼ k0. Substituting this estimate into Eq. (A2), we

find k0 ∼ γ −1/2. On the other hand, at k0 − |k| � 1 [recall
that such k are not handled properly by the approximate
equation (A4)] we have ρ(k) ∼ ρ0, where ρ0 ∼ K1/2 ∼ γ −1/4

is the exact value of ρ(k) at the Fermi rapidity; see Eqs. (4.6)
and (3.11). Thus, the ratio of ρ(k) near the boundaries to
that in the interior is indeed small, of order γ 1/4 ∼ ζ 1/2 [see
Eqs. (3.11) and (3.23)].

The solution of Eq. (A4) subject to the conditions (A5) is
unique and reads [13,22]

ρ(k) = 1

2π
×

{(
k2

0 − k2
)1/2

, |k| < k0,

sgn(k) d
dk

(
k2 − k2

0

)1/2
, |k| > k0.

(A6)

Substituting Eq. (A6) into Eq. (A2) and taking into account
Eqs. (3.11) and (3.23), we obtain

k0 = 2√
γ

= 2K

π
= 9

4πζ
(A7)

for the dimensionless Fermi rapidity, in agreement with the
above estimate.

We now focus on the realm of the long-wavelength
excitations, where the universal KdV description is applicable.
For such excitations k is close to k0, and Eq. (A6) can be
expanded in powers of |k − k0|/k0, leading to

ρ(k) = k0

π

[(
k0 − k

2k0

)1/2

− 1

2

(
k0 − k

2k0

)3/2

+ · · ·
]

(A8a)

at k < k0 and

ρ(k) = 1

4π

[(
k − k0

2k0

)−1/2

+ 3

2

(
k − k0

2k0

)1/2

+ · · ·
]

(A8b)

at k > k0. Changing the variable to t = k − k0 [see Eq. (4.12)]
and taking into account Eqs. (4.6), (4.13), and (A7), we rewrite
Eqs. (A8) in a more compact form as

�(t) = ρ(t)

ρ0
= �0(t) + πζ

6

ˆ t

0
dt ′�0(t ′) + · · · , (A9)

where

�0(t) = θ (−t)|4t/π |1/2 + θ (t)(πt)−1/2. (A10)

Equation (A9) represents the expansion in small ζ t ∼
(k − k0)/k0 of the dominant at ζ → 0 and fixed ζ t contribution
to the normalized density �. Alternatively, Eq. (A9) can be
interpreted as an asymptotic expansion in small ζ of �(t)
evaluated at fixed t , with t-dependent expansion coefficients
found at |t | 	 1; cf. Ref. [46]. Although in such an interpre-
tation Eqs. (A9) and (A10) are applicable only at large |t |,
it is reassuring that at |t | ∼ 1 they yield the correct estimate
�0(t) ∼ 1.

Analysis of the Yang-Yang equation (A1b) follows the same
steps. Approximating �(k) in Eq. (A1b) by �̃(k) [see Eq. (A3)]
and taking into account Eq. (A7), we obtain the equation

θ (|k| − k0)σ (k) + 1

π

d

dk

 k0

−k0

dk′ σ (k′)
k − k′ = 2π�vk

k0
. (A11)

As with Eq. (A4), Eq. (A11) does not define σ (k) uniquely
and must be augmented with appropriate boundary conditions
at k → ± k0. At k0 − |k| 	 1 we have |σ (k)| ∼ �vk0 ∼
�vγ −1/2, which for γ ∼ ζ 2 � 1 is parametrically larger than
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σ (k) at k approaching k0,σ (k) ∼ σ0 ∼ �vγ −1/4, see Eqs. (4.6)
and (A7). This observation leads to the condition

σ (k)|k =±(k0−0) = 0, (A12)

cf. Eq. (A5). The solution of Eq. (A11) satisfying the
conditions (A12) is given by [22]

σ (k) = �v

3k0
×

{
− d

dk

(
k2

0 − k2
)3/2

, |k| < k0,

sgn(k) d2

dk2

(
k2 − k2

0

)3/2
, |k| > k0.

(A13)

Expanding Eq. (A13) in (k − k0)/k0 ∼ ζ t and taking into
account Eqs. (4.6) and (4.13), we find

ς (t) = σ (t)

σ0
= �0(t) + 5πζ

6

ˆ t

0
dt ′�0(t ′) + · · · (A14)

with �0(t) given by Eq. (A10). Similar to Eq. (A9), Eq. (A14)
can be viewed as an asymptotic expansion in small ζ of the
function ς (t) evaluated at fixed t such that |t | 	 1, which
corresponds to the classical regime in the excitation spectra.
Substitution of Eqs. (A9) and (A14) into Eq. (4.18b) yields
Eq. (4.21).

2. Quantum Toda model

Instead of attacking the quantum Toda model directly, we
consider the hyperbolic Calogero-Sutherland model (3.29) in
the Toda limit defined by Eqs. (3.28) and (3.32). As shown in
Refs. [12,18] and confirmed below, under these conditions the
dimensionless Fermi rapidity k0 in the Bethe ansatz equations
(A1) satisfies

1 � k0 � λ. (A15)

Accordingly, for |k| ∼ k0 � λ the two-particle phase shift

�(k) = 2 Im[ln �(λ + ik) − ln �(1 + ik)] (A16)

[see Eq. (4.8)] can be replaced with

�(k)||k|�λ = 2k ln λ − 2 Im ln �(1 + ik). (A17)

This approximation ignores the existence of the regime |k| 	
λ, absent in the true quantum Toda model [20], but it is
adequate for our purposes. On the other hand, similar to the
Lieb-Liniger model, the dominant contribution to the integrals
on the left-hand sides of Eqs. (A1) comes from k′ satisfying
k0 − |k′| 	 1. Thus, in order to find ρ(k) and σ (k) at k

in the range ||k| − k0| 	 1, the phase shift can be further
approximated by

�̃(k) = �(k)|1�|k|�λ = 2k(ln |λ/k| + 1). (A18)

The Lieb equation (A1a) then assumes the form [12,18]

ρ(k) + 1

π

ˆ k0

−k0

dk′ ln

∣∣∣∣ λ

k − k′

∣∣∣∣ρ(k′) = 1

2π
. (A19)

Similar to Eq. (A4) for the Lieb-Liniger model, Eq. (A19)
serves simultaneously as an equation for ρ(k) in the interior
of the interval |k| < k0, and as a prescription for extending
ρ(k) from the interior to the exterior. Moreover, at |k| < k0

the first term on the left-hand side of Eq. (A19) can be
neglected [12,18]. Indeed, at k0 − |k| 	 1 this term is of order
ρ(k) ∼ ρ(0), whereas the second term is parametrically larger,
of order k0 ln(λ/k0)ρ(0) 	 ρ(0).

With these approximations, the Lieb equation can be solved
exactly [12,18]. The solution reads

ρ(k) = 1

2π ln(2λ/k0)
×

{(
k2

0 − k2
)−1/2

, |k| < k0,

arccosh(k/k0) , |k| > k0.

(A20)

The normalization condition (A2) and Eqs. (3.39) and (3.43)
then yield

k0 = 2λe−α = π

2α2K
= 3

4πζ
(A21)

for the dimensionless Fermi rapidity. Since λ 	 eα 	 1 [see
Eqs. (3.28) and (3.32)], k0 indeed satisfies the inequali-
ties (A15). In the same approximation, �(k) ≈ �̃(k) [see
Eq. (A18)], the Yang-Yang equation (A1b) yields [12,18]

σ (k) = �v

αk0
×

{− d
dk

(
k2

0 − k2
)1/2

, |k| < k0,

sgn(k)
(
k2 − k2

0

)1/2
, |k| > k0.

(A22)

Focusing on the long-wavelength excitations, we expand
Eqs. (A20) and (A22) in powers of small (k − k0)/k0 =
4πζ t/3. With Eqs. (4.6) and (4.13) taken into account, the
first two terms of these expansions can be written as

�(t) = �0(t) − πζ

6

ˆ t

0
dt ′�0(t ′) + · · · , (A23a)

ς (t) = �0(t) + πζ

2

ˆ t

0
dt ′�0(t ′) + · · · (A23b)

with �0(t) given by

�0(t) = θ (−t)|πt |−1/2 + θ (t)(4t/π )1/2. (A24)

Similar to their Lieb-Liniger model counterparts (A9)
and (A14), Eqs. (A23) can be interpreted as asymptotic
expansions in small ζ of the functions �(t) and ς (t) evaluated
at fixed large t . Although the numerical coefficients in front of
the second terms on the right-hand sides of Eqs. (A23) differ
from those in Eqs. (A9) and (A14), the difference does not
affect the form of the function η0(t) [see Eq. (4.18b)], which
is again given by Eq. (4.21).

APPENDIX B: BEYOND THE CLASSICAL REGIME

Equation (4.21) can be obtained by substituting �(t) and
ς (t) in the form of Eqs. (A9) and (A14) for the Lieb-Liniger
model and Eqs. (A23) for the quantum Toda model into
Eq. (4.18b). However, such a derivation is valid only at
|t | 	 1, i.e., in the classical regime in the excitation spectra,
whereas we are interested in |t | ∼ 1, which corresponds to
the classical-to-quantum crossover. It turns out that relaxing
the restriction |t | 	 1 requires merely a replacement of the
functions �0(t) in Eqs. (A9), (A14), (A23), and (4.21) with
the exact solutions of Eqs. (4.24) or (4.26). In this Appendix,
we derive such a generalization of the expansion (A9) for the
Lieb-Liniger model. Generalizations of Eqs. (A14) and (A23)
can be obtained in a similar manner.

It is convenient to write the Lieb equation (4.22) as

L2k0 [�] = 1

2πρ0
. (B1)
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Here k0 ∼ 1/ζ , ρ0 ∼ ζ−1/2 [see Eqs. (4.6) and (A7)], and the
functional Lτ is defined by

Lτ [f ] = f (t) + 1

2π

ˆ 0

−τ

dt ′�′(t − t ′)f (t ′), (B2)

where �(t) = − 2 arctan t . The solution of Eq. (B1) can be
viewed as a function of two variables, t and ζ . We are
interested in the behavior of �(t,ζ ) at arbitrary t and small
ζ � min{1,|t |−1}.

Replacement of the phase shift �(t) in Eq. (B2) with �̃(t)
given by Eq. (A3) leads to the approximate Lieb equation

L̃2k0 [̃� ] = 1

2πρ0
, (B3)

which, unlike Eq. (B1), is exactly solvable. To avoid confusion,
in this Appendix we use a tilde to distinguish the exact solution
�̃(t,ζ ) of the approximate Lieb equation (B3) from the solution
ρ(t,ζ ) of the exact Lieb equation (B1). At ζ |t | � 1, the
function �̃(ζ,t) can be expanded as

�̃(t,ζ ) = �̃0(t) + πζ

6
�̃1(t) + · · · (B4)

with �̃1(t) = ´ t

0 dt ′̃�0(t ′) [see Eq. (A9)]. The function �̃0(t) in
Eq. (B4) satisfies the equation

L̃∞ [̃�0] = 0 (B5)

and is given by �̃0(t) = θ (−t)|4t/π |1/2 + θ (t)(πt)−1/2 [see
Eq. (A10)].

We seek the solution of Eq. (B1) in the form of an expansion
inspired by Eq. (B4),

�(t,ζ ) = �0(t) + πζ

6
�1(t) + · · · , (B6)

where the functions �0(t) and �1(t) are independent of ζ . Since
�(0,ζ ) = 1 for any ζ , these functions satisfy

�0(0) = 1, �1(0) = 0. (B7)

On the other hand, we expect the functions �(t,ζ ) and �̃(t,ζ )
to match at 1 � |t | � 1/ζ in every order in ζ . This leads to
the relations

lim
|t |→∞

�0(t)

�̃0(t)
= 1, lim

|t |→∞
�1(t)

�̃1(t)
= 1, (B8)

so that �′
1(t) = d�1(t)/dt satisfies

lim
|t |→∞

�′
1(t)

�̃0(t)
= 1, (B9)

where we used �̃ ′
1(t) = �̃0(t).

Formally, the right-hand side of Eq. (B6) represents an
asymptotic expansion of �(t,ζ ) in small ζ evaluated at fixed t .
The expansion is applicable as long as the second term is small
compared with the first one. With Eqs. (B7) and (B8) taken
into account, this yields the condition ζ � min{1,|t |−1} on ζ ,
which translates to |t | � 1/ζ for t . Taking advantage of this
inequality, we introduce the intermediate scale τ satisfying

max{1,|t |} � τ � 1/ζ, (B10)

break the integral in
´ 0

−2k0
dt ′�′(t − t ′)�(t ′) in two,´ 0

−2k0
dt ′[· · · ] = ´ 0

−τ
dt ′[· · · ] + ´ −τ

−2k0
dt ′[· · · ], and replace �

and ρ in the second integral here with �̃ and �̃. (The relative
error of such an approximation is of order 1/τ � 1.) With the
help of Eqs. (B1)–(B3), we obtain the equation

Lτ [�] = L̃τ [̃� ]. (B11)

The functions �0(t) and �1(t) in Eq. (B6) can now
be deduced by replacing �̃ and � in Eq. (B11) with the
expansions (B4) and (B6), respectively, and considering the
behavior of the resulting equation at small ζ and large τ . For
the equation to hold at large, but still finite τ and arbitrarily
small ζ � 1/τ [see Eq. (B10)], it must be satisfied in every
order in ζ separately. This observation leads to the equations

Lτ [�0] = L̃τ [̃�0], (B12a)

Lτ [�1] = L̃τ [̃�1]. (B12b)

Differentiating these equations with respect to τ , we recover
the relations (B8) and (B9).

In the limit τ → ∞, Eq. (B12a) yields

L∞[�0] = 0, (B13)

where we took into account Eq. (B5). Equation (B13) coincides
with Eq. (4.24). The solution of this equation satisfying the
condition �0(0) = 1 [see Eq. (B7)] is unique and behaves
at large |t | as prescribed by the first equation in (B8); see
Sec. IV C and Appendix C.

Because the integrals in Eq. (B12b) diverge at τ → ∞, we
first differentiate both sides of this equation with respect to t

and integrate by parts using �1(0) = �̃1(−0) = 0. Taking now
the limit τ → ∞ and using Eq. (B5), we obtain the equation

L∞[�′
1] = 0. (B14)

Its solution subject to the condition (B9) reads �′
1(t) = �0(t).

Combining this result with the second equation in (B7), we
finally arrive at

�1(t) =
ˆ t

0
dt ′�0(t ′). (B15)

By construction, Eq. (B6) with �1(t) given by Eq. (B15)
has the form of Eq. (A9). We have verified that Eqs. (B6)
and (B15) with �0(t) approximated by its asymptote (4.31b)
are in agreement with the expansion derived by a different
method in Ref. [46].

APPENDIX C: SOLUTION OF EQ. (4.24)

In this Appendix, we employ the Wiener-Hopf technique
(see, e.g., Ref. [47]) to construct the solution of Eq. (4.24).

Substituting �0(t) in the form

�0(t) = �+(t) + �−(t), �±(t) = θ (± t) �0(t) (C1)

into Eq. (4.24), we obtain the equation

�+(t) +
ˆ ∞

−∞
dt ′G(t − t ′)�−(t ′) = 0 (C2)

with

G(t) = δ(t) + �′(t)
2π

= δ(t) − 1

π (1 + t2)
. (C3)
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Upon the Fourier transform, Eq. (C2) assumes the form

�+(ω) + G(ω)�−(ω) = 0. (C4)

The functions

�±(ω) =
ˆ ∞

−∞
dt eiωt�±(t) (C5)

in Eq. (C4) are analytic at ± Im ω � 0. Their behavior at
large |ω| is obtained by substituting �0(t) in the form of the
Taylor series �0(t) = 1 + � ′

0(0)t + · · · [recall that �0(0) = 1]
into Eqs. (C1) and (C5), which yields

�±(ω)||ω|	 1 = ± i

ω

[
1 + �′

0(0)
i

ω
+ · · ·

]
. (C6)

The kernel G(ω) in Eq. (C4) is given by

G(ω) =
ˆ ∞

−∞
dt eiωt G(t) = 1 − e−|ω|. (C7)

It can be factorized as

G(ω) = − F+(ω)

F−(ω)
(C8)

with

F+(ω) = �̃+(ω)f+(ω), F−(ω) = �̃−(ω)

f−(ω)
. (C9)

Here

�̃+(ω) = eiπ/4

(ω + i0)1/2
, �̃−(ω) = e−3iπ/4

(ω − i0)3/2
(C10)

are Fourier transforms of �̃±(t) = θ (± t )̃�0(t), where �̃0(t) is
the solution (A10) of the approximate Lieb equation (B5).
The functions �̃±(ω) are analytic in the complex plane with
the branch cuts running from ∓ i0 to ∓ i∞. The functions
f±(ω) in Eq. (C9) are given by

f±(ω) = exp
{ ∓i ω

2π

[
ln

(
ω ± i0

2π

) − 1 ∓ i π
2

]}
�

(
1 ∓ i ω

2π

) , (C11)

with the same branch cut structure. These functions approach
1 at ω → 0, whereas at large |ω| application of the Stirling
formula gives the asymptotes

f±(ω)||ω|	 1 = e± iπ/4

√
ω

(
1 ∓ iπ

6ω
+ · · ·

)
. (C12)

Because �̃±(ω) and f±(ω) have no singularities or zeros
at ± Im ω � 0, the functions F±(ω) given by Eq. (C9) are
analytic in these regions. Standard arguments [47] then show
that the function

F(ω) = �+(ω)

F+(ω)
= �−(ω)

F−(ω)
(C13)

is analytic in the entire complex plane. Using Eqs. (C6),
(C9), (C10), and (C12), we find F(ω)||ω|→∞ = 1. Therefore,
F = 1 at all ω, and Eq. (C13) yields

�±(ω) = F±(ω). (C14)

At small ω, Eq. (C14) reduces to �±(ω)||ω|� 1 = �̃±(ω),
hence at |t | 	 1 the inverse Fourier transforms

�±(t) =
ˆ ∞

−∞

dω

2π
e−iωt�±(ω) (C15)

reproduce the classical asymptotes Eq. (4.19). At large ω,
Eq. (C14) yields the expansion (C6) with

� ′
0(0) = −π/6, (C16)

resulting in the Taylor series (4.35). At intermediate ω

and t no further simplifications are possible. Instead, we
deform the integration paths in Eq. (C15) to run along the
respective branch cuts and change the integration variables
to z = ± iω/2π . Taking into account Eq. (C1), we arrive at
Eqs. (4.30).

APPENDIX D: DERIVATION OF EQ. (4.27)

In this Appendix, we derive the relation (4.27) between the
functions �0(t) for the Lieb-Liniger model and for the quantum
Toda model.

Substituting

�0(t) = �̄0(−t) (D1)

into Eq. (4.26) and using �′′(t) = −�′′(−t) [see Eq. (4.25)],
we obtain the equation

�̄ ′
0(t) + 1

2π

ˆ ∞

0
dt ′�′′(t − t ′)�̄0(t ′) = 0. (D2)

Writing �̄0(t) as

�̄0(t) = �̄+(t) + �̄−(t), �̄±(t) = θ (± t)�̄0(t) (D3)

[cf. Eq. (C1)], and using the continuity of �̄0(t) at t = 0, we
find

�̄ ′
−(t) +

ˆ ∞

−∞
dt ′Ḡ ′(t − t ′)�̄+(t ′) = 0. (D4)

Here

G(t) = δ(t) − 1

π
Re ψ(1 + it), (D5)

where ψ(z) is the digamma function. Fourier transform of
Eq. (D5) reads

G(ω) =
ˆ ∞

−∞
dt eiωt G(t) = 1

1 − e−|ω| = 1

G(ω)
, (D6)

with G(ω) given by Eq. (C7). With the help of Eq. (D6), the
Fourier transform of Eq. (D4) can then be written as

�̄+(ω) + G(ω)�̄−(ω) = 0. (D7)

Carrying out the inverse Fourier transform, we obtain

�̄+(t) +
ˆ ∞

−∞
dt ′G(t − t ′)�̄−(t ′) = 0, (D8)

which is the same as Eq. (C2). The corresponding equation
for �̄0(t) then coincides with Eq. (4.24) for the Lieb-Liniger
model and is subject to the same constraint �̄(0) = 1 at
t = 0. Therefore, �̄0(t) for the quantum Toda model is
identical to �0(t) for the Lieb-Liniger model, which leads to
Eq. (4.27).
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