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We test three different approaches, based on quantum Monte Carlo simulations, for computing the velocity c of
triplet excitations in antiferromagnets. We consider the standard S = 1/2 one- and two-dimensional Heisenberg
models, as well as a bilayer Heisenberg model at its critical point. Computing correlation functions in imaginary
time and using their long-time behavior, we extract the lowest excitation energy versus momentum using improved
fitting procedures and a generalized moment method. The velocity is then obtained from the dispersion relation.
We also exploit winding numbers to define a cubic space-time geometry, where the velocity is obtained as the
ratio of the spatial and temporal lengths of the system when all winding number fluctuations are equal. The two
methods give consistent results for both ordered and critical systems, but the winding number estimator is more
precise. For the Heisenberg chain, we accurately reproduce the exactly known velocity. For the two-dimensional
Heisenberg model, our results are consistent with other recent calculations, but with an improved statistical
precision, c = 1.65847(4). We also use the hydrodynamic relation c2 = ρs/χ⊥(q → 0) between c, the spin
stiffness ρs , and the transversal susceptibility χ⊥, using the smallest non-zero momentum q = 2π/L. This method
also is well controlled in two dimensions, but the cubic criterion for winding numbers delivers better numerical
precision. In one dimension, the hydrodynamic relation is affected by logarithmic corrections which make accurate
extrapolations difficult. As an application of the winding number method, for the quantum-critical bilayer model
our high-precision determination of the velocity enables us to quantitatively test, at an unprecedented level, the
field-theoretic low-temperature scaling forms χ = (a/c2)T and C = (b/c2)T 2. We find agreement to within 3%
with the leading 1/N results for the factors a and b in the O(N ) model, but the agreement becomes significantly
worse when the first corrections in 1/N are considered.
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I. INTRODUCTION

Ordered quantum antiferromagnets exhibit linear disper-
sions of their elementary spin-wave (magnon) excitations and
the associated velocity c is an important parameter char-
acterizing such systems. The prototypical two-dimensional
Heisenberg model has an ordered ground state and its low-
energy magnon spectrum is well described by spin-wave
theory [1]. When 1/S corrections are properly taken into
account, the velocity and other properties computed within
this approximation for the most extreme (and interesting) case
of the spin S = 1/2 model agree to within ≈1% with the results
of quantum Monte Carlo (QMC) calculations, which can be
considered exact to within statistical errors if sufficiently large
lattices are used for extrapolations to the thermodynamic limit
[2–6]. This good agreement can be traced to the fact that the
ground state is strongly ordered, the sublattice magnetization
being reduced by quantum fluctuations by only about 40%
from the classical value. Upon introducing other interactions,
which enhance the quantum fluctuations and suppress the or-
der, the quantitative predictive power of spin-wave calculations
rapidly deteriorates and the quantum fluctuations have to be
treated in more sophisticated ways [7–11]. An extreme case is
when a system is driven to criticality. The low-energy critical
excitations are still linearly dispersing but the corresponding
velocity cannot be reliably calculated in any simple theoretical
manner. Lastly, quantum-disordered antiferromagnets also
have propagating triplet excitations, which are gapped and
often called triplons.

In this paper, we will discuss three very different ways to
extract the velocity of the elementary excitations of quantum
spin models based on ground-state projector and finite-
temperature QMC simulations. We consider one-dimensional
(1D) and two-dimensional (2D) ordered, disordered, and
critical quantum antiferromagnets. Using imaginary time
dependent spin correlation functions, the long-time behavior
computed at different momenta contain information on the
dispersion relation, from which the velocity can be extracted
if the limits of the system size going to infinity and the
momentum going to zero are treated correctly. One can also
in some cases extract the velocity in a simpler, indirect
way using winding number fluctuations in the space-time
representation of the system sampled in the QMC calculations
[12,13]. We will develop a stable procedure based on these two
approaches and compare the results for a number of different
cases. In addition, we also test the well known hydrodynamic
relationship c2 = ρs/χ⊥ for an antiferromagnetic state [14],
where χ⊥ is the transversal magnetic susceptibility and ρs the
spin stiffness.

We first successfully test the methods on both 1D and
2D systems for which the velocity (of spinons and spin
waves, respectively) is previously known, and thereafter study
a bilayer system, both in its paramagnetic phase and at its
quantum-critical point. In the latter case, we subsequently use
our high-precision estimate of c to investigate in detail, to our
knowledge at an unprecedented level of control, the reliability
of finite-temperature quantum-critical scaling forms for the
magnetic susceptibility and the specific heat [15,16].
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Before turning to the calculations and results, in Sec. I A,
we first provide some more background on the utility of
carrying out precise determinations of the velocity in quantum
spin systems, focusing on quantum-criticality in dimerized
antiferromagnets. In Sec. I B, we provide a brief summary of
the different calculations to be presented and in Sec. I C, we
outline the organization of the rest of the paper.

A. Effective low-energy descriptions

Quantum field theories are often used to describe universal
low-energy properties of quantum magnets [15,16]. Numerical
techniques, such as QMC simulations, can be used to extract
system-dependent parameters appearing in various predicted
forms of physical quantities at low energy. Such an approach
of combining quantum field theory and numerics has been
established over the past several years for certain types of
quantum phase transitions in 2D systems [17,18]. Most well
studied are transitions in dimerized models, where for weak
interdimer coupling there is a tendency to singlet formation on
the dimers, leading to a quantum phase transition into a quan-
tum paramagnet at a critical ratio of the inter- and intradimer
couplings [7,10,19–24]. A similar transition (of the same
universality class) also take place if the dimers are replaced by
some other unit cell of an even number of spins on which the
single-cell ground state is a singlet [25,26]. The many studies
of these systems have shown rather convincingly that the phase
transition is in the 3D O(3) universality class, in agreement
with field-theory descriptions based on the nonlinear sigma
model [15,16]. Other properties associated with quantum
criticality are also well captured by the field theory [16], e.g.,
the uniform magnetic susceptibility χ is linear in temperature
at the critical coupling ratio, χ = aT , and the specific heat
grows quadratically; C = bT 2 at low T . Perhaps surprisingly,
however, the values of the prefactors a and b have still not
been tested quantitatively in a completely unbiased manner
[27]. This may be largely because, as indicated above, they
depend on the velocity c of the critically damped spin waves
(and on no other low-energy parameter), but this parameter
has not yet been independently calculated to high precision
for model systems (by first-principles methods not depending
on other field-theory predictions). As a demonstration of the
value of determining c to high precision, in this paper, we
will also provide a test case of a detailed comparison with
field-theory predictions for one of the prototypical dimerized
models; the Heisenberg bilayer.

B. Technical and physics objectives

The first aim of the present paper is to systematically test
three completely different ways of extracting the velocity of
elementary excitations based on QMC calculations in the
following ways: (i) using the momentum-dependent gaps
extracted from imaginary time-dependent spin correlation
functions and (ii) by monitoring spatial and temporal winding-
number fluctuations, which are proportional to the spin stiff-
ness and the uniform susceptibility, respectively, and adjusting
the space-time aspect ratio L/β such that these fluctuations are
equal. At this special inverse temperature β∗(L), the ratio of
the spatial and temporal lengths L/β∗ should equal c [12,13].

(iii) The third way is by exploiting the hydrodynamic relation
c2 = ρs/χ⊥, where one has pay attention to the fact that
χ⊥ → 0 when the temperature T → 0 in a finite system, while
the spin stiffness remains nonzero. We discuss an approach to
circumvent this problem based on χ⊥(q) where the momentum
q is small but nonzero.

The method (i) is in principle very direct, being connected
to the fundamental definition of c in the dispersion relation
of the lowest-energy excitation versus momentum. However,
the precise determination of the momentum-dependent gap
is in practice complicated by the presence of a continuum
of excitations above the lowest energy. In some cases, as we
will show, one also has to take great care with the way the
thermodynamic limit and zero-momentum limits are taken.
The method (ii) is rather simple and the only uncertainty is
introduced by a final extrapolation of the finite-size velocity
definition L/β∗ to the thermodynamic limit. However, as far
as we are aware, the correctness of this approach has not been
formally proven, except for the case of a long-range ordered
antiferromagnet, and the method has not been widely used
[12,13]. We here confirm that the method continues to give
the correct velocity also when the system is critical, even in
the case of the S = 1/2 Heisenberg chain, where the low-
energy excitations are not even spin-waves but deconfined
spin-1/2 carrying topological defects (“spinons”). The method
(iii) based on generalized hydrodynamics is simple to apply
and we will argue that it as well continues to work also in
critical systems.

Comparing methods (i)–(iii) for the Heisenberg chain as
well as for the well-studied 2D Heisenberg model gives us
insights into how to best apply the methods in practice. After
these tests, we study the bilayer Heisenberg model at its
quantum-critical point and in its paramagnetic regime, using
methods (i) and (ii). Also in this case we find good agreement
between the two methods at the critical point, but one has to
be more careful when defining the velocity based on gaps for
finite systems, because of a slower convergence of the gaps
to their infinite-size values than in the ordered state. We also
explicitly show that the winding number estimator gives an
incorrect velocity in the gapped paramagnetic phase.

The second aim of the paper connects to the low-energy
filed-theory description discussed in Sec. I A—to compute a
high-precision value for c for the quantum-critical Heisenberg
bilayer model and to use this value to reliably test the field-
theory predictions for χ (T ) and C(T ). While many such tests
have been performed in the past, on the bilayer [10,19,21]
as well as other [25] quantum-critical 2D spin systems, the
past studies were not able to completely quantitatively test
the level of agreement with the existing large-N field-theory
predictions, because an independent, unbiased determination
of c was lacking. This obstacle is overcome by the reliable
calculation of c in this paper.

C. Outline of the paper

The rest of the paper is organized as follows. In Sec. II, we
discuss calculations of imaginary-time correlation functions
within a ground-state projector QMC method formulated in
the basis of valence bonds. We discuss our methods to extract
the lowest momentum-dependent gaps from the long-time
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behavior of these correlations. In addition to fitting a leading
exponential decay with additional corrections to account for
higher excitations, we also present a generalization to ground-
state projection QMC data of a systematic high-order moment
approach recently introduced for use with finite-temperature
QMC simulations [28]. We compare our results with exact
solutions for small Heisenberg chains as well as with the
rigorously known velocity of this model in the thermodynamic
limit. In Sec. III, we discuss the determination of c based
on winding numbers and demonstrate the method using the
Heisenberg chain. These finite-temperature calculations are
carried out with the stochastic series expansion (SSE) QMC
method. In Sec. IV, we discuss details of the hydrodynamic
relationship generalized to finite system size and test it using
SSE calculations for the Heisenberg chain. In Sec. V, we
present further tests of all three methods for the standard
2D Heisenberg model. We also show that the scaling of the
triplet gap at momentum k = (π,π ) is entirely consistent with
quantum rotor-states carrying spin S = 1. In Sec. VI, we
discuss results for the critical and disordered bilayer systems,
including the comparison of c determined using both methods.
The analysis of the quantum-critical susceptibility and specific
heat computed using large-scale SSE calculations is presented
in Sec. VII. We briefly summarize and discuss our results
further in Sec. VIII.

II. MOMENTUM-DEPENDENT SPIN GAPS

Here, we discuss how to use zero temperature (T = 0)
projector QMC methods to calculate imaginary-time corre-
lation functions, which are then used to extract the triplet
gap (with respect to the ground-state energy) as a function of
momentum k. Applying the imaginary-time evolution operator
e−βH to a trial state leads to the ground state when β → ∞.
Alternatively, one can use a high power Hm of the Hamiltonian
and reach the ground state when m → ∞. In practice, QMC
simulation methods based on these two operators are very
similar, but the exponential form allows more direct access to
the standard imaginary time. As we will show, this connection
is not needed if only the excitation energies are of interest, and
then one can use the slightly faster power method. We will use
both approaches here, with two different ways of analyzing
the correlation functions.

A. H-power projection

This QMC approach is based on projection with a suf-
ficiently high power of the Hamiltonian H on a trial state
|ψt 〉. The process can be conveniently expressed in the energy
eigenbasis of H , leading to the following expression for the
dependence on m:

(−H )m|ψt 〉 = c0(−E0)m
[
|0〉 +

�∑
n=1

cn

c0

(
En

E0

)m

|n〉
]
. (1)

Here, |n〉, n = 0, . . . ,� − 1 are the energy eigenstates of H

and E0 is assumed to be negative, with its absolute value
|E0| being the largest in magnitude of all the energies (which
can always be achieved by adding a suitable constant to
the Hamiltonian). Then, if the expansion coefficient c0 �= 0
(which in practice is essentially guaranteed for any reasonable

choice of ψt 〉), we have (−H )m|ψt 〉 ∝ |0〉 for large m, and the
expectation value of an operator O at T = 0 can be written as

〈O〉 = 〈ψt |(−H )mO(−H )m|ψt 〉
〈ψt |(−H )2m|ψt 〉 . (2)

For the SU(2) invariant spin models considered in this paper,
this form of the expectation value can be evaluated by
importance-sampling, using a formulation of the projector
QMC method in the nonorthogonal valence bond basis [29].
An efficient way of sampling the contributions to (−H )2m,
very similar to “operator-loop” updates developed within the
finite-T SSE method [30], can be formulated using loop
updates in a combined space of spin components (Sz) and
valence bonds [5]. The trial state is also expressed using
valence bonds, in the form of an amplitude-product state [31].
The details of the state (the form of the amplitudes) are not
important, as the good convergence to the ground state is
observed even if the state is not optimized [5].

We will use this valence-bond variant of the projector QMC
method for computing appropriate imaginary-time dependent
correlation functions. For technical details on the sampling
methods we refer to Ref. [5]. Below we will focus on the
definition of the correlation functions we study and how we
process them to extract the velocity.

1. Imaginary-time correlations

We consider correlation functions of the following form:

CA(t) = 〈0|A†(−H )tA|0〉
〈0|(−H )t |0〉 =

�−1∑
n=0

∣∣∣∣En

E0

∣∣∣∣
t

|〈n|A|0〉|2, (3)

where t is an integer, which can be related to imaginary time
[32] and we will loosely refer to it by this term. More precisely,
t/N , where N is the system size, is proportional to imaginary
time τ in the sense of the standard Schrödinger time evolution
operator e−τH , as we will explicitly show below. From CA(t),
we further define

QA(t) = CA(t) − |〈0|A|0〉|2
CA(0) − |〈0|A|0〉|2 , (4)

and note that QA(0) = 1 and QA(t → ∞) → 0. For large t ,
we have

QA(t) →
( |〈1|A|0〉|2

〈0|A†A|0〉 − |〈0|A|0〉|2
)(

1 − 	

|E0|
)t

, (5)

where 	 = E1 − E0 is the energy gap between the first excited
state (connected to the ground state by the operator A) and
the ground state. To directly show the relationship between t

and imaginary time, we can introduce τ = t/|E0|, then write
E0 = Ne0, and in the limit of large N have

QA(τ = t/|E0|) ∝
(

1 − 	

N |e0|
)N |e0|τ

→ e−	τ , (6)

which is the familiar form of the asymptotic decay of an
imaginary-time dependent correlation function. Thus, we have
shown that, indeed, τ ∝ t/N . We will not explicitly need to
make use of the relationship between t and τ here, however,
and we will continue to use t as the “time” parameter with the
H -power method.
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We can appropriately choose the operator A so that it excites
the ground state |0〉 into a state with desired quantum numbers.
The ground state of the unfrustrated Hamiltonians considered
here are total spin singlets with momentum k = 0 on a finite
lattice with an even number of spins and periodic boundary
conditions (in one dimension only when the number N of sites
is a multiple of four—for other even N the momentum is π )
[33]. Since we are interested in triplet excitations, we can use
the simple Fourier-transformed spin operator,

A(k) = Sz(k) = 1√
N

∑
r

eik·rSz(r), (7)

to create an S = 1 state with momentum k and Sz = 0 when
acting on the ground state. Thus the following imaginary-time
correlation function

Ck(t) = 〈0|A(−k)(−H )tA(k)|0〉
〈0|(−H )t |0〉

= 〈ψt |(−H )2m−p−tA(−k)(−H )tA(−H )p|ψt 〉
〈ψt |(−H )2m|ψt 〉 (8)

allows us to directly measure the triplet excitation gap 	(k)
as a function of the momentum. The second line in the above
equation explicitly shows the form used in the projector QMC
calculations, where both 2m − p − t and p are assumed to be
large enough to achieve projection to the ground state for the
system sizes considered.

In practice, we will use projection powers m = 16prN and,
to achieve good ground-state convergence, require that 2m −
p − t and p both are larger than 15prN , where typically pr =
8 (16 or higher in some cases). These choices are motivated by
extensive tests indicating that no detectable systematical errors
remain. The values of t are restricted to be multiples of N/4 in
our simulations. Since the correlation functions at the different
t values are measured in the same simulation, the Ck(t) data
are correlated and measuring at shorter t intervals does not
significantly increase the amount of statistical information in
the data set.

2. Extracting the gap

We here use two different ways to extract the lowest triplet
gap from the correlation function Ck(t). Since 〈0|A(k)|0〉 = 0
for k �= 0, Eq. (4) reduces to

Qk(t) = Ck(t)

Ck(0)
. (9)

In principle, the gap can be extracted by monitoring the long-
time behavior, given by the form (5). A systematic way to
extract the gap without performing any curve fits is to consider
the ratio of Qk(t) at two different times separated by some
interval; e.g., by N/4 operations:

Rk(t) = |E0|
{

1 −
[
Qk(t + N/4)

Qk(t)

]4/N}
. (10)

Note that Rk(t) → 	(k) when t is large enough, which follows
from the long-time behavior of Qk(t) in Eq. (5). However, in
our QMC calculations, it is not always possible to reach perfect
convergence of this gap estimate for all k, because the relative
statistical errors often become too large already for moderately

large t . This problem is related to the existence of a continuum
(for large N ) of states above the gap, due to which the pure
exponential decay cannot be easily observed in practice.

We thus use another method to estimate the value of the
gap based on the entire available set of correlation functions.
This scheme is more reliable than the ratio scheme when data
(with small relative errors) are not available for large values of
imaginary time. It is clear from Eq. (3) that one can define a
positive-definite spectral function Ak(ω) to fit the normalized
imaginary-time correlation Qk(t) as

Qk(t) =
∫ ∞

0
dωAk(ω)

(
1 − ω

|E0|
)t

. (11)

This is just the analog for the H -power evolution of the
standard form,

Gk(τ ) =
∫ ∞

0
dωSk(ω)e−ωτ , (12)

relating the imaginary-time Schrödinger evolved correlation
function

Gk(τ ) = 〈0|Sz
−k(τ )Sz

k(0)|0〉, (13)

to the dynamic spin structure factor Sk(ω). In Eq. (11), ω cannot
exceed |E0|, following from the fact that we have ensured that
E0 is the eigenvalue with the largest magnitude. In practice, as
in the standard dynamic spin structure factor in (12), the actual
dominant spectral weight will be concentrated only to within
a window of order J .

For any finite system, Ak is a sum of δ functions and
this can be replaced by a continuum starting at ω = 	(k)
for a large system (or, in some cases, there is an isolated
δ function at the gap, following by a second gap and then
a continuum). With Gk(τ ) or Qk(t) computed using QMC
calculations, the respective relations (11) or (12) can in
principle be inverted using numerical analytic continuation.
This procedure is very challenging, however, and it is not
easy to extract the gap precisely with conventional methods
such as the maximum entropy method [34], though one can
extract the main dominant spectral features (and we note that
progress in this regard has been made very recently [35]). Here
our goal is merely to extract the gap, and instead of trying to
reproduce the full spectral function we model the excitations
by just a small number of δ functions. With the precision of
typical QMC data, Qk(t) can be normally fitted very well with
just a few δ functions (typically 3 to 5) over the full range of
accessible times t . With this procedure, we expect the location
ω1 of the lowest gap to accurately reproduce 	(k), while the
higher δ functions represent approximately the contributions
of the continuum. In this fitting procedure, the extracted ω1 is
to some extent affected by contributions of the higher states but
does not change significantly when increasing the number of
δ functions. We can therefore quite reliably extract the lowest
gap, but not higher ones unless they are separated by significant
subsequent gaps (which is not expected in the cases of interest
here, except well inside the quantum paramagnetic state of the
bilayer model).

Given a set of n δ functions at energies ωi with associated
amplitudes Ai normalized so that

∑
i Ai = 1, one can compute

the associated time dependent correlation function in analogy
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with Eq. (11) as

Qk(t) =
n∑

i=1

Ai

(
1 − ωi

|E0|
)t

. (14)

Now denoting the corresponding QMC-computed function by
Q̃k(t) and their statistical error by σt , the goodness of the fit
is quantified in the standard way by χ2, based on a set of Nt

time points {t}:

χ2 = 1

Nt

∑
{t}

1

σ 2
t

(Qk(t) − Q̃k(t))2. (15)

We here use a uniform grid of time points with separation N/4
operations, t = N/4,N/2, . . . , up to a point tmax = Nt (N/4)
where the relative statistical error of Q̃k(t) exceeds 5%. The
choice of cutoff is not very important as, in any case, the noisy
data at very large t will not affect the fit from the definition
of χ2.

For the extracted gap to be reliable, the contribution of the
lowest δ function to the fit must be significant at the longest
times included. To monitor this long-time weight, we compute
the relative contribution of the lowest δ function, denoted by
A1(t), at the time tmax included in the fit:

A1(tmax) = A1(1 − ω1/|E0|)tmax∑n
i=1 Ai(1 − ωi/|E0|)tmax

. (16)

This quantity should approach 1 for t → ∞ if the lowest δ

function is at the gap. It is close to 1 in all the fits reported
here, indicating stable extraction of ω1.

The statistical error of the extracted gap is estimated using
a bootstrap error analysis. With the underlying QMC data for
the correlation function Ck(t) saved as M bin averages (with
typically M ∼ 100–1000), bootstrap averages are constructed
by selecting M bins at random (i.e., allowing for the same bin
to be selected multiple times). The above fitting procedures
are then carried out repeatedly for a large number of these
samples, and the standard deviation of the estimates is the
statistical error of the gap in our procedure.

As already mentioned, the fluctuations of the QMC data
at different times are significantly correlated since these
are measured in the same simulation. A statistically correct
treatment of the data would require the inclusion of the full
covariance matrix (instead of just its diagonal elements) in
the definition of χ2. However, much of the covariance is
already removed when the time-correlations are normalized
[by the denominator Eq. (9)], because the errors are correlated
primarily by overall fluctuations in the normalization. Based
on test cases, including ones reported below, to obtain fully
reliable results it is sufficient to use only the diagonal elements
of the covariance matrix and define χ2 as in (15).

3. Tests on the Heisenberg chain

We here illustrate the gap extraction method described
in the previous subsection using the example of the S =
1/2 Heisenberg spin chain with periodic boundary condi-
tions, where spins interact with nearest neighbor exchange

constant J = 1;

H = J

L∑
i=1

Si · Sj . (17)

First, we compare the results of our numerics for the lowest
triplet gap at k = π for chain sizes L = 12 and 24 with
exact diagonalization (Lanczos-method) results. As can be
seen in Fig. 1(a), the quantity Rπ (t) defined in Eq. (10)
indeed converges to the correct gap value in both the cases.
Figure 1(b) shows the normalized imaginary time correlation
function Qπ (t) for the two system sizes, and Fig. 1(c) shows
the distribution of the gap error obtained using a bootstrap
method (i.e., the simulation data stored as M bin averages
are resampled by selecting M bins at random, and the fitting
procedures are carried out for each such averaged data set) for
L = 24, using a fit to three δ functions.

This analysis show that the gap obtained from the fit
agrees statistically with the exact result, which here is within
a standard deviation of the distribution obtained in the
bootstrapping procedure, and the distribution itself closely
matches a normal distribution. Thus, even with only three
δ functions in the spectrum (which is clearly a much smaller
number than what is contained in the full spectrum), we detect
no systematic errors introduced by the fitted functional form,
supporting our assertion that the simplified description of the
spectrum does not significantly affect the location of the lowest
δ function (the gap). The number n of δ functions that should
be included in a given case depends on the statistical errors of
the QMC data and the actual form of the spectral continuum.
To determine n, we monitor χ2 as a function of increasing n

and stop when no improvements in the fit are observed.
For the Heisenberg chain, the lower edge of the spectrum

of triplet excitations is known rigorously based on the Bethe
ansatz solution [36]. For momentum k → 0 and k → π , the
spectrum is linear with velocity c = π/2. For an infinite chain,
the triplets are degenerate with singlet excitations, due to the
fact that the excitations consist of essentially independently
propagating deconfined spinons, each carrying spin 1/2. The
2-spinon continuum is maximally broad at k = π and shrinks
to zero at k = 0. This leads to larger contributions to the
time correlations from the continuum close to k = π , which
is directly visible in the QMC data for long chains as, e.g., a
slower rate of convergence of Rk(t) to a constant. For example,
R2π/L(t) converges much faster to its asymptotic constant
value compared to Rπ (t) for a chain of size L = 64, as shown
in Fig. 2. In the inset of the same figure, we also show results
for k = π + 2π/L, which is the momentum we use to extract c
as discussed further below. Here the chain is longer, L = 200,
and Rk(t) does not converge sufficiently before the error bars
become too large. However, the method of fitting a simplified
spectral function to Qπ (t) still works very well and delivers
a gap consistent with Rk(t), but with much better statistical
precision. We therefore exclusively uses the fitting method to
obtain the results to be discussed next.

In a finite chain, the ground state is nondegenerate and has
momentum k = 0. However, there is also a quasidegenerate
state with k = π , which is obtained by adding an umklapp to
the true ground state, and this state becomes exactly degenerate
with the k = 0 ground state when L → ∞ [37]. There is also
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FIG. 1. (Color online) (a) Correlation ratio Rπ (t), Eq. (10),
shown for two Heisenberg chain sizes, L = 12 and 24. The lines
are the exact values of the triplet gap at this wave-vector (with the
numerical values indicated as well). (b) The normalized correlation
function Qπ (t) for L = 12 and 24. (c) The distribution of the relative
error of the gap 	(π ) extracted by fitting the data for L = 24 in (b)
using three δ functions. The histogram was generated from a large
number of bootstrap samples of the QMC data. The relative error
is calculated as (	 − 	e)/	e, where 	e is the exact value of the
gap. The exact value (corresponding to relative error 0) is seen to
fall within a standard deviation of the distribution of the bootstrap
samples.

a corresponding finite-size shift in the excitations close to
k = π , which is characteristic of the Heisenberg chain but not
present in the model in higher dimensions. The lowest triplet
gap in the neighborhood of k = π , where we will use only

FIG. 2. (Color online) Convergence of the correlation ratio Rk(t)
to the gap 	(k) as a function of imaginary time t , shown at k = π

and 2π/L for a Heisenberg chain of length L = 64. The inset shows
Rk(t) at k = π + 2π/L for a longer chain, L = 200, where the gap
extraction using a fit of Qk(t) to five δ functions works demonstrably
better, giving the result indicated below the horizontal line, with the
thickness of the line representing the average gap ± one error bar.

k = π + 2π/L, behaves for large L as [38]

	(π + 2π/L) = 	(π ) + c(L)
2π

L
, (18)

where 	(π ) ∼ 1/L but with a multiplicative logarithmic cor-
rection. In Fig. 3, we show the behavior of the corresponding
velocity estimate,

c(L) = L

2π
[	(π + 2π/L) − 	(π )], (19)

as a function of the inverse chain length. A smooth monotonic
(asymptotically linear) approach to the known velocity, c =
π/2 can be observed as L → ∞. There are no signs of any
remaining logarithmic corrections as a function of 1/L in this
estimate. Our results are consistent with a remaining linear
finite-size correction.

FIG. 3. (Color online) Finite-size velocity estimates for the
Heisenberg spin chain obtained from triplet gaps at and in the
neighborhood of k = π according to Eq. (19), shown as a function
of the inverse system size. The velocity approaches the known value
c = π/2 (indicated by the horizontal line) for large systems. The line
through the larger system sizes is a guide to the eye.
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FIG. 4. (Color online) Velocity estimate for the Heisenberg chain
from the triplet gap close to k = 0; c(L) = 	(k)/k, where k = 2π/L,
shown as a function of the inverse system size. The known velocity
c = π/2 in the thermodynamic limit is indicated by the horizontal
line. The line through the larger system sizes is not a fit but is drawn
to match the known velocity and the data for those system sizes.

The velocity of the spinons can also be extracted from the
lowest triplet gap at k = 2π/L by using the simple estimator
L	(2π/L)/(2π ) → c as L → ∞. Results are shown in Fig. 4.
Also in this case we observe the estimate approaching the
correct value of c as L → ∞, but with a nonmonotonic
behavior with a maximum for L ≈ 40 before an apparently
linear asymptotic approach to the correct value. It should
be noted that the spectral weight (before normalizing the
correlation function) vanishes as k → 0, which implies that
the k = 2π/L correlation function computed in the QMC
simulations becomes very noisy for large system sizes. It
is worth noting here that, because of the nonmonotonic
behavior seen in Fig. 4, a calculation using exact (numerical)
diagonalization of the Hamiltonian would appear inconsistent
with the known velocity, because large enough system sizes
required to go beyond the maximum at L ≈ 40 cannot be
reached.

B. Exponential-form projection

In this section, we will discuss a different way of extracting
the gap, using a systematic way to analyze moments of the
spectrum based on information contained in the imaginary-
time correlations. Such a scheme was recently introduced
within T > 0 QMC calculations [28], and we here present
a generalization to projector QMC. In addition, we discuss
improvements in the extrapolations required to obtain unbiased
results.

To make the connection with the previous version of the
method more transparent, we will here use the exponential-
form projection with continuous imaginary time. The ground
state is again projected out of a trial state in the valence-bond
basis, but now using e−βH instead of (−H )m. Taylor expanding
the exponential (as was also done previously in projector
QMC, e.g., in Ref. [39]), the scheme then closely resembles
T > 0 SSE QMC algorithms [30]. The normalization, which
replaces the partition function in T > 0 methods, is expressed

as

Z′ = 〈ψt |e−βH |ψt 〉

= 〈ψt |Tτ exp

(
−
∫ β

0
dτH (τ )

)
|ψt 〉

= 〈ψt |1 +
∞∑

m=1

(−1)m
∫ β

0
dτ1

∫ β

τ1

dτ2 · · ·

· · ·
∫ β

τm−1

dτm

m∏
i=1

H (τi)|ψt 〉, (20)

where Tτ indicates time ordering and H (τ ) is a Hamiltonian
acting at imaginary time τ . If the Hamiltonian H (τ ) here is
actually time dependent, we obtain the nonequilibrium QMC
scheme developed in Ref. [40]. Here H is time independent,
and we formally use the time-dependent formalism only as a
convenient way of accessing imaginary time in the configu-
ration space directly. In principle, we can also use the time
dependence corresponding to the interaction representation
[41–43], where only the x and y parts of the interaction
appears in the operator product, but here we stay close to the
formulation also used in the SSE method and in the H -power
method discussed above, and expand with the full Hamiltonian.
Note that the H -power method is exactly recovered if the
time integrals are completed, and one can in practice also
equivalently use the power method and just generate the
ordered time sequences at random [43], or generate them in
the process of the updates as in the world-line continuous time
algorithm [41].

1. Generalized moment method

Our approach introduced here to extract the gap is a
generalization to projection QMC of the moment method
proposed recently [28]. The Fourier-transformed dynamical
correlation is exploited to derive a sequence of gap estimators.
We will first explain how the moment of the dynamical
correlation function is related to the gap, and then derive
increasingly precise gap estimators. Finally, we will show how
these estimates are extrapolated to the limit in which the exact
gap is recovered.

We will use the following dynamical correlation function
computed with the exponential projector:

C(τ,τ0) = 1

Z′ 〈ψt |e−(β−τ−τ0)HA†e−τH Ae−τ0H |ψt 〉

= 1

Z′
∑

,p,q

b
,p,q e−βEpe−τ (E
−Ep)e−τ0(Eq−Ep)

→
∑

�1

b
e
−τ	
 (β,τ0 → ∞), (21)

where we use the definitions

b
,p,q = c̄pcq〈p|A†|
〉〈
|A|q〉, (22)

b
 ≡ b
,0,0 = |c0〈
|A|0〉|2, (23)

	
 = E
 − E0. (24)
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We assume that A|0〉 �= 0, 〈0|A|0〉 = 0, and 	1 > 0, all of
which apply here.

Let us first consider the moment of the asymptotic correla-
tion function in the limit β,τ0 → ∞:

I∞
n =

∫ ∞

0
dττnC(τ,τ0)

=
∫ ∞

0
dτ τn

∑

�1

b
 e−τ	


=
∑

�1

b


	n+1



n!

∼ b1

	n+1
1

n! (n � 1). (25)

Then the lowest gap can, in principle, be obtained using an
appropriate ratio, e.g.,

(n + 1)I∞
n

I∞
n+1

→ 	1 (n → ∞). (26)

In practice, however, the projection time β cannot be infinite
in simulations, and we have to consider carefully the effects
of finite β. In addition, the range of integration, τ ∈ (0,βint),
is different from (less than) β because the imaginary-time
correlations are measured from the reference point τ0 = β/2
at the center of the projected trial state [noting that Eq. (20)
corresponds to projection of the bra and ket state with e−β/2],
or, alternatively, between two points located symmetrically
within the projection range τ ∈ (0,βint), and one has to stay
well away from the boundaries (trial states) for unbiased
measurements. Moreover, in many cases, the statistical errors
grow too large at large times, as mentioned previously. Thus,
in practice, βint < β/2.

The moments for finite β and βint � β/2 take the form

In =
∫ βint

0
dτ τnC(τ,τ0)

= 1

Z′

∫ βint

0
dτ τn

∑

,p

d
,pe−τ	
,p

= 1

Z′
∑

,p

d
,p n!

	n+1

,p

(
1 −

n∑
m=0

P (m)

)
, (27)

where

d
,p = e−βintEp

∑
q

b
,p,qe
−τ0(Eq−Ep), (28)

	
,p = E
 − Ep, (29)

and

P (m) = (βint	
,p)me−βint	
,p

m!
(30)

is a properly normalized Poisson distribution;
∞∑

m=0

P (m) = 1. (31)

Owing to the finite integration range, the Poisson term does not
vanish. As a consequence, the ratio of the moments for finite

β does not contain information of the gap in the limit n → ∞.
Instead, we have a completely different limiting behavior,

In

In+1
∼ n + 2

βint(n + 1)
→ 1

βint
(n → ∞), (32)

independent of the gap. We can overcome this difficulty
and devise a proper gap estimator by using the Fourier
transformation. Here we express the moments in a different
way using the following expansion:

I∞
2n

(2n)!
= lim

βint,τ0→∞
(−1)n

ω2n
1

n∑
k=0

xn,k,0R(ωk), (33)

I∞
2n−1

(2n − 1)!
= lim

βint,τ0→∞
(−1)n−1

ω
2(n−1)
1

n∑
k=1

xn,k,1
J (ωk)

ωk

, (34)

where R(ωk) and J (ωk) are the real and imaginary parts,
respectively, of the Fourier-transformed correlation function,
i.e., ∫ βint

0
dτ eiτωkC(τ,τ0) = R(ωk) + iJ (ωk), (35)

where ωk = 2πk/βint (k ∈ Z), and the key coefficients are
x1,1,1 = 1 and

xn,k,m = 1∏
m�j�n,j �=k

(k + j )(k − j )
. (36)

When deriving these equations we have considered the
expansion in ωk on the right-hand side of Eqs. (33) and (34),
where the lowest orders then cancel. The coefficients xn,k,m

can be solved for by using the inverse of the Vandermonde
matrix [44].

Combining the results above, we obtain the following
improved gap estimator:

	̂(n,βint) = −ω2
1

∑n
k=1 xn,k,1

J (ωk )
ωk∑n

k=0 xn,k,0R(ωk)
. (37)

Remarkably, this estimator is asymptotically unbiased and the
limits are interchangeable (see Appendix for the analytical
derivation):

	1 = lim
n→∞ lim

βint,τ0→∞
	̂(n,βint)

= lim
βint,τ0→∞

lim
n→∞ 	̂(n,βint). (38)

Due to the commuting limits, observing convergence of the
estimator (37) in large n and βint taken in any convenient
fashion will deliver an unbiased result for the gap.

In principle, there is also a dependence on the β value used
in the exponential projection, in addition to the dependence
on n and βint. Above we have assumed that β is sufficiently
large for quantities computed by integration up to βint have
converged to the β → ∞ limit, and in the QMC simulations
we also monitor this convergence. Naturally, the value of β

required grows with βint.

2. Performance check for the Heisenberg chain

We have checked the validity of the estimator (37) for
the Heisenberg chain of 16 spins with periodic boundary
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conditions. The projection length β is set large enough to see
the asymptotic behavior of the dynamic correlations on the
imaginary-time axis. The correlations were measured from
the center of the QMC configuration; that is, from τ0 = β/2.
As in the previous section, the loop algorithm and improved
correlation-function estimator [5] are used. We consider the
triplet gap at k = π and the operator A in Eq. (21) is then
explicitly given by A = ∑

r Sr (−1)r and

A†eτH A =
∑

α=x,y,z

∑
r,r ′

Sα
r eτH Sα

r ′(−1)r−r ′
. (39)

The Fourier-transformed correlation functions (35) were di-
rectly measured in the simulation, and no discretization error is
introduced. The gap estimators (37) for several n and βint were
calculated and the errors estimated by the jackknife analysis
[45] (bootstrapping would produce statistically equivalent
result).

As shown above, our estimator (37) converges to the exact
gap in the limit of infinite n and βint. In practice, if good conver-
gence is observed within statistical errors, a gap value obtained
from a sufficiently large n and βint within the converged
range can be used as the final estimation, or some appropriate
functional form can be used for extrapolation. However, an
important issue here is that the statistical errors grow with the
two parameters. We therefore inevitably encounter a trade-off
problem between systematical and statistical extrapolation
errors. Here we will demonstrate that the statistical error
can be optimized by proper extrapolations while keeping
the estimation unbiased. In the procedure used below, the
extrapolation is taken for n → ∞ first and then for βint → ∞,
though, as discussed above, other ways to accomplish the limit
are also possible.

Examples, based on 220 (∼106) Monte Carlo samples,
of n → ∞ extrapolations are shown in Fig. 5. The leading
finite-n correction is linear in 1/n [in accord with Eqs. (A4)
and (A10) in Appendix], and we include also a quadratic
term to obtain good fits to the data for the full n range.
Note that the errors for different n are correlated; thus the
curves look much more smooth than they would be with
the shown error bars if the data were uncorrelated. The

FIG. 5. (Color online) Extrapolation of 	(n → ∞,βint) for
βint = 6 (diamonds), 7.68 (lower triangles), 9.6 (upper triangles),
19.2 (squares), and 32 (circles). A quadratic polynomial in 1/n was
fitted to the data points for each βint and the extrapolated n → ∞
value with error bar is shown in each case.

FIG. 6. (Color online) Extrapolation of the gap for βint → ∞. An
exponential function f (βint) = 	 + a × exp(−bβint) (curve) has been
fitted to the data points, where a and b are positive real numbers. The
exact gap value calculated from the full diagonalization is shown by
the horizontal line.

minor upturn (barely visible in the figure) for small 1/n

in the case of βint = 19.2 is consistent with a statistical
fluctuation; the coefficient of the linear term in 1/n should be
positive according to the asymptotic form (A10). Here taking
into account the covariance between plots would improve
the result. Nevertheless, the extrapolated estimation without
consideration for the covariance is adequately unbiased as we
will show below. Thus we expect that the extrapolated values
should not be sensitive to the covariance.

The limit βint → ∞ is taken next using the resulting values
of the n → ∞ extrapolations, as shown in Fig. 6. Here an
exponential function is used for the data fit (again, according
to results derived in the Appendix) to extrapolate the final result
for the gap. Though other ways of extrapolating to n,βint → ∞
are possible, the above protocol is convenient because the
extrapolation for n, which is taken first, is relatively easier
than that for βint.

As a test of the unbiased nature of the extrapolation
scheme, distributions of the relative gap error are shown in
Fig. 7. Histograms were collected based on 2048 independent
simulations of the L = 16 Heisenberg chain. Results based
on the extrapolation procedure discussed above are compared
with those of individual gap estimators for (n,βint) = (1,32)
and (10,32). The (1,32) estimator clearly has a nonzero
systematic error remaining, which is similar to (but smaller
than) the conventional second moment estimator [28]. The
(10,32) estimator has a small enough systematical error
(the histogram being centered very close to zero) but has
a large statistical error (wide distribution). The extrapolated
estimation is unbiased and has a small statistical error.

III. THE VELOCITY FROM WINDING
NUMBER FLUCTUATIONS

We here discuss how to use winding numbers to compute
the velocity. This method has been known for some time [12]
and was recently applied to the 2D XY model [13] and the 2D
Heisenberg model [6]. We begin by briefly recollecting some
key aspects about winding numbers in finite-temperature QMC
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FIG. 7. Histograms of the density of the relative error of the
(n → ∞,βint → ∞) extrapolated gap, along with those based on
the estimator (37) for fixed (n,βint) = (1,32) and (10,32). The error
was calculated as (	̂ − 	)/	, where 	̂ is the generalized-moment
estimated value from 220 (∼106) Monte Carlo samples and 	 is the
exact value for the L = 16 Heisenberg chain. The histograms include
results of 2048 independent simulations.

simulations, in particular the SSE method we use for these
calculations. We then present results for the Heisenberg chain.

A. Winding numbers in QMC simulations

QMC simulations at finite temperature are based on some
mapping of the partition function of a quantum system in D

dimensions to an effectively equivalent (D + 1)-dimensional
classical system, where the additional dimension of the
configurations corresponds to imaginary (Euclidean) time. The
effective length of the system in the time dimension is cβ,
where β = 1/T (setting kB = 1) and the configurations are
time-periodic. For a system with conserved particle number,
which in the case of spin model corresponds to conserved
magnetization along the quantization (z) axis, imposing
periodic boundary in the spatial dimensions leads to another,
topological number associated with the configurations—the
winding number representing permutations when particles are
propagated once or multiple times around the periodic system.
The winding numbers were first used in QMC calculations of
the superfluid stiffness of interacting bosons [46].

The SSE QMC algorithm [4,32,47] is based on a Taylor
expansion of the imaginary-time evolution operator (the
Boltzmann operator) e−βH , and similarities with the projector
approach discussed in the previous section were already
pointed out. Each SSE configuration is associated with some
power Hn of the Hamiltonian propagating a basis state (here in
the standard computational basis of z spin components), and
these powers are sampled stochastically to all contributing
orders. The trace over all basis state is also sampled. The
average expansion power 〈n〉 in this procedure is proportional

to β; 〈n〉 = β〈H 〉 ∝ βN . In simulations, the state propagation
is broken up into individual paths corresponding to strings of
n of the individual local terms of the Hamiltonian, forming
successions of n evolving basis states, similar to those in path
integrals. For a Heisenberg model, the Hamiltonian terms are
the diagonal operators Sz

i S
z
j (in practice with a constant added)

and off-diagonal S+
i S−

j + S−
i S+

j operators, the latter of which
transport spin and are associated with currents Ja = ±1 in
the lattice direction a corresponding to the site-pair i,j . The
winding number in the a lattice direction is defined in terms
of the currents as

Wa = 1

La

n∑
p=1

Ja(p), (40)

where the index p corresponds to the location of the transport
“event” in the string of n operators and La is the length
of the lattice in the a direction. Defined in this way, the
winding numbers are integers. It should be noted that the
definition of the winding number is exactly the same in SSE
and world-line methods [48,49] and one can also think of the
SSE configurations as consisting of world lines (for up and
down spins in the case of S = 1/2 quantum spin systems).

The spatial winding number Wr measures the net spin
transported around the periodic lattice in the r direction in
the course of the periodic propagation in imaginary time.
Equivalently, this is the number of world lines (up ones minus
down ones divided by two) crossing through a plane drawn
along the time axis perpendicular to the r axis. Since the total
z magnetization Mz is conserved, one can also think of Mz

as a winding number; the net number of world lines crossing
a plane drawn at an arbitrary time point perpendicular to the
time axis, which is just the magnetization computed in the
stored basis state;

Wτ = Mz =
N∑

i=1

Sz
i . (41)

The expectation values of the squared winding numbers (i.e.,
the winding number fluctuations) are related to two important
thermodynamic quantities; the spin stiffness

ρs = 1

2β

(〈
W 2

x

〉 + 〈
W 2

y

〉)
(42)

and the uniform magnetic susceptibility

χ = β

N

〈
M2

z

〉 = β

N

〈
W 2

τ

〉
. (43)

The technicalities of implementing these observables in SSE
calculations have been discussed extensively in the literature
(see Ref. [33] for a recent review).

B. The cubic criterion and the velocity

In the high-temperature limit T → ∞, the magnetization
fluctuations of any system are maximized and therefore
〈W 2

τ 〉 > 0 according to Eq. (43). For an unfrustrated antifer-
romagnet, the ground state is a singlet, and, on account of the
presence of a singlet-triplet finite-size gap, 〈W 2

τ 〉 → 0 when
T → 0 for any finite system. In contrast to these limits of 〈W 2

τ 〉,
for the spatial winding number in direction r (r = x,y, . . .), we
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have 〈W 2
r 〉 → 0 when T → ∞ on account of there being no

quantum fluctuations when the imaginary-time length β → 0
and there are no contributions from expansion powers n > 0
(in the case of SSE—in world-line methods there will similarly
be no transport events causing shifts of the world lines).
In the limit T → 0, for a system with long-range order
(or a “quasiordered” 1D system with power-law decaying
correlations), the stiffness constant converges to a nonzero
value for any L, and according to Eq. (42), we must then
have a divergence 〈W 2

r 〉 ∼ 1/T . These different behaviors of
the spatial and temporal winding numbers versus temperature
guarantees that there is a crossing point,〈

W 2
r (β∗)

〉 = 〈
W 2

τ (β∗)
〉
, (44)

at some unique value of β = β∗(L) for given size L.
The winding numbers characterize global fluctuations of

the system in the different spatial and temporal directions.
It is then natural to define a system as having cubic space-
time geometry when Eq. (44) holds (with the lattice length
L the same in all spatial directions). The aspect ratio L/β∗
should then directly correspond to the velocity of the long-
wave-length excitations. In some cases, this can be shown
directly based on low-energy field theory [6,12,13], but even in
the absence of such descriptions the arguments are very general
and one can expect the conclusion c = L/β∗ to always hold
for a system with linear dispersion, though we are not aware
of any formal proofs in the general case.

C. Test on the Heisenberg chain

To find the point where the cubic criterion 〈W 2
x 〉 = 〈W 2

τ 〉
is satisfied, we simulate a system at several values of β in the
region where 〈W 2

x 〉 ≈ 〈W 2
τ 〉 based on initial explorations and

knowledge of the approximate value of the velocity. We fit
a low-order polynomial (typically second- or cubic-order) to
the difference 〈W 2

x 〉 − 〈W 2
τ 〉 and solve the resulting equation

for the β-value for which the cubic criterion is satisfied.
This procedure is illustrated in Fig. 8 for a Heisenberg
chain with L = 64 spins. From this procedure, we obtain
c(L) = L/β∗(L), which can be extrapolated to L → ∞. With

FIG. 8. (Color online) Difference between the spatial and tempo-
ral winding numbers vs the inverse temperature in simulations of a
64-site Heisenberg chain. A second-order polynomial has been fitted
to the data points, and this curve is used to determine the value β = β∗

at which cubic condition 〈W 2
x 〉 = 〈W 2

τ 〉 holds (i.e., intersection with
the horizontal dashed line).

FIG. 9. (Color online) Size dependence of the velocity obtained
with the cubic criterion for the Heisenberg chain, along with a fit
corresponding to a leading ∼1/L4 size correction. The dashed line is
at the rigorously known velocity c = π/2.

independent data points, the statistical error of c(L) at fixed L

can be determined by repeating the procedure multiple times
with added Gaussian noise of standard deviation equal to the
error bars of the data points, whence the standard deviation
of the extracted crossing point is the error bar. Note that
the recently proposed autotuning technique, or the stochastic
approximation [50], could be used for the β optimization
instead of the interpolation of simulated data.

Figure 9 shows results of such a procedure for several
chain lengths L, graphed versus 1/L. We are not aware of
any theoretical predictions for the size dependence of this
definition of c(L), but the data for the larger systems are
well described by a constant (the final infinite-size value of
c) plus a term proportional to 1/L4. Using this fitting form
leads to a value of c completely consistent with the known
value c = π/2, as is clear from Fig. 9.

IV. HYDRODYNAMIC RELATIONSHIP

A well known way to extract the velocity in an antiferro-
magnet is to use the analog of a hydrodynamic relationship
between the velocity, the spin stiffness (helicity modulus), and
the transversal susceptibility (which is the analog of a mass
density) [14]:

c =
√

ρs

χ⊥
. (45)

In a QMC calculation in which the spin-rotation symmetry
is not explicitly broken, one cannot compute χ⊥ directly, but
one can use the fact that the rotationally-averaged uniform
susceptibility χ computed in the z basis, as in Eq. (43),
becomes 2/3 of a transversal (e.g., x) component when T → 0
in the thermodynamic limit (since the longitudinal component
vanishes at T = 0). Thus, one can obtain χ⊥ as (3/2)χ by
taking the limit L → ∞ before the T → 0 limit, while taking
the limits in the opposite order does not work because then
χ → 0 due to the finite-size gap between the Mz = 0 and
Mz > 0 magnetization sectors. In contrast, for ρs , the limit
T → 0 has to be taken before L → ∞, because the system in
the thermodynamic limit only has stiffness (Néel order) exactly
at T = 0. In this case, too, a factor 3/2 has to be included in
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the finite-size estimate to account for rotational averaging of
the relevant transversal components.

The procedure to obtain ρs in the thermodynamic
limit is relatively straight-forward with an extrapolation of
ρs(L,T → 0) using a polynomial in 1/L, while the extrap-
olations requiring L → ∞ first in the χ calculation is more
cumbersome. Results obtained for c in this way [33] have
large error bars compared to the result of the winding number
method presented above in Sec. V A.

In order to define a finite-size velocity estimate c(L)
based on Eq. (45) directly in the T = 0 limit we here use
a modification of the relationship. We use the susceptibility at
finite momentum q,

χ (q) = 1

N

∫ β

0
〈Mz(−q,τ )Mz(q,0)〉, (46)

where the magnetization at nonzero momentum is the same
as A in Eq. (7) but without the normalization by N−1/2. We
can use the smallest momentum q = 2π/L for a given system
size and approach the q = 0 limit as L → ∞. If we here
define ρs(L) without the rotational factor 3/2 discussed above,
then the same rotational factor should also not be used in the
susceptibility, and we define the velocity for finite size as

c(L) =
√

ρs(L)

χ (q = 2π/L)
. (47)

We will compute this quantity using SSE simulations at
sufficiently large β to achieve ground-state convergence for
each L studied.

Test on the Heisenberg chain

The hydrodynamic relationship (45) is normally applied in
the magnetically ordered Néel state and one may then question
its use in a critical system. In the case of the Heisenberg
chain we can rigorously see that it is a valid way to extract
c. Since there is no long-range order, there is no distinction
between longitudinal and transversal modes, but Eq. (45)
defined with rotationally averaged quantities should remain
valid. According to the exact Bethe ansatz solution, in the
thermodynamic limit we have, in the units with J = 1 and all
relevant constants set to 1, ρs = 1/4 (derived in Ref. [51]) and
χ (q → 0) = 1/π2 (see., e.g., Ref. [52]) and, thus, according
to Eq. (47), we obtain the correct result c = π/2.

For finite system size, it is well known that both χ and
ρs exhibit strong logarithmic corrections to their infinite-size
values, which can be traced to the presence of marginal
operators and it is very difficult to extrapolate them; see, e.g.,
Ref. [53] for ρs and Ref. [52] for χ (where in the latter case
the logarithmic correction in temperature is discussed but one
should expect similar corrections for q → 0 at T = 0). The
logarithmic corrections do not cancel in the ratio of the two
quantities in Eq. (47), and as a consequence we also find that it
is difficult to extrapolate c(L) precisely to the thermodynamic
limit. Results are shown in Fig. 10. Although it is not possible
to fully extrapolate to the exact results based on these data
for system size up to L = 512, the result for the largest size
nevertheless deviates by only 0.2% from the exact result.

FIG. 10. (Color online) Size dependence of the velocity of exci-
tations in the Heisenberg chain, defined according to the hydrody-
namic relationship in the form (47). The apparent poor convergence
to the exact result c = π/2 when L → ∞ can be explained by
logarithmic corrections. The maximum can be related to the anomaly
in the excitation spectrum at k = 2π/L, which causes the maximum
at the same L in Fig. 4.

It is interesting to note that also this definition of c(L)
exhibits a nonmonotonic behavior, with a maximum at L ≈ 40,
the same as in the c(L) value obtained previously from the
gap at k = 2π/L in Fig. 4. In the latter case, the maximum
corresponds to an elevated excitation energy at k = 2π/L,
which one should expect to lead to a reduction in χ (2π/L)
because this quantity is given by a sum rule of S(k,ω)/ω.
By this sum rule, in a single-mode approximation a larger
ωk would lead to a smaller χ (k), and even beyond the
single-mode approximation one should expect such an effect
because the dominant spectral weight is at the gap. If ρs is not
appreciably affected by this finite-size anomaly, then indeed
an elevated gap and reduced χ (2π/L) in Eq. (47) can explain
the maximum in Fig. 10.

In light of the logarithmic corrections to c(L) defined
according to Eq. (45), the apparent complete lack of any
challenging corrections or nonmonotonic behavior in the
definition based on the cubic criterion for winding numbers
(Fig. 9) is even more remarkable, since also this estimate
involves quantities directly related to the susceptibility (tem-
poral winding number) and spin stiffness (spatial winding
number). There are also no apparent logarithmic corrections
in the velocities defined based on gaps in Figs. 3 and 4.
In Fig. 3, which is based on the triplet gap close to π ,
the logarithmic corrections are avoided by subtracting the
k = π gap in Eq. (18), while the gap close to k = 0 used in
Fig. 4 is not expected to be affected by logarithms. The latter
gap at k = 2π/L scales as ck + b/L2 for large L according
to our results in Fig. 4, which can be explained from the
known dispersion 	k = c sin(k) = ck + dk3 + . . ., if there is
a finite-size correction ∼1/L2 (due to irrelevant fields only).

V. 2D HEISENBERG MODEL

The 2D spin-1/2 Heisenberg model on the square lattice
spontaneously breaks spin rotation symmetry at T = 0 in the
thermodynamic limit. This leads to gapless linearly dispersing
Goldstone modes in the vicinity of the momenta (0,0) and
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(π,π ). The ground state in a finite periodic system is a
total spin singlet. The long-range antiferromagnetic order in
the thermodynamic limit is reflected in the energies of the
S > 0 quantum rotor states [55], which collapse onto the
ground state as 	S ∼ 1/L2 much faster than than the spin
wave excitations, 	 ∼ 1/L. The rotor states, thus, become
degenerate with the ground state as the system size increases,
and have momenta k = (0,0) and (π,π ) for even and odd S

respectively. Combinations of rotor states with S up to ∼ L can
then be formed which are ground states with fixed direction of
the Néel vector (the staggered magnetization), thus allowing
for symmetry breaking in the thermodynamic limit. Here we
provide an accurate determination of the spin-wave velocity
and also directly investigate the scaling of the rotor state.

A. Velocity from winding numbers

Since we expect the winding numbers with the cubic
criterion to provide the best determination of c we start with
this approach. Results based on the procedures discussed in
the preceding section are shown in Fig. 11 versus the inverse
system length. Carrying out polynomial fits, we find that no
linear and quadratic terms are required. Fourth- and fifth-order
polynomials fits excluding these terms and using all the L � 6
data give almost identical results for the L → ∞ extrapolated
velocity, with only the error bar somewhat larger for the
fifth-order fit. The figure shows the fifth-order fit and the
extrapolated velocity with it is c = 1.65847(4). While we do
not know the physical reason for the leading cubic correction,
we use it as the simplest empirical description of the data.
Including also a quadratic term, it comes out equal to 0 within
statistical errors and the extrapolated result does not change
appreciably.

The above value of c agrees within errors bars with the
recent result using the same method by Jiang and Wiese [6],
but our error bar is almost an order of magnitude smaller. We
note that in Ref. [6] no systematic extrapolation was carried
out to the thermodynamic limit—instead an average was taken

FIG. 11. (Color online) Size dependence of the velocity defined
using the cubic-criterion for the 2D Heisenberg model, along with
an fifth-order polynomial fit (including all system sizes L � 6)
without linear and quadratic terms. The extrapolated velocity is
c = 1.65847(4). The data for the largest system sizes are shown
on a more detailed scale in the inset. The goodness of the fit is
χ 2/dof ≈ 0.8.

of results for system sizes in the range L ∈ [24,64]. Looking
at the data in Fig. 11, it is clear that, with the small error
bars on the SSE data we have achieved here, an extrapolation
is necessary to obtain a result with no remaining finite-size
effects. To our knowledge, the above result is the most precise
spin-wave velocity reported to date for the 2D Heisenberg
model. Spin-wave theory with corrections up to order 1/S2

gave c = 1.6638(3) [54], where the uncertainty 3 in the last
digit reflects estimated numerical errors from evaluations of
challenging integrals. Thus, to this order, the spin-wave result
deviates by only 0.3% from the correct value.

B. Gap scaling of rotor states

The quantum rotor excitation gap can be directly accessed
by measuring the lowest triplet gap at k = (π,π ). This
energy scale is related to the uniform (transverse) magnetic
susceptibility χ⊥ as [55]

E(S,L) = S(S + 1)

2L2χ⊥
. (48)

From the behavior of the lowest triplet gap up to system sizes
L = 64, as shown in Fig. 12, we indeed observe that 	(π,π ) ∼
1/L2 at large L, but there are also large corrections which we fit
with additional higher-order powers of 1/L. The extrapolation
to infinite size gives 1/2χ⊥ = 7.62(2). This is consistent with
the value of susceptibility obtained using QMC calculations in
small external magnetic fields to extract gaps between different
spin sectors [56].

C. Velocity from gaps

The velocity of the spin waves can be estimated by measur-
ing the triplet gap in the vicinity of (π,π ) and (0,0). We here
choose to measure the triplet gap at k1 = (π + 2π/L,π ) [or,
equivalently, at (π,π + 2π/L), which we use for averaging]
since the lowest triplet excitation energy is at (π,π ) and k1 is
the closest allowed wave vector to (π,π ) for a periodic system
with linear size L. For this model, we have carried out only
H -power QMC simulations. We illustrate the gap extraction

FIG. 12. (Color online) Size dependence of the lowest triplet gap
	(π,π ) multiplied by L2 for the 2D Heisenberg model. This analysis
shows that the gap scales as 1/L2 for large L and an extrapolation
based on a polynomial in 1/L gives the estimate 1/2χ⊥ = 7.62(2)
for the uniform susceptibility.
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FIG. 13. (Color online) Extraction of the gap at k = (π + 2π/L,

π ) based on power-projected correlation functions, shown for the
largest 2D Heisenberg system studied; L = 64. (a) The ratio Rk(t),
Eq. (10) converges to a finite gap value but the error bars are large
for long imaginary times. Fitting Qk(t) to four δ functions according
to Eq. (11), as shown in (b), provides a more reliable gap estimation,
as illustrated in the inset of (a). The thickness of the solid line here
approximately represents the error bar. The inset of (b) shows the
distribution of gap values obtained from a large number of different
bootstrap samples of the QMC data, from which the error bar of the
gap estimate was computed.

with both the ratio method and the simplified spectral function
with fitted δ functions in Fig. 13, using the largest system
sizes considered; L = 64. Again, working with the spectral
function produces much more stable results, though clearly
the correlation ratio Rk also converges to a constant consistent
with the same gap.

Since in the thermodynamic limit, the excitation energy of
the spin waves equals E(k) = c|k − (π,π )| in the vicinity of
(π,π ), where c is the spin-wave velocity, the estimator

c(L) = L

2π
	(π + 2π/L,π ) (49)

should converge to c as L → ∞. We graph this quantity in
Fig. 14, and it converges to the value of c obtained above
from the winding number method when L → ∞. Note that
there is again a nonmonotonicity as a function of L, similar to
the case of the Heisenberg chain in Fig. 4. In the latter case,
this behavior only was observed in the gap extracted close to
k = 0, however, while here we have used the spectrum close
to (π,π ).

FIG. 14. (Color online) The spin-wave velocity estimator c(L)
defined in Eq. (49) shown for the 2D Heisenberg model as a function
of 1/L. The velocity for large L is consistent with the value obtained
from the winding numbers (Fig. 11), shown as a horizontal line.
The line through the values for the larger system sizes is a guide to
the eye.

D. Hydrodynamic relationship

We next consider the definition of c(L) by the hydrody-
namic relationship, Eq. (47). We again go to sufficiently low
temperature in SSE simulations for any remaining finite-T
corrections to be negligible compared to the statistical errors,
which typically meant β = 8L. Results are graphed in Fig. 15.
Here again we expect the finite size corrections in the Néel state
to be described asymptotically by a polynomial in 1/L, but a
rather high order of the polynomial is required to fit the data
for the smaller system sizes. The behavior for the largest sizes
again indicate (as in the case of the winding number calculation
discussed above) that the leading correction in 1/L is cubic. To
get a statistically acceptable fit for all L � 8 data, we include

FIG. 15. (Color online) Finite-size spin-wave velocity defined
using the modified hydrodynamic relationship (47). The extrapolation
to infinite size is done using a sixth-order polynomial in 1/L without
linear and quadratic terms (solid curve). The inset shows the data
for the largest systems on a more detailed scale. The point (blue)
with error bar close to the y axis indicates the statistical error of the
L → ∞ extrapolation. The barely separated horizontal lines shows
the value of c plus-minus one error bar obtained in Sec. V A using
the winding number method.
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terms up to order 6, which gives c = 1.65875(10), which
deviates by approximately 2.5 error bars from the statistically
much more precise value obtained in Sec. V A based on the
winding number fluctuations. By comparing Figs. 11 and 15,
it is clear that the analysis in the former is more reliable, with a
larger number of data points used and an overall much weaker
size dependence. The above result from the hydrodynamic
relationship is still likely somewhat affected by systematical
errors, as the behavior still appears to be flattening out more
than the fit suggests, and the fit even including the 6th-order
term is only marginally good, with χ2/dof ≈ 1.7. It would
clearly be desirable to go to larger system sizes, but given the
much better behavior of the winding number data it is already
clear that this is the preferred method.

VI. BILAYER HEISENBERG MODEL

We now consider the S = 1/2 bilayer Heisenberg model
which is a prototypical system to study quantum phase
transitions in 2D [7,8,10]. The Hamiltonian is given by

H = J1

∑
〈i,j〉

(Si,1 · Sj,1 + Si,2 · Sj,2) + J2

L2∑
i=1

Si,1 · Si,2, (50)

where Si,a represents a S = 1/2 spin operator at site i of layer
a (a = 1,2), and 〈i,j 〉 denotes a pair of nearest neighbor
sites on the square lattice of L × L sites with periodic
boundary conditions. Both the couplings J1,J2 are positive
(antiferromagnetic). As the ratio g = J2/J1 is increased, there
is a destruction of long-range Néel order at a critical gc, beyond
which the system enters a disordered state with no broken
symmetries. The best value available for the location of the
critical point is gc = 2.5220(1) [22] and we will use this value
below.

A. Velocity from winding numbers

Results for the velocity based on the cubic winding number
criterion at the critical point of the bilayer are shown in Fig. 16.
Here we find that a noninteger power-law correction describes
the data very well for system sizes L � 6. A fit of the form

FIG. 16. (Color online) Size dependence of the velocity com-
puted using the winding-number cubic criterion for the bilayer
Heisenberg model at the estimated critical coupling ratio g = 2.5220.
The curve shows a least-squares fit of the form c(L) = c + b/La to
the L � 8 data, which gives the extrapolated velocity c = 1.9001(2).

c(L) = c + b/La to the L � 8 data gives c = 1.9001(2). Note
that the fitted curve also goes through the L = 6 data point
even though this point was not included in the fit. This adds
to our confidence of this power-law correction. The value of c

is a few percent smaller than the spin-wave result [10] csw =
1.96 including 1/S corrections at g = 2.51 and csw ≈ 2.03
obtained [9] to order 1/S2. A more sophisticated treatment
beyond conventional spin-wave theory, including the effects
of longitudinal fluctuations close to the critical point, gives
c = 1.78 when the expression c = 0.705 × g below Eq. (10)
of Ref. [9] is evaluated with gc = 2.522. While these analytical
values may appear reasonably close to (deviating by a few
percent from) the presumably correct numerical value we have
obtained here, the deviations are still much larger than in the
case of the ordered 2D Heisenberg model, where the error of
spin-wave result is only 0.3%, as discussed in Sec. V A.

The exponent of the correction in the fit in Fig. 16 is a =
1.67(4). It is not clear to us how this exponent relates to the
standard critical exponents of the 3D O(3) universality class of
the transition, but the relatively large value (larger than 1/ν ≈
1.41) suggests that it may involve subleading exponents.

B. Velocity from gaps

Since the bilayer has two sites per unit cell (a = 1,2 for each
square-lattice point i), the triplet excitations have an extra label
kz in k space which denote the in-phase (kz = 0) and out-of-
phase (kz = π ) spin excitations of the two layers, respectively.
In the magnetically ordered Néel phase, the triplet excitations
are gapless at (0,0,0) and (π,π,π ), with the lowest excitation
being at (π,π,π ) for a finite system. The spectrum is linear in
the neighborhood of both the gapless points, which defines the
corresponding spin wave velocity c. For a continuous phase
transition, the spin wave velocity c scales as [16]

c ∝ (g − gc)ν(z−1), (51)

where z is the dynamical exponent and ν is the correlation
length exponent. Thus, for a z = 1 transition as is the case for
the Heisenberg bilayer at g = gc, the velocity is regular at the
critical point.

1. Critical point

For measuring the velocity of the critical modes, we first
study the triplet gap at (π + 2π/L,π,π ). From the linearly
of the spectrum at the critical point, we define the velocity
estimator in analogy with the single-layer case (49) as

c(L) = 	(π + 2π/L,π,π )L/(2π ). (52)

The behavior of this quantity as a function of L is shown in
Fig. 17. Unlike the case of the Heisenberg chain (Fig. 4) and the
single layer (Fig. 14), the velocity estimate for the Heisenberg
bilayer at criticality is notably higher than winding numbers
estimate, by about 5% as L → ∞. To extract the gap needed in
Eq. (52), we have used both the power-projection QMC method
with δ function fits to the correlation function, as described
in Sec. II B, and the generalized moment method applied to
exponential-projector QMC data, as detailed in Sec. II B 1. As
seen in in Fig. 17, the two methods give results that agree fully
within statistical error.
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FIG. 17. (Color online) The velocity estimator (52) for the
Heisenberg bilayer at its critical point shown as a function of 1/L.
Results based on both power-projection and exponential projection
(continuous time) are shown and agree within error bars. The velocity
estimate obtained from the winding numbers (Fig. 16) is shown as
the horizontal line.

At first sight, potential reason for the disagreement with the
winding number result could be an overestimation of the gap
extracted from the correlation function at the critical point.
Consider the full dynamic spin structure factor defined as

Sk(ω) =
∑
m

|〈m|Sz(k)|0〉|2δ(ω + E0 − Em). (53)

In the Néel phase, the structure factor has a δ function of weight
Ad (k) at an energy ω(k) which represents the magnon mode,
as well as a continuum Ac(k,ω), which does not extend below
ω(k) and which decays rapidly to zero as ω → ∞:

Sk(ω) = Ad (k)δ(ω − ω(k)) + Ac(k,ω). (54)

The velocity derived from ω(k) in the vicinity of (π,π,π ) is
a regular function of g − gc and is by definition the correct
velocity at the critical point. However, the weight in the
δ function Ad (k) (that represents the magnon mode) also
smoothly goes to zero as the critical point is approached,
with the spectrum evolving into purely a continuum reflecting
the overdamped critical magnons. In our fitting scheme [see
Eqs. (11) and (14)] used with the power-projection QMC
method, where the spectral function is represented by a small
number of δ functions, ω(k) may be overestimated, especially
for large system sizes, when Ad is very small close to the
critical point. The velocity would then also be over-estimated,
as it is in Fig. 17 (assuming that the winding number result is
correct). A similar distorting effect of the continuum may be
expected also with the generalized moment method used with
the exponential-projection QMC data. However, the δ-function
fits are stable with respect to the number of δ functions used,
and the extrapolations used with the generalized moment
method are also stable. We do not see any evidence of
remaining effects that could account for an overestimation
as large as in Fig. 17. The perfect match between the two
methods within their statistical errors also gives us confidence
that the gaps are determined correctly and the reason for the
disagreement with the winding number method must be sought
elsewhere.

To search for a possible flaw in the velocity estimation
based on Eq. (52), we next analyze the details of the
dispersion relation around (π,π,π ), using gaps extracted with
the generalized moment method. The dispersion should be an
asymptotically linear function of the wave number, 	(q) = cq,
where q is the momentum relative to the gapless point (π,π,π );

q = k − (π,π,π ). (55)

We should then have limq→0 limL→∞ 	(q,L)/q = c. There
could potentially be an issue with the order of the limits q → 0
and L → ∞, which with Eq. (52) are taken simultaneously as
we use q = 2π/L.

To investigate the formally correct limit of taking L → ∞
first and then q → 0, we analyze the gaps at fixed q and varying
L, to find the corresponding gap values as a function of the
momentum in the thermodynamic limit. The L dependence of
the gaps at several different q-values are shown in Fig. 18.
We observe that the size correction to the gap for sufficiently
large L is linear in 1/L and therefore extrapolate the data
to infinite size using simple line fits. Using these gaps 	(q),
we finally extrapolate the velocity as c = limk→0 	(q)/q, as
shown in Fig. 19. The behavior is fully consistent with a linear
dispersion in the limit q → 0, and empirically we find that
the leading correction is of order q2 (i.e., the correction to the
gap 	 ∼ q is of order q3). The final result for the velocity
extracted this way is c = 1.899(2), which is fully consistent
with the result based on the winding numbers. Thus the reason
for the previous disagreement is indeed that Eq. (52) does not
represent the correct order of limits, and there are no flaws in
the extraction of the gaps.

This more detailed analysis also shows the reason for the
over-estimation of the velocity based on Eq. (52). As is clear
from Fig. 18, the gaps converge to their infinite size values as
1/L for sufficiently large L. We observe that the gaps at fixed
momentum k, where k is close to but not equal to (π,π,π ),

FIG. 18. (Color online) Momentum dependent gap, with q de-
fined relative to (π,π,π ), divided by the respective q. The data are
shown vs 1/L for q = 2π/4 (open triangles), 2π/5 (open diamonds),
2π/6 (open circles), 2π/8 (solid triangles), 2π/10 (solid diamonds),
and 2π/12 (solid circles). Linear fits in 1/L are shown for each
momentum, with only data for sufficiently large L included for each q.
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FIG. 19. (Color online) Extrapolation of the critical bilayer ve-
locity using the gaps for q → 0. The infinite-size velocity is estimated
as the limiting value c = 1.899(2), which is consistent with the
estimation from the winding numbers, c = 1.9001(2), indicated
by the horizontal line. A linear function in 1/q2 is used for the
extrapolation. The inset shows the calculated dispersion.

follows the following behavior for large L:

	(q,L) = 	(q,L → ∞) + A(q)

L2
(gapless),

	(q,L) = 	(q,L → ∞) + B(q)

L
(critical),

	(q,L) = 	(q,L → ∞) + a(q)e−b(q)L (gapped).

In the gapless and the gapped phases, the size correction decays
sufficiently rapidly, so that 	(q,L → ∞) = ck. However, at
the critical point, the estimator 	(q,L)L/2π instead converges
to c + B(q → 0)/2π .

2. Paramagnetic phase

For completeness we next extract the velocity of the
propagating triplet excitations, or triplons, also in the quantum-
disordered phase of the bilayer. We choose two points well
away from g = gc, at g = 3 and 4. The lowest triplet gap
at (π,π,π ) now converges to a finite (g dependent) value
as L → ∞, because the paramagnetic phase is gapped. In
the vicinity of (π,π,π ), the spectrum is expected to behave
generically as

	(q) =
√

	2
0 + c2q2 ≈ 	0 + c2q2

2	0
, (56)

where 	0 denotes the triplet gap at wave vector (π,π,π ), c is
the velocity of the gapped triplons, and q is again measured
relative to (π,π,π ). We use both the approaches (ways of
taking q → 0 and L → ∞) discussed above to estimate the
triplon velocity c and they give consistent results in the gapped
phase (see Fig. 20 for the analysis at g = 3). We obtain c =
1.973(4) and 2.159(6) for g = 3 and 4, respectively.

The simple estimator (52) should give the correct velocity
in the gapped phase, as discussed above, and we further check
for consistency of the approach by also analyzing the gap at
q = 4π/L, in addition to the smallest momentum q = 2π/L

(both extrapolations shown in Fig. 20, upper panel). The same
velocity is also obtained using these extrapolated gap values

FIG. 20. (Color online) Velocity extraction for the bilayer at
g = 3 (paramagnetic phase). The top panel shows the size con-
vergence of velocity estimates based on two momenta close to
the antiferromagnetic momentum (q being the deviation from this
momentum). The middle panel shows the system-size dependence
of the gaps at several values of q. The bottom panel shows the
infinite-size extrapolated velocity defined vs q, obtained from the
fits in the middle panel and graphed vs q2. The q → 0 extrapolation
by a polynomial (red curve) agrees with the different order of the
limits taken in the top panel. The inset shows the dispersion relation.

representing the limit L → ∞ before q → 0, as shown in
Fig. 20, bottom panel.

For completeness, we also show the velocity estimate c(L)
obtained from the winding numbers with the cubic criterion
in Fig. 21. c(L) converges (exponentially fast for large L)
to a finite value as L → ∞. However, this estimate gives an
incorrect (higher) velocity in the paramagnetic phase. This is
expected as the triplons are not linearly dispersing excitations
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FIG. 21. (Color online) The behavior of the inverse temperature
β∗ at which the cubic criterion is satisfied for the bilayer at two
couplings in the paramagnetic regime. The method does not produce
the correct velocity when g > gc. The values, ± one error bar,
obtained using the gap method are shown with the double horizontal
lines.

[see Eq. (56)]. The error in the estimate increases with the
distance of g from the critical point, which is because c is a
regular function of (g − gc) from both sides and the winding
number estimator does work at the critical point.

VII. QUANTUM-CRITICAL SCALING AT T > 0

With c of the critical bilayer determined to high precision,
we have an opportunity to test in detail quantum-critical
scaling predictions based on large-N calculations for the O(N )
model, which for N = 3 should describe the universal critical
behavior [15,16]. The T = 0 quantum-critical point influences
the behavior of the system in a wide “fan” in the (g,T ) plane,
with cross-overs to different low-T behaviors away from gc set
by the spin stiffness (for g < gc) and the spin gap (for g > gc).
Here, we will test results for the temperature dependence of
the uniform magnetic susceptibility χ (T ) (per unit cell)

χ = 1

L2

˝⎛
⎝ 2∑

j=1

L2∑
i=1

Sz
i,j

⎞
⎠

2˛
(57)

and the specific heat

C = d

dt
E(T ), (58)

where the internal energy E = 〈H 〉/L2 per unit cell is com-
puted with the bilayer Hamiltonian (50). In the SSE method,
each configuration has a fixed z magnetization (since this is a
conserved quantity) and χ is evaluated directly according to
Eq. (57). C can be computed using an exact estimator based
on the fluctuations of the number of operators in the sampled
operator strings. In practice, however, this estimator is very
noisy at low temperatures and we will therefore instead analyze
the energy, which is simply related to the average number of
SSE operators.

A. Comparison with large-N calculations

The large-N treatment of the (2+1)-dimensional O(N )
nonlinear sigma-model gave the following leading-order low-
T forms of the susceptibility and the specific heat exactly at
the critical coupling [16]:

χ ′(T ) = λ

πc2
T

(
1 − 0.6189

N

)
, (59)

where the constant λ = 1.07602, and

C ′(T ) = 3ζ (3)

πc2
T 2

(
4N

5
− 0.3344

)
, (60)

where ζ (3) = 1.20206. Since we in practice compute and
analyze the internal energy, we will compare with the T -
integrated version of (60),

E′(T ) = E0 + ζ (3)

πc2
T 3

(
4N

5
− 0.3344

)
. (61)

We use primes on the symbols above to indicate that these are
not expected to be exact forms. Several tests have been reported
in the literature for different variants of dimerized Heisenberg
models and the leading power laws above have been confirmed.
However, quantitatively, the degree of agreement has not
been that well established, because c has also typically been
extracted from quantities relying on the large-N expansions,
instead of using an independently determined unbiased value.
To avoid the dependence on c, one can also consider the Wilson
ratio,

W = χT

C
, (62)

where c2 in Eqs. (59) and (60) cancels out. Our main purpose
here is to test the quantities where c appears.

B. Susceptibility

We need the susceptibility per unit cell in the thermody-
namic limit. The finite-size effects are illustrated in Fig. 22
for a coupling ratio close to the quantum-critical value. To

FIG. 22. (Color online) Susceptibility per unit cell divided by the
temperature of the bilayer at g = 2.5220. Results for several different
system sizes are shown to illustrate the finite size effects. For any finite
L, the susceptibility vanishes when T → 0, at a temperature scale set
by the finite size gap 	, which at criticality scales as 	 ∼ 1/L. The
lines connecting points are guides to the eye.
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FIG. 23. (Color online) The susceptibility per spin of the bilayer
Heisenberg model at coupling ratio s = 2.5221. The points are SSE
results (with error bars much smaller than the symbols) and the curves
are second-order polynomial fits to the data for T/J1 � 0.1.

make the graph clearer we have graphed χ/T , which also
is appropriate considering that we are here aiming to extract
the size of the T -linear term in χ . Since the magnetization is
conserved and there is a finite size singlet-triplet gap 	 ∼ 1/L,
the susceptibility for a given finite L vanishes exponentially
at a temperature scale T ∼ 1/L. Interestingly, χ/T exhibits
a prominent peak preceding the eventual drop to zero. The
results indicate that we can compute the susceptibility without
noticeable (within statistical errors) finite-size effects down
to T/J1 = 1/32 by using L = 512 lattices at the lowest
temperatures (while smaller systems can be used at higher
temperatures).

Below we show results for a range of temperatures repre-
senting the thermodynamic limit. In addition to calculations at
g = 2.5220, we have also considered couplings one standard
deviation of the gc estimate away from this point, i.e., g =
2.5219 and 2.5221. Based on these calculations we observe
that the critical point should be very close to 2.5221. In Fig. 23,
we analyze the T dependence of the susceptibility. At g =
2.5221 a second-order polynomial fit works well with data for
T/J1 � 0.1 (χ2/dof ≈ 1.2 with 16 data points) and gives zero
intercept within the statistical error of the fit, 0.000004(16).
The slope a in the expected leading-order form χ = aT is
a = 0.0922(3). If the intercept is assumed to be 0 and the form
χ = aT + bT 2 is used, the resulting slope is 0.09224(9). A
second-order fit to data at at g = 2.5220 and the same range
of temperatures (not shown in the figure) gives a positive
intercept about two error bars away from 0, 0.000032(14). The
slope is a = 0.0916(6), statistically indistinguishable from the
result at g = 2.5221. Although the differences between these
data sets are small, they, along with results for g = 2.5219,
suggest that the critical point is closer to g = 2.5221 than
to g = 2.5220, which is still in agreement within error bars
with the result g = 2.5220(1) stated in Ref. [27]. Based on the
present susceptibility results we estimate g = 2.52210(5).

Figure 24 shows the susceptibility per unit cell with the tem-
perature divided out at g = 2.5220 and 2.5221, along with a fit
to the data at the latter coupling. A third-order polynomial de-
scribe all the data well for all temperatures up to about T/J1 =
0.5. The intercept is completely consistent with the results for
the slope obtained in Fig. 23: a = 0.09220(5). Given that this

FIG. 24. (Color online) Twice the susceptibility divided by the
temperature of the bilayer Heisenberg model at two coupling ratios
close to the quantum-critical point. The solid curve is a third-order
polynomial fit to the g = 2.5221 (which we estimate is closer to gc)
data.

fit includes the largest amount of data we take the result as our
final estimate of the susceptibility prefactor. We can now com-
pare it with the predicted value from Eq. (59). For N → ∞ and
the value of c extracted in Sec. VI, we have a′ = 0.09487(2),
i.e., 2.9% higher than our QMC estimate, which must be
considered a remarkably good agreement. However, when
including also the 1/N correction in Eq. (59), evaluated at
N = 3, we have a′ = 0.07530(2), which is almost 20% too
low.

C. Specific heat

The internal energy is graphed in Fig. 25. The form
E = E0 + bT 3 describes well the data for T � 2 and a fit
gives E = −2.253040(1) and b = 0.2462(6). The predicted
factor from Eq. (61) when only the term ∝ N is included
is b′ = 0.25435(5), which is 3.3% higher than our estimate.
Including also the N -independent contribution (which here
acts as the leading correction to the N = ∞ result) gives

FIG. 25. (Color online) The internal energy of the bilayer
Heisenberg model at coupling ratio g = 5.5221 (within the error
bars of the estimated gc), along with a fit of the form E = E0 + aT 3

to the T � 0.2 data. The inset shows the data after subtraction of
the ground-state energy and dividing by T 3. The horizontal line
shows the prefactor of the cubic correction (with the line thickness
corresponding approximately to ± one error bar) from the fit in the
main graph.
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b′ = 0.21891(5), which is about 11% too low. Thus, as in
the case of the susceptibility, the 1/N correction makes the
agreement worse.

D. Wilson ratio

From the above expressions (59) and (60) for χ and C,
one obtains W ′ = 5λ/36ζ (3) ≈ 0.1243 when only the leading
terms in the 1/N expansion are used and W ′ ≈ 0.1147 when
the corrections are included. A value differing from the
leading-order prediction by only about 2% was reported in
Ref. [27] based on large-scale studies of a single-plane model
with columnar dimerization; W = 0.1262(6). The Wilson
ratio with the exact prefactors a and b in the asymptotic
forms χ = aT and E = E0 + bT 3 (C = 3bT 2) is W = a/3b.
With the values of a and b determined above we obtain
W = 0.1248(3). This value agrees reasonably well with the
less accurate (with larger error bar) value obtained in Ref. [27],
being smaller by slightly less than two combined error bars.
It is in remarkably good agreement with leading value of the
1/N expansion quoted above, deviating by only one error
bar. This good agreement again deteriorates when the leading
corrections to χ and C are used in W ′.

VIII. SUMMARY AND DISCUSSION

We have here presented several methods based on QMC
simulations to extract the velocity of excitations in S = 1/2
quantum spin models: the one-dimensional and two-
dimensional antiferromagnetic Heisenberg models as well as
the bilayer Heisenberg model. The methods are fundamentally
not new, but we presented several technical solutions to
improve their practical utility and carried out extensive tests
with the goal of testing their precision in practice.

The method of computing the lowest excitation energy for
given momentum using the long-time behavior of imaginary-
time correlations directly probes the dispersion relation and
is, thus, directly connected to the definition of the velocity. It
can be used in an unbiased manner to estimate the velocity
both in the ordered and disordered phases and at the critical
point. This is, however, also the most complicated method
in practice, as it requires significant efforts to obtain high-
precision results for appropriate correlation functions and to
analyze them, trying to avoid contamination by excited states in
the gap estimation. We here employed two different methods to
compute the correlations, using the power and the exponential-
form projection. We also presented two different ways to
extract the gap, using fitting procedures sensitive to the slowest
decaying component of the correlation functions and the
generalized moment method [28] extended to projector QMC
simulations. The good agreement of the velocity obtained
in this way with the other approaches in the limit of large
system sizes show that the gap estimators are unbiased (and
we also demonstrated this directly for small system sizes where
exact results can be obtained). We expect these gap-extraction
procedures to be useful also for many other systems and
studies, and to be the most versatile method between the three
approaches that we investigated in the present paper.

The velocity estimator based on the gap at the momentum
k closest, but not equal, to the momentum k0 of the lowest
triplet excitation in the finite system [where k0 = (π,π, . . .)

for these SU(2) symmetric models], requires calculating the
lowest triplet gap only for a single momentum [here k = (π −
2π/L,π, . . .)] at each L. This method works extremely well
deep in the disordered phase (see Fig. 20, top panel). However,
this estimator does not work at the critical point as shown here
(Fig. 17). In the gapless ordered phase, we see a nonmonotonic
scaling of this estimator in 1/L (Fig. 14), which is interestingly
similar to the 1D case (Fig. 4), so care must be taken to reach
sufficiently big system sizes before a careful extrapolation to
L → ∞ may be performed. A better, though more numerically
intensive way to calculate the velocity both for the gapless
phase and the critical point, is to calculate the lowest triplet
gap at a few fixed momenta close to k0 and extrapolate each
gap to its L → ∞ value, and then to finally fit these to the
known dispersion relation. The finite-size scaling of the gaps
is monotonic in 1/L (Fig. 18) and the method gives the correct
velocity in irrespective of the nature of the phase (Fig. 19).

The method of using winding number fluctuations to define
a cubic space-time geometry provides an altogether different
approach to calculate the velocity and fundamentally relies
on the low-energy physics of systems with dynamic exponent
z = 1, apart from the obvious fact that the winding number
exists, which imples at least O(2) spin-rotation symmetry
of the system. The method requires calculations for several
temperatures in the neighborhood of the target temperature T ∗
at which the temporal and spatial winding-number fluctuations
are equal, or, in principle, one could use a reweighting
technique and only do a single simulation very close to the
estimated crossing point, though we expect that it should be
statistically advantageous to do several independent runs as
more independent data are collected and the statistical analysis
(curve fitting and error estimate) is much simpler. Though
doing several simulations may seem like a drawback, in
practice the procedure for extracting the crossing temperature
are very straightforward and based on our work presented here
this is the preferred method to extract the velocity. As noted in
a previous application of this method [6], the convergence with
the system size is very rapid, but here we still found it necessary
to use a final extrapolation using a power-law correction (with
integer or nontrivial leading power in a long-range ordered
and critical system, respectively), to avoid any remaining size
effects. This method gives the correct velocity both in the
gapless phase (Fig. 11) and at the critical point (Figs. 9 and
16), but fails to work in the gapped phase (Fig. 21). It is also
considerably simpler to apply computationally compared to
the gap extraction method and gives the best estimate in the
cases where it is applicable.

We also presented a modification of the standard hydrody-
namic relationship between the velocity, spin stiffness, and
susceptibility, computing the latter at nonzero momentum
q = 2π/L in order to obtain a useful finite-size estimate of
the velocity (with the standard relationship at q = 0 diverging
when T → 0 in a finite system in QMC simulations). This
method also exhibits good convergence properties (Fig. 15),
though in practice it is still not as powerful as the winding
number method. Since the spin stiffness is the free energy
change with respect to the twist of the spins components in the
x−y plane, it is naturally expected that the estimation of the
hydrodynamic relationship should require the model to have
U(1) symmetry for this method to be applicable.
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Finally, we extracted a high-precision estimate of the veloc-
ity in a critical bilayer model and used it in combination with
QMC calculated thermodynamic properties to test field-theory
predictions based on 1/N expansions of the 2 + 1 dimensional
O(3) model. The independently extracted velocity allowed us
to precisely determine the deviations of the predicted overall
factors in the temperature dependence of the susceptibility χ

and the specific heat C. The leading results for the factors
obtained in the 1/N expansion (which for χ is independent
of N and for C contains a factor N ), setting N = 3, deviate
from the correct (QMC computed) values by only about 3%.
The Wilson ratio, where the velocity dependence cancels out,
agrees perfectly to within the very small (0.3%) error bar (and
we cannot establish the level of agreement beyond the level of
the error bar).

The remarkably good agreements between the large-N
results and the unbiased QMC results are not further improved
when the leading corrections to the N → ∞ forms are used.
Instead, the agreement becomes significantly worse, with the
deviations for χ and C being about 20% and 10% respectively.
In principle there is no reason to expect a better agreement than
this, considering that 1/N = 1/3 is not a very small number,
and what is surprising is the very good agreement with the
large-N forms without the corrections. In particular, the Wil-
son ratio, which for the class of SU(N ) systems generalizing
the SU(2) system consider here, essentially counts the number
of gapless critical modes, W ∝ 1/N , agrees almost perfectly
(with deviations not detectable within the statistical errors of
the present study) when the corrections are not included. It
is tempting to speculate that the mode-counting property of
W is exact, similar to corrections discussed recently for the
entanglement entropy [58–60]. An interesting question would
then be why the 1/N corrections apparently violate the mode-
counting property and how this might possibly be avoided.
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APPENDIX: NATURE OF THE SYSTEMATICAL ERRORS
IN THE (n,βint) GAP ESTIMATOR

We will show analytically the systematic error of the gap
estimator (37) and the limits (38) in more details, which was
shown in Sec. II B. Let us recall the dynamical correlation

function in the exponential-form projection:

C(τ,τ0) = 1

Z′ 〈ψt |e−(β−τ−τ0)HA†e−τHAe−τ0H |ψt 〉

= 1

Z′
∑

,p,q

b
,p,q e−βEpe−τ (E
−Ep)e−τ0(Eq−Ep),

where Z′ = 〈ψt |e−βH |ψt 〉, |ψt 〉 = ∑
q cq |q〉, H |q〉 = Eq |q〉,

and b
,p,q = c̄pcq〈p|A†|
〉〈
|A|q〉. The Fourier transformed
correlation function at frequency ωk = 2πk/βint (k ∈ Z) is
expressed as

C̃(ωk) =
∫ βint

0
dτ C(τ,τ0)eiτωk

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
Z′
∑


,p g
,p
	
,p+iωk

	2

,p+ω2

k

(ωk �= 0)

1

Z′

⎛
⎝ ∑

E
 �=Ep

g
,p

	
,p

+
∑

E
=Ep

d
,pβint

⎞
⎠ (ωk = 0)

,

(A1)

where βint � β − τ0, g
,p = d
,p(1 − e−βint	
,p ), d
,p =
e−(β−τ0)Ep

∑
q b
,p,qe

−τ0Eq , 	
,p = E
 − Ep. Note that
the imaginary part for ωk �= 0 does not vanish as the
finite-temperature case because the correlation function
C(τ,τ0) is not periodic.

The gap estimator (37) is rewritten as

	̂(n,βint)

	1
= 1 + Rn(βint)

1 + Fn(βint) + Dn(βint)

→ 1 +
∑

>1

{
b


b1

(
	1

	


)2n

+ O

[(
	1

	


)2n+1]}

× (βint → ∞), (A2)

where

Rn(βint) =
∑

{
,p}∈S

(
g
,p

g1,0

)
h(n,βint,
,p)

h(n,βint,1,0)
,

Fn(βint) =
∑

{
,p}∈S

(
g
,p

g1,0

)
h(n,βint,
,p)

h(n,βint,1,0)

(
	1

	
,p

)
,

Dn(βint) =
∑

E
=Ep

xn,0,0

(
d
,p

g1,0

)
βint	1

1

h(n,βint,1,0)
,

h(n,βint,
,p) = (−1)nω2n
1

n∏
k=1

1

	2

,p + ω2

k

b
 ≡ b
,0,0 = |c0〈
|A|0〉|2, and 	
 = E
 − E0. For the sum-
mation of Rn and Fn, the set S is such that E
 �= Ep except
(
,p) = (1,0). Then

lim
n→∞ lim

βint,τ0→∞
	̂(n,βint) = 	1. (A3)

Let us consider taking the limit n → ∞ before βint,τ0 → ∞.
Using the product expansion form of the hyperbolic function,
sinh(πz) = πz

∏∞
k=1(1 + z2/k2), we obtain the limiting form

as

	̂(n,βint)

	1
= 1 + R∞(βint)

1 + G∞(βint)
+ O

(
1

n

)
, (A4)
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where

R∞(βint) =
∑

{
,p}∈S

(
d
,p

d1

)(
	
,p

	1

)
e− βint

2 (	
,p−	1),

(A5)

G∞(βint) =
∑

(
,p)�=(1,0)

(
d
,p

d1

)
e− βint

2 (	
,p−	1),

d1 ≡ d1,0, and G∞(βint) = limn→∞(Fn(βint) + Dn(βint)). Let
us next consider the limit βint → ∞. We can rewrite the
correction term as

G∞(βint) =
∑

(
,p)�=(1,0)

b̄
,pe−(β−τ0)	p,0− βint
2 (	
,p−	1)

=
∑

(
,p)�=(1,0)

b̄
,pe−(β−τ0− βint
2 )	p,0− βint

2 	
,1

→ 0 (βint → ∞), (A6)

where

b̄
,p =
∑

q b
,p,qe
−τ0Eq∑

q b1,0,qe
−τ0Eq

. (A7)

Note that β − τ0 − βint

2 � βint

2 since β � τ0 + βint, 	p,0 >

0 (p �= 0), and 	
,1 > 0 (
 > 1). Similarly, R∞(βint) → 0
(βint → ∞). Consequently,

lim
βint→∞

lim
n→∞ 	̂(n,βint) = 	1. (A8)

The convergence of βint → ∞ limit is accelerated together
with taking τ0 → ∞ limit practically. Therefore we have
analytically shown that the limits are interchangeable:

lim
n→∞ lim

βint,τ0→∞
	̂(n,βint) = lim

βint,τ0→∞
lim

n→∞ 	̂(n,βint) = 	1.

This appealing property makes the estimation robust in
practice and allows for flexibility in how the limit is taken.

As we have shown in the main text, we extrapolate the
final gap estimation for n → ∞ first and for βint → ∞ later.

It is because data for large βint will be noisy, and it is
easier to take the limit for n → ∞ first. Nonetheless, we
could invert the limits. Then let us consider the finite n

correction for making the extrapolation more reliable. Let
Q(n,z) = ∏n

k=1(1 + z2/k2). We have already used the limit
Q(n,z) → sinh(πz)/πz (n → ∞). The finite n correction is
expressed as

Q(n,z) ∼ sinh(πz)

πz
exp

[
− z2

n + 1
− z2

2(n + 1)(n + 2)

]

∼ sinh(πz)

πz

[
1 − z2

n + 1
− z2

2(n + 1)(n + 2)

+ z4

2(n + 1)2

]
.

Here the asymptotic expansion of the Riemann zeta function
was used,

n∑
k=1

1

k2
= π2

6
− 1

n + 1
− 1

2(n + 1)(n + 2)
− · · · . (A9)

As a result, the asymptotic systematic error of the gap
estimator is rewritten for βint,τ0 � 1 as

	̂(n,βint) ∼ 	1 +
∑

>1

(
b


b1

)
	
,1e

− βint
2 	
,1

[
1 + z̄2




n + 1

+ z̄2



2(n + 1)

(
z̄2



n + 1
+ 1

n + 2

)
+ O

(
1

n3

)]
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(A10)

where b
 > 0 (
 � 1), 	
,1 ≡ 	
 − 	1 > 0, and z̄2

 =(

βint

2π

)2
(	2


 − 	2
1) > 0 (
 > 1). In practice, we can use a

fitting function f (n,βint) = 	1 + a exp(−b βint)(1 + c/n +
d/n2) with positive real parameters a,b,c, and real parameter
d to extrapolate the first gap, as demonstrated in Figs. 5 and 6
in the main text. (Note that the parameter d may be negative
for small βint.)
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